RESUMO
Coral reefs are the most biodiversity-rich ecosystems in the world's oceans. Coral establishes complex interactions with various microorganisms that constitute an important part of the coral holobiont. The best-known coral endosymbionts are Symbiodiniaceae dinoflagellates. Each member of the coral microbiome contributes to its total lipidome, which integrates many molecular species. The present study summarizes available information on the molecular species of the plasma membrane lipids of the coral host and its dinoflagellates (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), ceramideaminoethylphosphonate, and diacylglyceryl-3-O-carboxyhydroxymethylcholine), and the thylakoid membrane lipids of dinoflagellates (phosphatidylglycerol (PG) and glycolipids). Alkyl chains of PC and PE molecular species differ between tropical and cold-water coral species, and features of their acyl chains depend on the coral's taxonomic position. PS and PI structural features are associated with the presence of an exoskeleton in the corals. The dinoflagellate thermosensitivity affects the profiles of PG and glycolipid molecular species, which can be modified by the coral host. Coral microbiome members, such as bacteria and fungi, can also be the source of the alkyl and acyl chains of coral membrane lipids. The lipidomics approach, providing broader and more detailed information about coral lipid composition, opens up new opportunities in the study of biochemistry and ecology of corals.
Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/microbiologia , Fosfolipídeos , Ecossistema , Lipidômica , Betaína , Glicolipídeos , Recifes de Corais , Fosfatidilcolinas , Fosfatidilgliceróis , SimbioseRESUMO
Coral reefs host hundreds of thousands of animal species that are increasingly threatened by anthropogenic disturbances. These animals host microbial communities at their surface, playing crucial roles for their fitness. However, the diversity of such microbiomes is mostly described in a few coral species and still poorly defined in other invertebrates and vertebrates. Given the diversity of animal microbiomes, and the diversity of host species inhabiting coral reefs, the contribution of such microbiomes to the total microbial diversity of coral reefs could be important, yet potentially vulnerable to the loss of animal species. Analysis of the surface microbiome from 74 taxa, including teleost fishes, hard and soft corals, crustaceans, echinoderms, bivalves and sponges, revealed that more than 90% of their prokaryotic phylogenetic richness was specific and not recovered in surrounding plankton. Estimate of the total richness associated with coral reef animal surface microbiomes reached up to 2.5% of current estimates of Earth prokaryotic diversity. Therefore, coral reef animal surfaces should be recognized as a hotspot of marine microbial diversity. Loss of the most vulnerable reef animals expected under present-day scenarios of reef degradation would induce an erosion of 28% of the prokaryotic richness, with unknown consequences on coral reef ecosystem functioning.
Assuntos
Biodiversidade , Recifes de Corais , Microbiota , Microbiologia da Água , Animais , FilogeniaRESUMO
BACKGROUND: Our ability to investigate processes shaping the evolutionary diversification of corals (Cnidaria: Anthozoa) is limited by a lack of understanding of species boundaries. Discerning species of corals has been challenging due to a multitude of factors, including homoplasious and plastic morphological characters and the use of molecular markers that are either not informative or have not completely sorted. Hybridization can also blur species boundaries by leading to incongruence between morphology and genetics. We used traditional DNA barcoding and restriction-site associated DNA sequencing combined with coalescence-based and allele-frequency methods to elucidate species boundaries and simultaneously examine the potential role of hybridization in a speciose genus of octocoral, Sinularia. RESULTS: Species delimitations using two widely used DNA barcode markers, mtMutS and 28S rDNA, were incongruent with one another and with the morphospecies identifications. When mtMutS and 28S were concatenated, a 0.3% genetic distance threshold delimited the majority of morphospecies. In contrast, 12 of the 15 examined morphospecies formed well-supported monophyletic clades in both concatenated RAxML phylogenies and SNAPP species trees of > 6000 RADSeq loci. DAPC and Structure analyses also supported morphospecies assignments, but indicated the potential for two additional cryptic species. Three morphologically distinct species pairs could not, however, be distinguished genetically. ABBA-BABA tests demonstrated significant admixture between some of those species, suggesting that hybridization may confound species delimitation in Sinularia. CONCLUSIONS: A genomic approach can help to guide species delimitation while simultaneously elucidating the processes generating coral diversity. Results support the hypothesis that hybridization is an important mechanism in the evolution of Anthozoa, including octocorals, and future research should examine the contribution of this mechanism in generating diversity across the coral tree of life.
