Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 137(16)2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-39212120

RESUMO

The unicellular eukaryote Paramecium tetraurelia contains functionally distinct nuclei: germline micronuclei (MICs) and a somatic macronucleus (MAC). During sex, the MIC genome is reorganized into a new MAC genome and the old MAC is lost. Almost 45,000 unique internal eliminated sequences (IESs) distributed throughout the genome require precise excision to guarantee a functional new MAC genome. Here, we characterize a pair of paralogous PHD finger proteins involved in DNA elimination. DevPF1, the early-expressed paralog, is present in only some of the gametic and post-zygotic nuclei during meiosis. Both DevPF1 and DevPF2 localize in the new developing MACs, where IES excision occurs. Upon DevPF2 knockdown (KD), long IESs are preferentially retained and late-expressed small RNAs decrease; no length preference for retained IESs was observed in DevPF1-KD and development-specific small RNAs were abolished. The expression of at least two genes from the new MAC with roles in genome reorganization seems to be influenced by DevPF1- and DevPF2-KD. Thus, both PHD fingers are crucial for new MAC genome development, with distinct functions, potentially via regulation of non-coding and coding transcription in the MICs and new MACs.


Assuntos
Edição de Genes , Paramecium tetraurellia , Proteínas de Protozoários , Paramecium tetraurellia/genética , Paramecium tetraurellia/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Macronúcleo/genética , Macronúcleo/metabolismo , Genoma de Protozoário , Micronúcleo Germinativo/metabolismo , Micronúcleo Germinativo/genética , Meiose/genética
2.
Immunol Rev ; 305(1): 59-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34545959

RESUMO

The emergence of antigen receptor diversity in clonotypic lymphocytes drove the evolution of a novel gene, Aire, that enabled the adaptive immune system to discriminate foreign invaders from self-constituents. AIRE functions in the epithelial cells of the thymus to express genes highly restricted to alternative cell lineages. This somatic plasticity facilitates the selection of a balanced repertoire of T cells that protects the host from harmful self-reactive clones, yet maintains a wide range of affinities for virtually any foreign antigen. Here, we review the latest understanding of AIRE's molecular actions with a focus on its interplay with chromatin. We argue that AIRE is a multi-valent chromatin effector that acts late in the transcription cycle to modulate the activity of previously poised non-coding regulatory elements of tissue-specific genes. We postulate a role for chromatin instability-caused in part by ATP-dependent chromatin remodeling-that variably sets the scope of the accessible landscape on which AIRE can act. We highlight AIRE's intrinsic repressive function and its relevance in providing feedback control. We synthesize these recent advances into a putative model for the mechanistic modes by which AIRE triggers ectopic transcription for immune repertoire selection.


Assuntos
Cromatina , Expressão Ectópica do Gene , Cromatina/genética , Cromatina/metabolismo , Células Epiteliais/metabolismo , Humanos , Linfócitos T , Timo
3.
J Med Virol ; 96(2): e29436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380509

RESUMO

Kaposi sarcoma (KS), caused by Herpesvirus-8 (HHV-8; KSHV), shows sporadic, endemic, and epidemic forms. While familial clustering of KS was previously recorded, the molecular basis of hereditary predilection to KS remains largely unknown. We demonstrate through genetic studies that a dominantly inherited missense mutation in BPTF segregates with a phenotype of classical KS in multiple immunocompetent individuals in two families. Using an rKSHV.219-infected CRISPR/cas9-model, we show that BPTFI2012T mutant cells exhibit higher latent-to-lytic ratio, decreased virion production, increased LANA staining, and latent phenotype in viral transcriptomics. RNA-sequencing demonstrated that KSHV infection dysregulated oncogenic-like response and P53 pathways, MAPK cascade, and blood vessel development pathways, consistent with KS. BPTFI2012T also enriched pathways of viral genome regulation and replication, immune response, and chemotaxis, including downregulation of IFI16, SHFL HLAs, TGFB1, and HSPA5, all previously associated with KSHV infection and tumorigenesis. Many of the differentially expressed genes are regulated by Rel-NF-κB, which regulates immune processes, cell survival, and proliferation and is pivotal to oncogenesis. We thus demonstrate BPTF mutation-mediated monogenic hereditary predilection of KSHV virus-induced oncogenesis, and suggest BPTF as a drug target.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Carcinogênese , Herpesvirus Humano 8/fisiologia , NF-kappa B/metabolismo , Sarcoma de Kaposi/genética , Latência Viral/genética , Replicação Viral
4.
Physiol Mol Biol Plants ; 30(1): 81-91, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38435850

