RESUMO
Pre-B-cell leukemia homeobox (Pbx)-regulating protein-1 (Prep1) is a ubiquitous homeoprotein involved in early development, genomic stability, insulin sensitivity, and hematopoiesis. Previously we have shown that Prep1 is a haploinsufficient tumor suppressor that inhibits neoplastic transformation by competing with myeloid ecotropic integration site 1 for binding to the common heterodimeric partner Pbx1. Epithelial-mesenchymal transition (EMT) is controlled by complex networks of proinvasive transcription factors responsive to paracrine factors such as TGF-ß. Here we show that, in addition to inhibiting primary tumor growth, PREP1 is a novel EMT inducer and prometastatic transcription factor. In human non-small cell lung cancer (NSCLC) cells, PREP1 overexpression is sufficient to trigger EMT, whereas PREP1 down-regulation inhibits the induction of EMT in response to TGF-ß. PREP1 modulates the cellular sensitivity to TGF-ß by inducing the small mothers against decapentaplegic homolog 3 (SMAD3) nuclear translocation through mechanisms dependent, at least in part, on PREP1-mediated transactivation of a regulatory element in the SMAD3 first intron. Along with the stabilization and accumulation of PBX1, PREP1 induces the expression of multiple activator protein 1 components including the proinvasive Fos-related antigen 1 (FRA-1) oncoprotein. Both FRA-1 and PBX1 are required for the mesenchymal changes triggered by PREP1 in lung tumor cells. Finally, we show that the PREP1-induced mesenchymal transformation correlates with significantly increased lung colonization by cells overexpressing PREP1. Accordingly, we have detected PREP1 accumulation in a large number of human brain metastases of various solid tumors, including NSCLC. These findings point to a novel role of the PREP1 homeoprotein in the control of the TGF-ß pathway, EMT, and metastasis in NSCLC.
Assuntos
Adenocarcinoma/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal , Proteínas de Homeodomínio/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Íntrons/genética , Neoplasias Pulmonares/genética , Camundongos , Modelos Biológicos , Metástase Neoplásica , Peptídeo Hidrolases/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad3/genética , Análise de Sobrevida , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologiaRESUMO
Background: Atrial fibrillation (AF) is a very common clinical arrhythmia, accompanied by the overproliferation of cardiac fibroblasts (CFs). This study aimed to investigate the role of the long non-coding RNA(lncRNA) taurine upregulated gene 1 (TUG1) in the proliferation of CFs and further investigated its underlying mechanism. Methods: One hundred four paroxysmal AF patients and 94 healthy controls were recruited. Human cardiac fibroblasts (HCFs) were applied to establish an AF cell model through treatment with angiotensin II (AngII). qRT-PCR was used for the measurement of gene levels. The cell proliferation was detected by cell counting kit-8 (CCK-8). Luciferase reporter assay was performed for target gene analysis. Results: Elevated levels of TUG1 and low expression of miR-29b-3p were detected in the serum of AF patients compared with the healthy controls. Pearson's correlation analysis exhibited an inverse relationship between TUG1 and miR-29b-3p expression in AF patients (r = -7.106, p < 0.001). Knockdown of TUG1 inhibited AngII-induced CF proliferation. Taurine upregulated gene 1 (TUG1) functions as a competing endogenous RNA (ceRNA) for miR-29b-3p, and downregulation of miR-29b-3p reversed the role of TUG1 in CF proliferation. TGF-ß1 is a direct target gene of miR-29b-3p. Conclusions: Long non-coding RNA taurine upregulated gene 1 is a key regulator in the occurrence of AF. Slicing TUG1 inhibits CF proliferation by regulating the miR-29b-3p/TGF-ß1 axis.
RESUMO
BACKGROUND: High prevalence and unresponsiveness to erythropoiesis-stimulating agents are 2 major limitations to the treatment of cancer-related anemia (CRA). They are often related to the dis-regulation of iron metabolism regulated by hepcidin, but the regulatory pathway of hepcidin in CRA is poorly understood. Enhanced GDF-15 levels contribute to the cancer progression and metastasis, and also have been found to suppress hepcidin expression in anemia characterized by ineffective erythropoiesis. The pathophysiological mechanisms and the relationship of GDF-15 and hepcidin in CRA remain to be elucidated. METHODS: The concentrations of hepcidin and GDF-15 as well as the hematological and the iron parameters were determined in sera from 131 patients with cancer and 40 healthy controls. RESULTS: Serum GDF-15 levels were increased significantly in patients with the severe CRA, compared with the mild or no CRA patients and the controls. Increasing GDF-15 levels corresponded to decreasing hepcidin concentrations. A trend toward a correlation between high levels of GDF-15 and poor prognosis of cancer was also found. Elevation of GDF-15 concentrations suppressed hepcidin expression at high concentrations. CONCLUSIONS: Our findings suggest that tumor progression results in increased GDF-15 secretion, which may down-regulate hepcidin expression, resulting in iron overload in cancer patients; this phenomenon has also been found in some patients with sideropenic anemia due to chronic blood loss.