Assuntos
Antozoários/genética , Hibridização Genética , Animais , Antozoários/classificação , Código de Barras de DNA Taxonômico , Análise Discriminante , Funções Verossimilhança , Filogenia , Análise de Componente Principal , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
The ecological and evolutionary processes that interact to shape community structure are poorly studied in the largest environment on earth, the deep sea. Phylogenetic data and morphological traits of octocorals were coupled with environmental factors to test hypotheses of community assembly in the deep (250-2500 m) Gulf of Mexico. We found lineage turnover at a depth of 800-1200 m, with isidids and chrysogorgiids at deeper depths and a diversity of species from across the phylogeny occupying shallower depths. Traits, including axis type, polyp shape, and polyp retraction, differed among species occupying the shallowest (250-800 m) and deepest (1200-2500 m) depths. Results also indicated that octocoral species sort along an environmental gradient of depth. Closely related octocoral species sorted into different depth strata on the upper to middle slope, likely due to barriers imposed by water masses followed by adaptive divergence. Within any given depth zone down to 2000 m, the phylogenetic relatedness of co-existing octocorals was random, indicating that stochastic processes, such as recruitment, also shape community structure. At depths >2000 m, octocorals were more closely related than expected by chance due to the diversification of chrysogorgiids and isidids, which retain conserved traits that impart survival at deeper and/or colder depths. Polyp density, size, and inter-polyp distance were significantly correlated with depth, particularly in plexaurids and isidids, highlighting trait lability across depth and supporting that environmental gradients influence octocoral morphology. Our community phylogenetics approach indicates that both environmental filtering and neutral processes shape community assembly in the deep sea.
Assuntos
Antozoários , Meio Ambiente , Filogenia , Animais , Evolução Biológica , Golfo do MéxicoRESUMO
Sequence data were obtained for five different loci, both mitochondrial (cox1, mtMutS, 16S) and nuclear (18S, 28S rDNA), from 64 species representing 25 genera of the common deep-sea octocoral family Primnoidae. We tested the hypothesis that Primnoidae have an Antarctic origin, as this is where they currently have high species richness, using Maximum likelihood and Bayesian inference methods of phylogenetic analysis. Using a time-calibrated molecular phylogeny we also investigated the time of species radiation in sub-Antarctic Primnoidae. Our relatively wide taxon sampling and phylogenetic analysis supported Primnoidae as a monophyletic family. The base of the well-supported phylogeny was Pacific in origin, indicating Primnoidae sub-Antarctic diversity is a secondary species radiation. There is also evidence for a subsequent range extension of sub-Antarctic lineages into deep-water areas of the Indian and Pacific Oceans. Conservative and speculative fossil-calibration analyses resulted in two differing estimations of sub-Antarctic species divergence times. Conservative analysis suggested a sub-Antarctic species radiation occurred â¼52MYA (95% HPD: 36-73MYA), potentially before the opening of the Drake Passage and Antarctic Circumpolar Current (ACC) formation (41-37MYA). Speculative analysis pushed this radiation back into the late Jurassic, 157MYA (95% HPD: 118-204MYA). Genus-level groupings were broadly supported in this analysis with some notable polyphyletic exceptions: Callogorgia, Fanellia, Primnoella, Plumarella, Thouarella. Molecular and morphological evidence supports the placement of Tauroprimnoa austasensis within Dasystenella and Fannyella kuekenthali within Metafannyella.