RESUMO

Crocus sativus L., of the Iridaceae family, yields world's most prized spice, saffron. Saffron is well known for its distinctive aroma, odour and colour, which are imputed to the presence of some specific glycosylated apocarotenoids. Even though the main biosynthetic pathway and most of the enzymes leading to apocarotenoid production have been identified, the regulatory mechanisms that govern the developmental stage and tissue specific production of apocarotenoids in Crocus remain comparatively unravelled. Towards this, we report identification, and characterization of plant homeodomain (PHD) finger transcription factor family in Crocus sativus. We also report cloning and characterisation of CstPHD27 from C. sativus. CstPHD27 recorded highest expression in stigma throughout flower development. CstPHD27 exhibited expression pattern which corresponded to the apocarotenoid accumulation in Crocus stigmas. CstPHD27 is nuclear localized and transcriptionally active in yeast Y187 strain. Over-expression of CstPHD27 in Crocus stigmas enhanced apocarotenoid content by upregulating the biosynthetic pathway genes. This report on PHD finger transcription factor family from C. sativus may offer a basis for elucidating role of this gene family in this traditionally and industrially prized crop. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01410-3.

5.
J Biol Chem ; 298(11): 102540, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36174674

RESUMO

PHD fingers are modular domains in chromatin-associated proteins that decode the methylation status of histone H3 tails. A PHD finger signature is found in plant vernalization (VEL) proteins, which function as accessory factors of the Polycomb system to control flowering in Arabidopsis through an epigenetic silencing mechanism. It has been proposed that VEL PHD fingers bind to methylated histone H3 tails to facilitate association of the Polycomb silencing machinery with target genes. Here, we use structural analysis by X-ray crystallography to show that the VEL PHD finger forms the central module of a larger compact tripartite superdomain that also contains a zinc finger and a four-helix bundle. This PHD superdomain fold is only found in one other family, the OBERON proteins, which have multiple functions in Arabidopsis meristems to control plant growth. The putative histone-binding surface of OBERON proteins exhibits the characteristic three-pronged pocket of histone-binding PHD fingers and binds to methylated histone H3 tails. However, that of VEL PHD fingers lacks this architecture and exhibits unusually high positive surface charge. This VEL PHD superdomain neither binds to unmodified nor variously modified histone H3 tails, as demonstrated by isothermal calorimetry and NMR spectroscopy. Instead, the VEL PHD superdomain interacts with negatively charged polymers. Our evidence argues for evolution of a divergent function for the PHD superdomain in vernalization that does not involve histone tail decoding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Histonas , Arabidopsis/genética , Arabidopsis/fisiologia , Histonas/metabolismo , Ligação Proteica , Periodicidade , Flores/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia
6.
Plant J ; 112(4): 1029-1050, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36178149