Assuntos
Antozoários/classificação , Evolução Biológica , Filogenia , Animais , Regiões Antárticas , Antozoários/genética , Teorema de Bayes , DNA Mitocondrial/genética , Funções Verossimilhança , Modelos Genéticos , Oceano Pacífico , Análise de Sequência de DNARESUMO
The octocorals of the Ellisellidae constitute a diverse and widely distributed family with subdivisions into genera based on colonial growth forms. Branching patterns are repeated in several genera and congeners often display region-specific variations in a given growth form. We examined the systematic patterns of ellisellid genera and the evolution of branching form diversity using molecular phylogenetic and ancestral morphological reconstructions. Six of eight included genera were found to be polyphyletic due to biogeographical incompatibility with current taxonomic assignments and the creation of at least six new genera plus several reassignments among existing genera is necessary. Phylogenetic patterns of diversification of colony branching morphology displayed a similar transformation order in each of the two primary ellisellid clades, with a sea fan form estimated as the most-probable common ancestor with likely origins in the Indo-Pacific region. The observed parallelism in evolution indicates the existence of a constraint on the genetic elements determining ellisellid colonial morphology. However, the lack of correspondence between levels of genetic divergence and morphological diversity among genera suggests that future octocoral studies should focus on the role of changes in gene regulation in the evolution of branching patterns.
Assuntos
Antozoários/anatomia & histologia , Antozoários/classificação , Evolução Molecular , Filogenia , Animais , Antozoários/genética , Antozoários/crescimento & desenvolvimento , Oceanos e Mares , Filogeografia , Análise de Sequência de DNARESUMO
The complete mitochondrial genome of Paragorgia papillata Li et al. 2021, a deep-sea gorgonian inhabiting at 858 m in Caroline Ridge, was obtained in this study. The length of the mitochondrial genome is 19,018 bp with 14 protein coding genes, one transfer RNA (tRNA-Met) and two ribosomal RNA genes contained in this circular molecule. Phylogenetic analysis indicated that P. papillata and P. coralloides Bayer, 1993 were two closely related species, and a total of 26 mutational sites (four nonsynonymous mutations included) can be detected between their mitochondrial genomes. This exhibits a case that mitochondrial genomes can be applied to differentiate closely related species in gorgonians. The phylogenetic tree constructed with mitochondrial genomes showed that the families in Octocorallia are reciprocally monophyletic, provided that the family names were revised according to the systematic revision of Octocorallia guided by phylogenomics. However, the relationships of the families within each order were different between the previous phylogenomic work and ours. Integrating mitochondrial genomes from a wider array of Octocorallia families is essential for a more accurate comparison of phylogenies derived from nuclear and mitochondrial sequences in future study.
RESUMO
The accurate delimitation of species boundaries in nonbilaterian marine taxa is notoriously difficult, with consequences for many studies in ecology and evolution. Anthozoans are a diverse group of key structural organisms worldwide, but the lack of reliable morphological characters and informative genetic markers hampers our ability to understand species diversification. We investigated population differentiation and species limits in Atlantic (Iberian Peninsula) and Mediterranean lineages of the octocoral genus Paramuricea previously identified as P. clavata. We used a diverse set of molecular markers (microsatellites, RNA-seq derived single-copy orthologues [SCO] and mt-mutS [mitochondrial barcode]) at 49 locations. Clear segregation of Atlantic and Mediterranean lineages was found with all markers. Species-tree estimations based on SCO strongly supported these two clades as distinct, recently diverged sister species with incomplete lineage sorting, P. cf. grayi and P. clavata, respectively. Furthermore, a second putative (or ongoing) speciation event was detected in the Atlantic between two P. cf. grayi color morphotypes (yellow and purple) using SCO and supported by microsatellites. While segregating P. cf. grayi lineages showed considerable geographic structure, dominating circalittoral communities in southern (yellow) and western (purple) Portugal, their occurrence in sympatry at some localities suggests a degree of reproductive isolation. Overall, our results show that previous molecular and morphological studies have underestimated species diversity in Paramuricea occurring in the Iberian Peninsula, which has important implications for conservation planning. Finally, our findings validate the usefulness of phylotranscriptomics for resolving evolutionary relationships in octocorals.