RESUMO

Flowering of the reference legume Medicago truncatula is promoted by winter cold (vernalization) followed by long-day photoperiods (VLD) similar to winter annual Arabidopsis. However, Medicago lacks FLC and CO, key regulators of Arabidopsis VLD flowering. Most plants have two INHIBITOR OF GROWTH (ING) genes (ING1 and ING2), encoding proteins with an ING domain with two anti-parallel alpha-helices and a plant homeodomain (PHD) finger, but their genetic role has not been previously described. In Medicago, Mting1 gene-edited mutants developed and flowered normally, but an Mting2-1 Tnt1 insertion mutant and gene-edited Mting2 mutants had developmental abnormalities including delayed flowering particularly in VLD, compact architecture, abnormal leaves with extra leaflets but no trichomes, and smaller seeds and barrels. Mting2 mutants had reduced expression of activators of flowering, including the FT-like gene MtFTa1, and increased expression of the candidate repressor MtTFL1c, consistent with the delayed flowering of the mutant. MtING2 overexpression complemented Mting2-1, but did not accelerate flowering in wild type. The MtING2 PHD finger bound H3K4me2/3 peptides weakly in vitro, but analysis of gene-edited mutants indicated that it was dispensable to MtING2 function in wild-type plants. RNA sequencing experiments indicated that >7000 genes are mis-expressed in the Mting2-1 mutant, consistent with its strong mutant phenotypes. Interestingly, ChIP-seq analysis identified >5000 novel H3K4me3 locations in the genome of Mting2-1 mutants compared to wild type R108. Overall, our mutant study has uncovered an important physiological role of a plant ING2 gene in development, flowering, and gene expression, which likely involves an epigenetic mechanism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Medicago truncatula , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Plantas/metabolismo , Dedos de Zinco PHD , Flores , Medicago truncatula/genética , Medicago truncatula/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Domínio MADS/genética
7.
Proc Natl Acad Sci U S A ; 117(38): 23499-23509, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907946

RESUMO

Understanding the molecular basis of male sterility and developing practical male-sterility systems are essential for heterosis utilization and commercial hybrid seed production in crops. Here, we report molecular regulation by genic male-sterility gene maize male sterility 7 (ZmMs7) and its application for developing a dominant male-sterility system in multiple species. ZmMs7 is specifically expressed in maize anthers, encodes a plant homeodomain (PHD) finger protein that functions as a transcriptional activator, and plays a key role in tapetal development and pollen exine formation. ZmMs7 can interact with maize nuclear factor Y (NF-Y) subunits to form ZmMs7-NF-YA6-YB2-YC9/12/15 protein complexes that activate target genes by directly binding to CCAAT box in their promoter regions. Premature expression of ZmMs7 in maize by an anther-specific promoter p5126 results in dominant and complete male sterility but normal vegetative growth and female fertility. Early expression of ZmMs7 downstream genes induced by prematurely expressed ZmMs7 leads to abnormal tapetal development and pollen exine formation in p5126-ZmMs7 maize lines. The p5126-ZmMs7 transgenic rice and Arabidopsis plants display similar dominant male sterility. Meanwhile, the mCherry gene coupled with p5126-ZmMs7 facilitates the sorting of dominant sterility seeds based on fluorescent selection. In addition, both the ms7-6007 recessive male-sterility line and p5126-ZmMs7M dominant male-sterility line are highly stable under different genetic germplasms and thus applicable for hybrid maize breeding. Together, our work provides insight into the mechanisms of anther and pollen development and a promising technology for hybrid seed production in crops.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Zea mays/genética , Arabidopsis/genética , Produtos Agrícolas , Oryza/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Pólen/genética , Zea mays/crescimento & desenvolvimento
8.
BMC Plant Biol ; 22(1): 206, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443608