RESUMO
Soft corals (Anthozoa: Octocorallia) are discreet components in the Southwestern Atlantic reef communities. In Brazil, the native octocoral shallow-reef fauna is mostly represented by gorgonians. Consequently, except for the nephtheid Neospongodes atlantica, most of the known soft corals from this region are considered non-indigenous. Hitherto, the monotypic genus Neospongodes, which was proposed in the early 1900s, has been considered to be endemic to the Northeastern Brazilian coast. Herein, based on in situ records, we show that N. atlantica is a substrate generalist that has been probably expanding its distribution by dominating extensive shallow and mesophotic sandy and reef bottoms, generally outcompeting other reef benthic organisms, including Brazilian endemic species. Based on previously unidentified museum specimens, new records, and a broad literature review, we provide the most comprehensive modelling of the potential distribution of this species in the Southwestern Atlantic. Based on molecular inference supported by in-depth morphological analysis, the probable non-indigenous and, therefore, ancient introduction of N. atlantica in Brazilian waters is discussed. Finally, these results support that Neospongodes and the Indo-Pacific Stereonephthya are synonyms, which led us to propose the latter as taxonomically invalid.
Assuntos
Antozoários , Animais , Brasil , MuseusRESUMO
The Gray's sea fan, Paramuricea grayi (Johnson, 1861), typically inhabits deep littoral and circalittoral habitats of the eastern temperate and tropical Atlantic Ocean. Along the Iberian Peninsula, where P. grayi is a dominant constituent of circalittoral coral gardens, two segregating lineages (yellow and purple morphotypes) were recently identified using single-copy nuclear orthologues. The mitochondrial genomes of 9 P. grayi individuals covering both color morphotypes were assembled from RNA-seq data, using samples collected at three sites in southern (Sagres and Tavira) and western (Cape Espichel) Portugal. The complete circular mitogenome is 18,668 bp in length, has an A + T-rich base composition (62.5%) and contains the 17 genes typically found in Octocorallia: 14 protein-coding genes (atp6, atp8, cob, cox1-3, mt-mutS, nad1-6, and nad4L), the small and large subunit rRNAs (rns and rnl), and one transfer RNA (trnM). The mitogenomes were nearly identical for all specimens, though we identified a noteworthy polymorphism (two SNPs 9 bp apart) in the mt-mutS of one purple individual that is shared with the sister species P. clavata. The mitogenomes of the two species have a pairwise sequence identity of 99.0%, with nad6 and mt-mutS having the highest rates of non-synonymous substitutions.
RESUMO
Three species of the genus Swiftia are known for the NE Atlantic Ocean and Mediterranean Sea. Remotely-operated vehicle (ROV) surveys and sampling on board RV Maria S. Merian during cruise MSM 16/3 'PHAETON' in 2010 provided footage and specimens of octocorals off Mauritania. Micro-computed tomography (micro-CT) reveals, for the first time in taxonomy of octocorals, the three-dimensional arrangement of the sclerites in a polyp. Swiftiaphaeton sp. nov. is described for the continental slope off Mauritania. This azooxanthellate octocoral is distinctive from NE Atlantic and Mediterranean congenerics by the dark red colour of the colonies (including the polyps), the presence of a layer of rod sclerites on top of the polyp mounds, and different sizes of polyps and sclerites. Using micro-CT has allowed the observation and imaging of a layer of sclerites that is distinct from other species of the same genus. ROV images revealed live records of S.phaeton sp. nov. in submarine canyons and on cold-water coral mounds in the upper-bathyal off Mauritania (396-639 m depth), mainly attached to dead coral, coral rubble, or rocks. The new species represents an extension of the genus distribution to the tropical latitudes (17°07'N and 20°14'N) of the NE Atlantic Ocean.