RESUMO

BACKGROUND: The plant homeodomain (PHD)-finger gene family that belongs to zinc-finger genes, plays an important role in epigenetics by regulating gene expression in eukaryotes. However, inaccurate annotation of PHD-finger genes hinders further downstream comparative, evolutionary, and functional studies. RESULTS: We performed genome-wide re-annotation in Arabidopsis thaliana (Arabidopsis), Oryza sativa (rice), Capsicum annuum (pepper), Solanum tuberosum (potato), and Solanum lycopersicum (tomato) to better understand the role of PHD-finger genes in these species. Our investigation identified 875 PHD-finger genes, of which 225 (26% of total) were newly identified, including 57 (54%) novel PHD-finger genes in pepper. The PHD-finger genes of the five plant species have various integrated domains that may be responsible for the diversification of structures and functions of these genes. Evolutionary analyses suggest that PHD-finger genes were expanded recently by lineage-specific duplication, especially in pepper and potato, resulting in diverse repertoires of PHD-finger genes among the species. We validated the expression of six newly identified PHD-finger genes in pepper with qRT-PCR. Transcriptome analyses suggest potential functions of PHD-finger genes in response to various abiotic stresses in pepper. CONCLUSIONS: Our data, including the updated annotation of PHD-finger genes, provide useful information for further evolutionary and functional analyses to better understand the roles of the PHD-finger gene family in pepper.


Assuntos
Arabidopsis , Capsicum , Oryza , Solanum lycopersicum , Solanum tuberosum , Arabidopsis/genética , Capsicum/genética , Capsicum/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genômica , Solanum lycopersicum/genética , Oryza/genética , Filogenia , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
9.
J Integr Plant Biol ; 64(5): 1076-1086, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35249256

RESUMO

Male-sterile plants are used in hybrid breeding to improve yield in soybean (Glycine max (L.) Merr.). Developing the capability to alter fertility under different environmental conditions could broaden germplasm resources and simplify hybrid production. However, molecular mechanisms potentially underlying such a system in soybean were unclear. Here, using positional cloning, we identified a gene, MALE STERILITY 3 (MS3), which encodes a nuclear-localized protein containing a plant homeodomain (PHD)-finger domain. A spontaneous mutation in ms3 causing premature termination of MS3 translation and partial loss of the PHD-finger. Transgenetic analysis indicated that MS3 knockout resulted in nonfunctional pollen and no self-pollinated pods, and RNA-seq analysis revealed that MS3 affects the expression of genes associated with carbohydrate metabolism. Strikingly, the fertility of mutant ms3 can restore under long-d conditions. The mutant could thus be used to create a new, more stable photoperiod-sensitive genic male sterility line for two-line hybrid seed production, with significant impact on hybrid breeding and production.


Assuntos
Glycine max , Infertilidade das Plantas , Fertilidade/genética , Proteínas de Homeodomínio , Melhoramento Vegetal , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo
10.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(5): 647-655, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36581580

RESUMO

PHD-finger domain protein 5A (PHF5A) is a member of the PHD-finger like protein superfamily and widely expressed in the nucleus of eukaryotes. The PHD-finger like domain is a protein-DNA or protein-protein interaction region. In addition to regulate alternative splicing of target genes as a spliceosome protein subunit, PHF5A is also involved in pluripotency maintenance of embryonic stem cells, chromatin remodeling, DNA damage repair, embryogenesis and histomorphological development. Recently, increasing studies have focused on exploring spliceosome-related and non-spliceosome-related functions of PHF5A and its relationship with the tumorigenesis, development and patient prognosis of various malignant tumors, such as breast cancer, lung cancer and colorectal cancer. The underlying mechanisms of PHF5A may include mediating aberrant alternative splicing of target genes, activating downstream signaling pathways as an oncogene/protein, and regulating abnormal gene transcription as a nuclear transcription factor or cofactor. Besides, PHF5A was also found to be involved in the growth regulation of cancer stem cells. In this review, we aimed to delineate the structural and functional characteristics of PHF5A, to summarize its role in the occurrence and development of malignant tumors hitherto described, and to provide potential targets for anti-tumor therapy.


Assuntos
Neoplasias Pulmonares , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Transativadores/genética , Transativadores/metabolismo , Processamento Alternativo
11.
J Biol Chem ; 295(27): 9052-9060, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32414844

RESUMO

V(D)J recombination is initiated by the recombination-activating gene protein (RAG) recombinase, consisting of RAG-1 and RAG-2 subunits. The susceptibility of gene segments to cleavage by RAG is associated with gene transcription and with epigenetic marks characteristic of active chromatin, including histone H3 trimethylated at lysine 4 (H3K4me3). Binding of H3K4me3 by a plant homeodomain (PHD) in RAG-2 induces conformational changes in RAG-1, allosterically stimulating substrate binding and catalysis. To better understand the path of allostery from the RAG-2 PHD finger to RAG-1, here we employed phylogenetic substitution. We observed that a chimeric RAG-2 protein in which the mouse PHD finger is replaced by the corresponding domain from the shark Chiloscyllium punctatum binds H3K4me3 but fails to transmit an allosteric signal, indicating that binding of H3K4me3 by RAG-2 is insufficient to support recombination. By substituting residues in the C. punctatum PHD with the corresponding residues in the mouse PHD and testing for rescue of allostery, we demonstrate that H3K4me3 binding and transmission of an allosteric signal to RAG-1 are separable functions of the RAG-2 PHD finger.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Regulação Alostérica/genética , Regulação Alostérica/fisiologia , Animais , Sítios de Ligação , Cromatina/metabolismo , Histonas/fisiologia , Lisina/metabolismo , Metilação , Camundongos , Filogenia , Ligação Proteica , Recombinases/metabolismo , Tubarões/metabolismo , Especificidade por Substrato , Recombinação V(D)J/genética , Recombinação V(D)J/fisiologia , VDJ Recombinases/metabolismo
12.
Am J Hum Genet ; 102(3): 468-479, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29429572

RESUMO

Variants affecting the function of different subunits of the BAF chromatin-remodelling complex lead to various neurodevelopmental syndromes, including Coffin-Siris syndrome. Furthermore, variants in proteins containing PHD fingers, motifs recognizing specific histone tail modifications, have been associated with several neurological and developmental-delay disorders. Here, we report eight heterozygous de novo variants (one frameshift, two splice site, and five missense) in the gene encoding the BAF complex subunit double plant homeodomain finger 2 (DPF2). Affected individuals share common clinical features described in individuals with Coffin-Siris syndrome, including coarse facial features, global developmental delay, intellectual disability, speech impairment, and hypoplasia of fingernails and toenails. All variants occur within the highly conserved PHD1 and PHD2 motifs. Moreover, missense variants are situated close to zinc binding sites and are predicted to disrupt these sites. Pull-down assays of recombinant proteins and histone peptides revealed that a subset of the identified missense variants abolish or impaire DPF2 binding to unmodified and modified H3 histone tails. These results suggest an impairment of PHD finger structural integrity and cohesion and most likely an aberrant recognition of histone modifications. Furthermore, the overexpression of these variants in HEK293 and COS7 cell lines was associated with the formation of nuclear aggregates and the recruitment of both wild-type DPF2 and BRG1 to these aggregates. Expression analysis of truncating variants found in the affected individuals indicated that the aberrant transcripts escape nonsense-mediated decay. Altogether, we provide compelling evidence that de novo variants in DPF2 cause Coffin-Siris syndrome and propose a dominant-negative mechanism of pathogenicity.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Mutação/genética , Pescoço/anormalidades , Subunidades Proteicas/genética , Adolescente , Sequência de Aminoácidos , Animais , Células COS , Criança , Pré-Escolar , Chlorocebus aethiops , Proteínas de Ligação a DNA/química , Fácies , Feminino , Células HEK293 , Histonas/metabolismo , Humanos , Masculino , Fenótipo , Fatores de Transcrição
13.
BMC Cancer ; 21(1): 657, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078310