RESUMO
Symbiotic associations, widespread in terrestrial and marine ecosystems, are of considerable ecological importance. Many tropical coral species are holobionts, formed by the obligate association between a cnidarian host and endosymbiotic dinoflagellates of the family Symbiodiniaceae. The latter are abundant on coral reefs from very shallow water down to the upper mesophotic zone (30-70 m). The research on scleractinians has revealed that the photosymbiont lineages present in the cnidarian host play an important role in the coral's ability to thrive under different environmental conditions, such as light regime and temperature. However, little is known regarding octocoral photosymbionts, and in particular regarding those found deeper than 30 m. Here, we used ribosomal (ITS2) and chloroplast (23S) markers to uncover, for the first time, the dominant Symbiodiniaceae taxa present in 19 mesophotic octocoral species (30-70 m depth) from the Gulf of Aqaba/Eilat (northern Red Sea). In addition, using high-throughput sequencing of the ITS2 region we characterized both the dominant and the rare Symbiodiniaceae lineages found in several species across depth. The phylogenetic analyses of both markers were in agreement and revealed that most of the studied mesophotic octocorals host the genus Cladocopium. Litophyton spp. and Klyxum utinomii were exceptions, as they harbored Symbiodinium and Durusdinium photosymbionts, respectively. While the dominant algal lineage of each coral species did not vary across depth, the endosymbiont community structure significantly differed between host species, as well as between different depths for some host species. The findings from this study contribute to the growing global-catalogue of Cnidaria-Symbiodiniaceae associations. Unravelling the Symbiodiniaceae composition in octocoral holobionts across environmental gradients, depth in particular, may enable a better understanding of how specialized those associations are, and to what extent coral holobionts are able to modify their photosymbionts.
RESUMO
Many species across a wide range of taxa and habitats display phenological shifts and differences in response to both environmental gradients and climate change. Moreover, the wide-scale decline of numerous ecosystems is leading to increasing efforts to identify zones that might serve as natural refuges from various disturbances, including ocean warming. One such refuge was suggested to be that of the deep coral reefs, but whether depth can provide coral populations with a viable and reproductive refuge remains unclear. Given the global coral-reef degradation and the key role that corals play as ecosystem engineers, their reproductive ecology has been widely studied. A particular knowledge gap nonetheless exists regarding coral reproductive phenology along a depth gradient. Filling in this gap may uncover the environmental cues that regulate coral reproduction, leading to better predictions of population connectivity, and their possible responses to climate change and other environmental changes. Here, using long-term in situ observations of the soft coral Rhytisma fulvum's reproductive activity along its entire depth range (0-45 m), we examined the relationship among several environmental factors and the coral's reproductive phenology and activity over five successive annual breeding seasons. Compared with the shallow depths, a lower number of reproducing colonies was found in habitats deeper than 30 m, highlighting possible constraints on coral reproduction at the deeper end of their range. Our results further revealed that an increase in seawater temperature over 1-2-day intervals during the breeding season correlated with the onset of reproductive activity along the depth gradient, leading to different reproductive periodicities in different depths. These differences suggest that differential temperature regimes and reproductive timing across depth may create intraspecific temporal reproductive segregation, possibly reducing connectivity among populations along a depth gradient. Moreover, we found high variability among years in both the timing of breeding activities and in the level of reproductive synchrony among corals from different depths. Overall, our study questions whether depth can provide a long-term and viable refuge for corals in the face of global environmental changes.
Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Ecossistema , Reprodução , Água do MarRESUMO
Despite the obvious negative effects caused by invasive species, some recent studies have shown that the impacts at local scale are diverse and not necessarily negative. Arborescent benthic organisms such as octocorals form three-dimensional structures capable of increasing the amount of substrate available and providing shelter for epibiont species. We investigated the role of the alien octocoral Carijoa riisei on the diversity of benthic communities in three shipwrecks on the north-eastern coast of Brazil. We expected that (a) the fauna associated with the octocoral are richer and more diverse compared to the adjacent; (b) some species are exclusively associated with C. riisei; (c) the species that are present both in the areas with and without C. riisei have a greater abundance when associated with the octocoral. For this, we compared the macrobenthic communities associated with C. riisei to those found in adjacent areas where the octocoral was absent. Our study showed that the communities associated with the octocoral were 1.5 times richer and 10 times more abundant than adjacent communities, with 29 exclusive taxa. The dominant taxa were the amphipods Ericthonius brasiliensis and Podocerus brasiliensis and polychaetes of the family Syllidae. These taxa were present in areas with presence and absence of C. riisei, but their abundance was significantly greater where the octocoral was present. Our results reinforce the idea that Carijoa riisei acts as an ecosystem engineer in coastal reefs, creating new habitats and increasing diversity at a local scale, even though it is an alien species.