RESUMO

BACKGROUND: Long non-coding RNAs exert vital roles in several types of cancer. The objective of this study was to explore the role of LINC_00355 in gastric cancer (GC) progression and its potential mechanism. METHODS: The expression levels of LINC_00355 in GC tissues and cells were detected by quantitative real-time PCR, followed by assessing the effects of LINC_00355 knockdown or overexpression on cell properties. Dual-luciferase reporter assay was utilized to identify the relationship between LINC_00355 and microRNA (miR)-15a-5p and miR-15a-5p and PHD finger protein 19 (PHF19), followed by the rescue experiments. RESULTS: The results showed that LINC_00355 was highly expressed in GC tissues and cells compared with the corresponding control. LINC_00355 knockdown decreased the viability, migration, and invasion and increased the accumulation of GC cells in G1 phase and apoptosis. Meanwhile, LINC_00355 downregulation markedly increased cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase protein levels, whereas decreased cyclin D1, cyclin E, matrix metalloproteinase (MMP) 9, MMP2, and N-cadherin protein levels in GC cells. However, LINC_00355 overexpression had the opposite effects. It was verified that LINC_00355 upregulated the expression of PHF19 through sponging miR-15a-5p. Furthermore, PHF19 overexpression reversed the effect of LINC_00355 knockdown on GC cell properties, including cell viability, migration, invasion, and apoptosis. CONCLUSIONS: Collectively, these results suggest that LINC_00355 promotes GC progression by up-regulating PHF19 through sponging miR-15a-5p. Our findings may provide an important clinical basis for reversing the malignant phenotype of GC.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/genética , Fatores de Transcrição/genética , Apoptose/genética , Biópsia , Linhagem Celular Tumoral , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Mucosa Gástrica/patologia , Técnicas de Silenciamento de Genes , Humanos , RNA Longo não Codificante/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Ativação Transcricional , Regulação para Cima
14.
J Clin Lab Anal ; 35(9): e23910, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34390275

RESUMO

BACKGROUND: PHD finger protein 19 (PHF19), also known as polycomb-like protein 3 (PCL3), promotes the progression of multiple myeloma (MM) and drug resistance; however, its role in the management of MM remains unclear. Therefore, we aimed to elucidate the correlation between PHF19 expression and treatment response, disease progression, and survival of patients with MM. METHODS: Plasma cells derived from the bone marrow of 101 patients with de novo MM were collected prior to induction therapy, as were plasma cells derived from the bone marrow of 30 healthy donors. PHF19 expression in plasma cells was analyzed using quantitative reverse transcription polymerase chain reaction. Furthermore, the response to induction therapy, progression-free survival (PFS), and overall survival (OS) were assessed. RESULTS: PHF19 expression tends to be upregulated more often in MM patients than in healthy donors (p < 0.001) and can accurately predict MM risk (area under curve [AUC], 0.916; 95% confidence interval [CI], 0.869-0.962). Furthermore, elevated PHF19 expression was correlated with higher International Staging System (ISS) (p = 0.036) and revised ISS stages (p = 0.035). In addition, MM patients who achieved complete response (CR) exhibited reduced PHF19 compared to those who did not (p = 0.028). Moreover, increased PHF19 expression was correlated with unfavorable PFS (p = 0.006) and OS (p = 0.027) rates. Furthermore, the results of multivariate Cox analysis also revealed that PHF19 high expression was independently associated with a reduced PFS rate (hazard ratio: 2.025, p = 0.028). CONCLUSION: Increased PHF19 expression is correlated with poor induction therapy response and unfavorable long-term prognosis of MM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quimioterapia de Indução/mortalidade , Mieloma Múltiplo/patologia , Fatores de Transcrição/metabolismo , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Proteínas de Ligação a DNA/genética , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Prognóstico , Taxa de Sobrevida , Fatores de Transcrição/genética
15.
Plant J ; 99(5): 844-861, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31021015

RESUMO

Male reproductive development involves a complex series of biological events and precise transcriptional regulation is essential for this biological process in flowering plants. Several transcriptional factors have been reported to regulate tapetum and pollen development, however the transcriptional mechanism underlying Ubisch bodies and pollen wall formation remains less understood. Here, we characterized and isolated a male sterility mutant of TDR INTERACTING PROTEIN 3 (TIP3) in rice. The tip3 mutant displayed smaller and pale yellow anthers without mature pollen grains, abnormal Ubisch body morphology, no pollen wall formation, as well as delayed tapetum degeneration. Map-based cloning demonstrated that TIP3 encodes a conserved PHD-finger protein and further study confirmed that TIP3 functioned as a transcription factor with transcriptional activation activity. TIP3 is preferentially expressed in the tapetum and microspores during anther development. Moreover, TIP3 can physically interact with TDR, which is a key component of the transcriptional cascade in regulating tapetum development and pollen wall formation. Furthermore, disruption of TIP3 changed the expression of several genes involved in tapetum development and degradation, biosynthesis and transport of lipid monomers of sporopollenin in tip3 mutant. Taken together, our results revealed an unprecedented role for TIP3 in regulating Ubisch bodies and pollen exine formation, and presents a potential tool to manipulate male fertility for hybrid rice breeding.


Assuntos
Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Aquaporinas/genética , Aquaporinas/metabolismo , Biopolímeros , Carotenoides , Fragmentação do DNA , Regulação da Expressão Gênica de Plantas , Infertilidade/genética , Fenótipo , Pólen/citologia , Alinhamento de Sequência , Análise de Sequência de Proteína
16.
Am J Hum Genet ; 100(1): 91-104, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939640

RESUMO

Identification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease. Here, we describe an intellectual disability disorder in ten individuals with inherited or de novo monoallelic BRPF1 mutations. Symptoms include infantile hypotonia, global developmental delay, intellectual disability, expressive language impairment, and facial dysmorphisms. Central nervous system and spinal abnormalities are also seen in some individuals. These clinical features overlap with but are not identical to those reported for persons with KAT6A or KAT6B mutations, suggesting that BRPF1 targets these two acetyltransferases and additional partners in humans. Functional assays showed that the resulting BRPF1 variants are pathogenic and impair acetylation of histone H3 at lysine 23, an abundant but poorly characterized epigenetic mark. We also found a similar deficiency in different lines of Brpf1-knockout mice. These data indicate that aberrations in the chromatin regulator gene BRPF1 cause histone H3 acetylation deficiency and a previously unrecognized intellectual disability syndrome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cromatina/metabolismo , Histonas/metabolismo , Deficiência Intelectual/genética , Mutação , Proteínas Nucleares/genética , Acetilação , Adolescente , Alelos , Animais , Proteínas de Transporte/genética , Criança , Cromatina/química , Proteínas de Ligação a DNA , Deficiências do Desenvolvimento/genética , Face/anormalidades , Feminino , Histona Acetiltransferases/genética , Humanos , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipotonia Muscular/genética , Síndrome
17.
Cancer Cell Int ; 20: 134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351328

RESUMO

BACKGROUND: Recent studies have emphasized determining the ability of microRNAs (miRNAs) as crucial regulators in the occurrence and development of pancreatic cancer (PC), which continues to be one of the deadliest malignancies with few effective therapies. The study aimed to investigate the functional role of miR-135b and its associated mechanism to unravel the biological characteristics of tumor growth in pancreatic cancer stem cells (PCSCs). METHODS: Microarray analyses were initially performed to identify the PC-related miRNAs and genes. The expression of miR-135b and PCSC markers in PC tissues and cells was determined by RT-qPCR and western blot analysis, respectively. The potential gene (JADE-1) that could bind to miR-135b was confirmed by the dual-luciferase reporter assay. To investigate the tumorigenicity, migration, invasion, and stemness of PC cells, several gain-of-function and loss-of-function genetic experiments were conducted. Finally, tumor formation in nude mice was conducted to confirm the results in vivo. RESULTS: miR-135b was highly-expressed in PC tissues and PCSCs, which was identified to specifically target JADE-1. The overexpression of miR-135b promoted proliferation, migration, and invasion of PCSC, inhibited cell apoptosis and increased the expression of stemness-related factors (Sox-2, Oct-4, Nanog, Aldh1, and Slug). Moreover, miR-135b could promote the expression of phosphorylated AKT and phosphorylated mTOR in the AKT/mTOR pathway. Additionally, miR-135b overexpression accelerated tumor growth in nude mice. CONCLUSIONS: Taken together, the silencing of miR-135b promotes the JADE-1 expression, which inactivates the AKT/mTOR pathway and ultimately results in inhibition of self-renewal and tumor growth of PCSCs. Hence, this study contributes to understanding the role of miR-135 in PCSCs and its underlying molecular mechanisms to aid in the development of effective PC therapeutics.