RESUMO
As coral populations decline worldwide in the face of ongoing environmental change, documenting their distribution, diversity and conservation status is now more imperative than ever. Accurate delimitation and identification of species is a critical first step. This task, however, is not trivial as morphological variation and slowly evolving molecular markers confound species identification. New approaches to species delimitation in corals are needed to overcome these challenges. Here, we test whether target enrichment of ultraconserved elements (UCEs) and exons can be used for delimiting species boundaries and population structure within species of corals by focusing on two octocoral genera, Alcyonium and Sinularia, as exemplary case studies. We designed an updated bait set (29,181 baits) to target-capture 3,023 UCE and exon loci, recovering a mean of 1,910 ± 168 SD per sample with a mean length of 1,055 ± 208 bp. Similar numbers of loci were recovered from Sinularia (1,946 ± 227 SD) and Alcyonium (1,863 ± 177 SD). Species-level phylogenies were highly supported for both genera. Clustering methods based on filtered single nucleotide polymorphisms delimited species and populations that are congruent with previous allozyme, DNA barcoding, reproductive and ecological data for Alcyonium, and offered further evidence of hybridization among species. For Sinularia, results were congruent with those obtained from a previous study using restriction site associated DNA sequencing. Both case studies demonstrate the utility of target-enrichment of UCEs and exons to address a wide range of evolutionary and taxonomic questions across deep to shallow timescales in corals.
Assuntos
Antozoários , Éxons , Genética Populacional , Filogenia , Animais , Antozoários/classificação , Antozoários/genética , Evolução Biológica , Análise de Sequência de DNARESUMO
Quantifying recruitment of corals is important for evaluating their capacity to recover after disturbances through natural processes, yet measuring recruitment rates in situ is challenging due to the minute size of the study organism and the complexity of benthic communities. Settlement tiles are widely used in studies of coral recruitment because they can be viewed under a microscope to enhance accuracy, but methodological choices such as the rugosity of tiles used and when and how to scan tiles for recruits post-collection may cause inconsistencies in measured recruitment rates. We deployed 2,880 tiles with matching rugosity on top and bottom surfaces to 30 sites along the Florida Reef Tract for year-long saturations during a three year study. We scanned the top and bottom surfaces of the same tiles for scleractinian recruits before (live scans) and after treating tiles with sodium hypochlorite (corallite scans). Recruit counts were higher in corallite than live scans, indicating that scleractinian recruitment rates should not be directly compared between studies using live scans and those scanning tiles which have been processed to remove fouling material. Recruit counts also were higher on tile tops in general, but the proportion of settlement to the top and bottom surfaces varied significantly by scleractinian family. Thus, biases may be introduced in recruitment datasets by differences in tile rugosity or by only scanning a subset of tile surfaces. Finally, we quantified octocoral recruitment during live scans and found they preferentially settled to tile tops. We recommend that recruitment tile studies include corallite scans for scleractinian skeletons, deploy tiles with matching rugosity on top and bottom surfaces, and scan all tile surfaces.
RESUMO
Soft corals in the Philippines have received little attention. In this study, community structure and size-frequency distribution of soft corals were assessed via quantitative surveys in a heavily disturbed reef system in northwestern Philippines. Relationships between selected environmental parameters and benthic components were also investigated. Results reveal that soft coral cover, density, and taxa richness were lowest at stations nearest a fish farming area, characterized by the poorest water quality. Differences in dominance of taxonomic groups may indicate differences in environmental preference or tolerance. Exposure to waves and water clarity were determined to have high correlations with the distribution of different taxa. Symmetrical size distributions of selected alcyoniids were indicative of healthy populations. However, the negative skewness of Lobophytum may indicate an eventual population decline caused by unfavorable environmental conditions. The study's findings suggest the need to conduct a detailed analysis of the different soft coral variables during coral reef surveys to improve data interpretations necessary for coral reef management in the Philippines.
Assuntos
Antozoários , Animais , Recifes de Corais , Pesqueiros , Filipinas , Qualidade da ÁguaRESUMO
Corals are the ecosystem engineers of coral reefs, one of the most biodiverse marine ecosystems. The ability of corals to form reefs depends on the precipitation of calcium carbonate (CaCO3) under biological control. However, several mechanisms underlying coral biomineralization remain elusive, for example, whether corals employ different molecular machineries to deposit different CaCO3 polymorphs (i.e., aragonite or calcite). Here, we used tandem mass spectrometry (MS/MS) to compare the proteins occluded in the skeleton of three octocoral and one scleractinian species: Tubipora musica and Sinularia cf. cruciata (calcite sclerites), the blue coral Heliopora coerulea (aragonitic skeleton), and the scleractinian aragonitic Montipora digitata. Reciprocal Blast analysis revealed extremely low overlap between aragonitic and calcitic species, while a core set of proteins is shared between octocorals producing calcite sclerites. However, the carbonic anhydrase CruCA4 is present in the skeletons of both polymorphs. Phylogenetic analysis highlighted several possible instances of protein co-option in octocorals. These include acidic proteins and scleritin, which appear to have been secondarily recruited for calcification and likely derive from proteins playing different functions. Similarities between octocorals and scleractinians included presence of a galaxin-related protein, carbonic anhydrases, and one hephaestin-like protein. Although the first two appear to have been independently recruited, the third appear to share a common origin. This work represents the first attempt to identify and compare proteins associated with coral skeleton polymorph diversity, providing several new research targets and enabling both future functional and evolutionary studies aimed at elucidating the origin and evolution of coral biomineralization.
Assuntos
Antozoários/metabolismo , Evolução Biológica , Biomineralização , Carbonato de Cálcio/metabolismo , Proteoma , Animais , Antozoários/anatomia & histologia , Antozoários/genética , Especificidade da EspécieRESUMO
Cryptopontius is the most species-rich genus in the family Artotrogidae with 25 species, being recorded in almost all oceans, except in the Arctic. However only three species of this genus have been recorded from the Brazilian coast, all of them along the coast of Pernambuco state. This study describes two new species of the genus. Cryptopontius phyllogorgius sp. nov. differs from other species by having 9-segmented antennule, and nine elements on the third exopodal segment of leg 4. Cryptopontius pentadikos sp. nov. differs from its congeners by having five expressed antennulary segments proximal to fused ancestral IX-XII, two setae on second endopodal segment of leg 1, eight elements on third exopodal segment of leg 1 and the free segment of leg 5 with two setae. A key to species of the genus Cryptopontius is provided.
Assuntos
Copépodes , Animais , Brasil , Meio AmbienteRESUMO
Coral reefs throughout the tropics have experienced large declines in the abundance of scleractinian corals over the last few decades, and some reefs are becoming functionally dominated by animal taxa other than scleractinians. This phenomenon is striking on many shallow reefs in the tropical western Atlantic, where arborescent octocorals now are numerically and functionally dominant. Octocorals are one of several taxa that have been overlooked for decades in analyses of coral reef community dynamics, and our understanding of why octocorals are favoured (whereas scleractinians are not) on some modern reefs, and how they will affect the function of future reef communities, is not commensurate with the task of scientifically responding to the coral reef crisis. We summarize the biological and ecological features predisposing octocorals for success under contemporary conditions, and focus on those features that could have generated resistance and resilience of octocoral populations to environmental change on modern reefs. There is a rich set of opportunities for rapid advancement in understanding the factors driving the success of octocorals on modern reefs, but we underscore three lines of inquiry: (1) the functional implications of strongly mixotrophic, polytrophic, and plastic nutrition, (2) the capacity to recruit at high densities and maintain rapid initial rates of vertical growth, and (3) the emergent properties associated with dense animal forests at high colony densities.