18.
Biochem J ; 476(16): 2351-2354, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462441

RESUMO

Binding of the Spp1 PHD finger to histone H3K4me3 is sensitive to adjacent post-translational modifications in the histone tail. This commentary discusses the findings of He and colleagues [Biochem. J.476, 1957-1973] which show that the PHD finger binds to H3K4me3 in a selective manner which is conserved in the Saccharomyces pombe and mammalian orthologues of Spp1.


Assuntos
Histonas , Dedos de Zinco PHD , Animais , Código das Histonas , Modelos Moleculares , Ligação Proteica , Processamento de Proteína Pós-Traducional
19.
Biochem J ; 476(13): 1957-1973, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31253666

RESUMO

Saccharomyces cerevisiae Spp1, a plant homeodomain (PHD) finger containing protein, is a critical subunit of the histone H3K4 methyltransferase complex of proteins associated with Set1 (COMPASS). The chromatin binding affinity of the PHD finger of Spp1 has been proposed to modulate COMPASS activity. During meiosis, Spp1 plays another role in promoting programmed double-strand break (DSB) formation by binding H3K4me3 via its PHD finger and interacting with a DSB protein, Mer2. However, how the Spp1 PHD finger performs site-specific readout of H3K4me3 is still not fully understood. In the present study, we determined the crystal structure of the highly conserved Spp1 N-terminal domain (Sc_Spp1NTD) in complex with the H3K4me3 peptide. The structure shows that Sc_Spp1NTD comprises a PHD finger responsible for methylated H3K4 recognition and a C3H-type zinc finger necessary to ensure the overall structural stability. Our isothermal titration calorimetry results show that binding of H3K4me3 to Sc_Spp1NTD is mildly inhibited by H3R2 methylation, weakened by H3T6 phosphorylation, and abrogated by H3T3 phosphorylation. This histone modification cross-talk, which is conserved in the Saccharomyces pombe and mammalian orthologs of Sc_Spp1 in vitro, can be rationalized structurally and might contribute to the roles of Spp1 in COMPASS activity regulation and meiotic recombination.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Ligação a DNA/genética , Histonas/genética , Metilação , Dedos de Zinco PHD , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
20.
Proc Natl Acad Sci U S A ; 114(23): 6016-6021, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533407

RESUMO

Double plant homeodomain finger 2 (DPF2) is a highly evolutionarily conserved member of the d4 protein family that is ubiquitously expressed in human tissues and was recently shown to inhibit the myeloid differentiation of hematopoietic stem/progenitor and acute myelogenous leukemia cells. Here, we present the crystal structure of the tandem plant homeodomain finger domain of human DPF2 at 1.6-Å resolution. We show that DPF2 interacts with the acetylated tails of both histones 3 and 4 via bipartite binding pockets on the DPF2 surface. Blocking these interactions through targeted mutagenesis of DPF2 abolishes its recruitment to target chromatin regions as well as its ability to prevent myeloid differentiation in vivo. Our findings suggest that the histone binding of DPF2 plays an important regulatory role in the transcriptional program that drives myeloid differentiation.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histonas/química , Histonas/metabolismo , Células Mieloides/citologia , Células Mieloides/metabolismo , Acetilação , Diferenciação Celular/fisiologia , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , Hematopoese/fisiologia , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA