Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.082
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 39: 695-718, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33646857

RESUMO

Among antibodies, IgA is unique because it has evolved to be secreted onto mucosal surfaces. The structure of IgA and the associated secretory component allow IgA to survive the highly proteolytic environment of mucosal surfaces but also substantially limit IgA's ability to activate effector functions on immune cells. Despite these characteristics, IgA is critical for both preventing enteric infections and shaping the local microbiome. IgA's function is determined by a distinct antigen-binding repertoire, composed of antibodies with a variety of specificities, from permissive polyspecificity to cross-reactivity to exquisite specificity to a single epitope, which act together to regulate intestinal bacteria. Development of the unique function and specificities of IgA is shaped by local cues provided by the gut-associated lymphoid tissue, driven by the constantly changing environment of the intestine and microbiota.


Assuntos
Imunidade nas Mucosas , Imunoglobulina A , Animais , Humanos , Mucosa Intestinal , Nódulos Linfáticos Agregados
2.
Cell ; 186(9): 1930-1949.e31, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37071993

RESUMO

Cortical circuits are composed predominantly of pyramidal-to-pyramidal neuron connections, yet their assembly during embryonic development is not well understood. We show that mouse embryonic Rbp4-Cre cortical neurons, transcriptomically closest to layer 5 pyramidal neurons, display two phases of circuit assembly in vivo. At E14.5, they form a multi-layered circuit motif, composed of only embryonic near-projecting-type neurons. By E17.5, this transitions to a second motif involving all three embryonic types, analogous to the three adult layer 5 types. In vivo patch clamp recordings and two-photon calcium imaging of embryonic Rbp4-Cre neurons reveal active somas and neurites, tetrodotoxin-sensitive voltage-gated conductances, and functional glutamatergic synapses, from E14.5 onwards. Embryonic Rbp4-Cre neurons strongly express autism-associated genes and perturbing these genes interferes with the switch between the two motifs. Hence, pyramidal neurons form active, transient, multi-layered pyramidal-to-pyramidal circuits at the inception of neocortex, and studying these circuits could yield insights into the etiology of autism.


Assuntos
Transtorno Autístico , Neocórtex , Células Piramidais , Animais , Feminino , Camundongos , Gravidez , Transtorno Autístico/genética , Transtorno Autístico/patologia , Mutação , Neocórtex/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia
3.
Cell ; 184(16): 4237-4250.e19, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34297924

RESUMO

The organization of genomic DNA into defined nucleosomes has long been viewed as a hallmark of eukaryotes. This paradigm has been challenged by the identification of "minimalist" histones in archaea and more recently by the discovery of genes that encode fused remote homologs of the four eukaryotic histones in Marseilleviridae, a subfamily of giant viruses that infect amoebae. We demonstrate that viral doublet histones are essential for viral infectivity, localize to cytoplasmic viral factories after virus infection, and ultimately are found in the mature virions. Cryogenic electron microscopy (cryo-EM) structures of viral nucleosome-like particles show strong similarities to eukaryotic nucleosomes despite the limited sequence identify. The unique connectors that link the histone chains contribute to the observed instability of viral nucleosomes, and some histone tails assume structural roles. Our results further expand the range of "organisms" that require nucleosomes and suggest a specialized function of histones in the biology of these unusual viruses.


Assuntos
Vírus de DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Amoeba/virologia , Corantes Fluorescentes/metabolismo , Histonas/química , Modelos Moleculares , Proteômica , Vírion/metabolismo
4.
Cell ; 180(5): 956-967.e17, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084332

RESUMO

Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying essential physiological functions such as touch and pain sensing, hearing, and proprioception. Although the mechanisms for some of these functions have been identified, the molecules essential to the sense of pain have remained elusive. Here we report identification of TACAN (Tmem120A), an ion channel involved in sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, a nociceptor-specific inducible knockout of TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to painful mechanical stimuli but not to thermal or touch stimuli. We propose that TACAN is an ion channel that contributes to sensing mechanical pain.


Assuntos
Canais Iônicos/fisiologia , Mecanotransdução Celular/genética , Nociceptores/metabolismo , Dor/genética , Tato/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Canais Iônicos/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Dor/fisiopatologia , Técnicas de Patch-Clamp , Estresse Mecânico , Tato/fisiologia
5.
Cell ; 180(1): 33-49.e22, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31813624

RESUMO

Gut-innervating nociceptor sensory neurons respond to noxious stimuli by initiating protective responses including pain and inflammation; however, their role in enteric infections is unclear. Here, we find that nociceptor neurons critically mediate host defense against the bacterial pathogen Salmonella enterica serovar Typhimurium (STm). Dorsal root ganglia nociceptors protect against STm colonization, invasion, and dissemination from the gut. Nociceptors regulate the density of microfold (M) cells in ileum Peyer's patch (PP) follicle-associated epithelia (FAE) to limit entry points for STm invasion. Downstream of M cells, nociceptors maintain levels of segmentous filamentous bacteria (SFB), a gut microbe residing on ileum villi and PP FAE that mediates resistance to STm infection. TRPV1+ nociceptors directly respond to STm by releasing calcitonin gene-related peptide (CGRP), a neuropeptide that modulates M cells and SFB levels to protect against Salmonella infection. These findings reveal a major role for nociceptor neurons in sensing and defending against enteric pathogens.


Assuntos
Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Nociceptores/fisiologia , Animais , Epitélio/metabolismo , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/microbiologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/metabolismo , Nódulos Linfáticos Agregados/inervação , Nódulos Linfáticos Agregados/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia
6.
Cell ; 183(4): 935-953.e19, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33186530

RESUMO

Neurons are frequently classified into distinct types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 4,200 mouse visual cortical GABAergic interneurons and reconstructed the local morphologies of 517 of those neurons. We find that most transcriptomic types (t-types) occupy specific laminar positions within visual cortex, and, for most types, the cells mapping to a t-type exhibit consistent electrophysiological and morphological properties. These properties display both discrete and continuous variation among t-types. Through multimodal integrated analysis, we define 28 met-types that have congruent morphological, electrophysiological, and transcriptomic properties and robust mutual predictability. We identify layer-specific axon innervation pattern as a defining feature distinguishing different met-types. These met-types represent a unified definition of cortical GABAergic interneuron types, providing a systematic framework to capture existing knowledge and bridge future analyses across different modalities.


Assuntos
Córtex Cerebral/citologia , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Transcriptoma/genética , Animais , Feminino , Perfilação da Expressão Gênica , Hipocampo/fisiologia , Canais Iônicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo
7.
Cell ; 178(5): 1072-1087.e14, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442401

RESUMO

Nutritional status potentially influences immune responses; however, how nutritional signals regulate cellular dynamics and functionality remains obscure. Herein, we report that temporary fasting drastically reduces the number of lymphocytes by ∼50% in Peyer's patches (PPs), the inductive site of the gut immune response. Subsequent refeeding seemingly restored the number of lymphocytes, but whose cellular composition was conspicuously altered. A large portion of germinal center and IgA+ B cells were lost via apoptosis during fasting. Meanwhile, naive B cells migrated from PPs to the bone marrow during fasting and then back to PPs during refeeding when stromal cells sensed nutritional signals and upregulated CXCL13 expression to recruit naive B cells. Furthermore, temporal fasting before oral immunization with ovalbumin abolished the induction of antigen-specific IgA, failed to induce oral tolerance, and eventually exacerbated food antigen-induced diarrhea. Thus, nutritional signals are critical in maintaining gut immune homeostasis.


Assuntos
Linfócitos B/fisiologia , Imunidade nas Mucosas , Animais , Antígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Medula Óssea/imunologia , Medula Óssea/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Jejum , Regulação da Expressão Gênica , Glicólise , Imunoglobulina A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estado Nutricional , Ovalbumina/imunologia , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/patologia , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Transdução de Sinais , Células Estromais/citologia , Células Estromais/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
Cell ; 179(6): 1342-1356.e23, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31759698

RESUMO

Mammalian switch/sucrose non-fermentable (mSWI/SNF) complexes are multi-component machines that remodel chromatin architecture. Dissection of the subunit- and domain-specific contributions to complex activities is needed to advance mechanistic understanding. Here, we examine the molecular, structural, and genome-wide regulatory consequences of recurrent, single-residue mutations in the putative coiled-coil C-terminal domain (CTD) of the SMARCB1 (BAF47) subunit, which cause the intellectual disability disorder Coffin-Siris syndrome (CSS), and are recurrently found in cancers. We find that the SMARCB1 CTD contains a basic α helix that binds directly to the nucleosome acidic patch and that all CSS-associated mutations disrupt this binding. Furthermore, these mutations abrogate mSWI/SNF-mediated nucleosome remodeling activity and enhancer DNA accessibility without changes in genome-wide complex localization. Finally, heterozygous CSS-associated SMARCB1 mutations result in dominant gene regulatory and morphologic changes during iPSC-neuronal differentiation. These studies unmask an evolutionarily conserved structural role for the SMARCB1 CTD that is perturbed in human disease.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Mutação/genética , Nucleossomos/metabolismo , Proteína SMARCB1/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Elementos Facilitadores Genéticos/genética , Feminino , Genoma Humano , Células HEK293 , Células HeLa , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Domínios Proteicos , Proteína SMARCB1/química , Proteína SMARCB1/metabolismo
9.
Cell ; 175(3): 643-651.e14, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340039

RESUMO

The biophysical features of neurons shape information processing in the brain. Cortical neurons are larger in humans than in other species, but it is unclear how their size affects synaptic integration. Here, we perform direct electrical recordings from human dendrites and report enhanced electrical compartmentalization in layer 5 pyramidal neurons. Compared to rat dendrites, distal human dendrites provide limited excitation to the soma, even in the presence of dendritic spikes. Human somas also exhibit less bursting due to reduced recruitment of dendritic electrogenesis. Finally, we find that decreased ion channel densities result in higher input resistance and underlie the lower coupling of human dendrites. We conclude that the increased length of human neurons alters their input-output properties, which will impact cortical computation. VIDEO ABSTRACT.


Assuntos
Dendritos/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação , Adulto , Animais , Feminino , Humanos , Canais Iônicos/metabolismo , Masculino , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Potenciais Sinápticos
10.
Immunity ; 56(10): 2373-2387.e8, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714151

RESUMO

Immunoglobulin A (IgA) maintains commensal communities in the intestine while preventing dysbiosis. IgA generated against intestinal microbes assures the simultaneous binding to multiple, diverse commensal-derived antigens. However, the exact mechanisms by which B cells mount broadly reactive IgA to the gut microbiome remains elusive. Here, we have shown that IgA B cell receptor (BCR) is required for B cell fitness during the germinal center (GC) reaction in Peyer's patches (PPs) and for generation of gut-homing plasma cells (PCs). We demonstrate that IgA BCR drove heightened intracellular signaling in mouse and human B cells, and as a consequence, IgA+ B cells received stronger positive selection cues. Mechanistically, IgA BCR signaling offset Fas-mediated death, possibly rescuing low-affinity B cells to promote a broad humoral response to commensals. Our findings reveal an additional mechanism linking BCR signaling, B cell fate, and antibody production location, which have implications for how intestinal antigen recognition shapes humoral immunity.


Assuntos
Linfócitos B , Nódulos Linfáticos Agregados , Camundongos , Humanos , Animais , Antígenos/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Imunoglobulina A , Mucosa Intestinal
11.
Immunity ; 56(6): 1220-1238.e7, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37130522

RESUMO

Early-life immune development is critical to long-term host health. However, the mechanisms that determine the pace of postnatal immune maturation are not fully resolved. Here, we analyzed mononuclear phagocytes (MNPs) in small intestinal Peyer's patches (PPs), the primary inductive site of intestinal immunity. Conventional type 1 and 2 dendritic cells (cDC1 and cDC2) and RORgt+ antigen-presenting cells (RORgt+ APC) exhibited significant age-dependent changes in subset composition, tissue distribution, and reduced cell maturation, subsequently resulting in a lack in CD4+ T cell priming during the postnatal period. Microbial cues contributed but could not fully explain the discrepancies in MNP maturation. Type I interferon (IFN) accelerated MNP maturation but IFN signaling did not represent the physiological stimulus. Instead, follicle-associated epithelium (FAE) M cell differentiation was required and sufficient to drive postweaning PP MNP maturation. Together, our results highlight the role of FAE M cell differentiation and MNP maturation in postnatal immune development.


Assuntos
Células M , Nódulos Linfáticos Agregados , Intestinos , Intestino Delgado , Diferenciação Celular , Mucosa Intestinal
12.
Cell ; 168(1-2): 280-294.e12, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28065412

RESUMO

Vision influences behavior, but ongoing behavior also modulates vision in animals ranging from insects to primates. The function and biophysical mechanisms of most such modulations remain unresolved. Here, we combine behavioral genetics, electrophysiology, and high-speed videography to advance a function for behavioral modulations of visual processing in Drosophila. We argue that a set of motion-sensitive visual neurons regulate gaze-stabilizing head movements. We describe how, during flight turns, Drosophila perform a set of head movements that require silencing their gaze-stability reflexes along the primary rotation axis of the turn. Consistent with this behavioral requirement, we find pervasive motor-related inputs to the visual neurons, which quantitatively silence their predicted visual responses to rotations around the relevant axis while preserving sensitivity around other axes. This work proposes a function for a behavioral modulation of visual processing and illustrates how the brain can remove one sensory signal from a circuit carrying multiple related signals.


Assuntos
Drosophila melanogaster/fisiologia , Vias Visuais , Animais , Drosophila melanogaster/citologia , Voo Animal , Movimentos da Cabeça , Neurônios/citologia , Fluxo Óptico , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
13.
Mol Cell ; 84(10): 1886-1903.e10, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38688280

RESUMO

Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.


Assuntos
Neoplasias Hematológicas , Proteínas Musculares , Mutação , Fosfoproteínas , Fatores de Processamento de RNA , Animais , Humanos , Camundongos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/metabolismo , Hematopoese/genética , Íntrons , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
14.
Genes Dev ; 37(21-24): 945-947, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38092520

RESUMO

RNA helicases orchestrate proofreading mechanisms that facilitate accurate intron removal from pre-mRNAs. How these activities are recruited to spliceosome/pre-mRNA complexes remains poorly understood. In this issue of Genes & Development, Zhang and colleagues (pp. 968-983) combine biochemical experiments with AI-based structure prediction methods to generate a model for the interaction between SF3B1, a core splicing factor essential for the recognition of the intron branchpoint, and SUGP1, a protein that bridges SF3B1 with the helicase DHX15. Interaction with SF3B1 exposes the G-patch domain of SUGP1, facilitating binding to and activation of DHX15. The model can explain the activation of cryptic 3' splice sites induced by mutations in SF3B1 or SUGP1 frequently found in cancer.


Assuntos
Splicing de RNA , Spliceossomos , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Sítios de Splice de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Inteligência Artificial , Mutação , Fosfoproteínas/metabolismo
15.
Genes Dev ; 37(21-24): 968-983, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-37977822

RESUMO

The spliceosomal gene SF3B1 is frequently mutated in cancer. While it is known that SF3B1 hotspot mutations lead to loss of splicing factor SUGP1 from spliceosomes, the cancer-relevant SF3B1-SUGP1 interaction has not been characterized. To address this issue, we show by structural modeling that two regions flanking the SUGP1 G-patch make numerous contacts with the region of SF3B1 harboring hotspot mutations. Experiments confirmed that all the cancer-associated mutations in these regions, as well as mutations affecting other residues in the SF3B1-SUGP1 interface, not only weaken or disrupt the interaction but also alter splicing similarly to SF3B1 cancer mutations. Finally, structural modeling of a trimeric protein complex reveals that the SF3B1-SUGP1 interaction "loops out" the G-patch for interaction with the helicase DHX15. Our study thus provides an unprecedented molecular view of a protein complex essential for accurate splicing and also reveals that numerous cancer-associated mutations disrupt the critical SF3B1-SUGP1 interaction.


Assuntos
Neoplasias , Spliceossomos , Humanos , RNA Mensageiro/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Fatores de Processamento de RNA/química , Splicing de RNA/genética , Neoplasias/genética , Neoplasias/metabolismo , Mutação , Fosfoproteínas/metabolismo
16.
Trends Biochem Sci ; 49(7): 564-566, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762373

RESUMO

Benbarche, Pineda, Galvis, et al. delineate an essential role for the G-patch motif-containing protein GPATCH8 in mis-splicing associated with cancer-driving mutations of the splicing factor SF3B1. GPATCH8 cooperates with SF3B1 mutants, affecting the splicing machinery. Targeting GPATCH8 reveals therapeutic opportunities for SF3B1 mutant cancers and other splicing-related diseases.


Assuntos
Neoplasias , Fatores de Processamento de RNA , Splicing de RNA , Humanos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética
17.
Proc Natl Acad Sci U S A ; 121(44): e2405659121, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39441630

RESUMO

Cys-loop receptors are a large superfamily of pentameric ligand-gated ion channels with various physiological roles, especially in neurotransmission in the central nervous system. Among them, zinc-activated channel (ZAC) is a Zn2+-activated ion channel that is widely expressed in the human body and is conserved among eukaryotes. Due to its gating by extracellular Zn2+, ZAC has been considered a Zn2+ sensor, but it has undergone minimal structural and functional characterization since its molecular cloning. Among the families in the Cys-loop receptor superfamily, only the structure of ZAC has yet to be determined. Here, we determined the cryo-EM structure of ZAC in the apo state and performed structure-based mutation analyses. We identified a few residues in the extracellular domain whose mutations had a mild impact on Zn2+ sensitivity. The constriction site in the ion-conducting pore differs from the one in other Cys-loop receptor structures, and further mutational analysis identified a key residue that is important for ion selectivity. In summary, our work provides a structural framework for understanding the ion-conducting mechanism of ZAC.


Assuntos
Microscopia Crioeletrônica , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína , Zinco , Zinco/metabolismo , Humanos , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Modelos Moleculares , Mutação , Conformação Proteica , Ativação do Canal Iônico
18.
Proc Natl Acad Sci U S A ; 121(18): e2319384121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652746

RESUMO

Clearance of serotonin (5-hydroxytryptamine, 5-HT) from the synaptic cleft after neuronal signaling is mediated by serotonin transporter (SERT), which couples this process to the movement of a Na+ ion down its chemical gradient. After release of 5-HT and Na+ into the cytoplasm, the transporter faces a rate-limiting challenge of resetting its conformation to be primed again for 5-HT and Na+ binding. Early studies of vesicles containing native SERT revealed that K+ gradients can provide an additional driving force, via K+ antiport. Moreover, under appropriate conditions, a H+ ion can replace K+. Intracellular K+ accelerates the resetting step. Structural studies of SERT have identified two binding sites for Na+ ions, but the K+ site remains enigmatic. Here, we show that K+ antiport can drive substrate accumulation into vesicles containing SERT extracted from a heterologous expression system, allowing us to study the residues responsible for K+ binding. To identify candidate binding residues, we examine many cation binding configurations using molecular dynamics simulations, predicting that K+ binds to the so-called Na2 site. Site-directed mutagenesis of residues in this site can eliminate the ability of both K+ and H+ to drive 5-HT accumulation into vesicles and, in patch clamp recordings, prevent the acceleration of turnover rates and the formation of a channel-like state by K+ or H+. In conclusion, the Na2 site plays a pivotal role in orchestrating the sequential binding of Na+ and then K+ (or H+) ions to facilitate 5-HT uptake in SERT.


Assuntos
Simulação de Dinâmica Molecular , Potássio , Proteínas da Membrana Plasmática de Transporte de Serotonina , Sódio , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Potássio/metabolismo , Sítios de Ligação , Humanos , Sódio/metabolismo , Serotonina/metabolismo , Ligação Proteica , Animais
19.
Proc Natl Acad Sci U S A ; 121(40): e2407990121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39320912

RESUMO

We explored how a simple retrovirus, Mason-Pfizer monkey virus (M-PMV) to facilitate its replication process, utilizes DHX15, a cellular RNA helicase, typically engaged in RNA processing. Through advanced genetic engineering techniques, we showed that M-PMV recruits DHX15 by mimicking cellular mechanisms, relocating it from the nucleus to the cytoplasm to aid in viral assembly. This interaction is essential for the correct packaging of the viral genome and critical for its infectivity. Our findings offer unique insights into the mechanisms of viral manipulation of host cellular processes, highlighting a sophisticated strategy that viruses employ to leverage cellular machinery for their replication. This study adds valuable knowledge to the understanding of viral-host interactions but also suggests a common evolutionary history between cellular processes and viral mechanisms. This finding opens a unique perspective on the export mechanism of intron-retaining mRNAs in the packaging of viral genetic information and potentially develop ways to stop it.


Assuntos
Vírus dos Macacos de Mason-Pfizer , RNA Viral , Montagem de Vírus , Animais , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/virologia , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Genoma Viral , Células HEK293 , Vírus dos Macacos de Mason-Pfizer/genética , Vírus dos Macacos de Mason-Pfizer/metabolismo , Vírus dos Macacos de Mason-Pfizer/fisiologia , RNA Helicases/metabolismo , RNA Helicases/genética , RNA Viral/metabolismo , RNA Viral/genética , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia
20.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38320853

RESUMO

Gonadotropin-releasing hormone (GnRH)-synthesizing neurons orchestrate reproduction centrally. Early studies have proposed the contribution of acetylcholine (ACh) to hypothalamic control of reproduction, although the causal mechanisms have not been clarified. Here, we report that in vivo pharmacogenetic activation of the cholinergic system increased the secretion of luteinizing hormone (LH) in orchidectomized mice. 3DISCO immunocytochemistry and electron microscopy revealed the innervation of GnRH neurons by cholinergic axons. Retrograde viral labeling initiated from GnRH-Cre neurons identified the medial septum and the diagonal band of Broca as exclusive sites of origin for cholinergic afferents of GnRH neurons. In acute brain slices, ACh and carbachol evoked a biphasic effect on the firing rate in GnRH neurons, first increasing and then diminishing it. In the presence of tetrodotoxin, carbachol induced an inward current, followed by a decline in the frequency of miniature postsynaptic currents (mPSCs), indicating a direct influence on GnRH cells. RT-PCR and whole-cell patch-clamp studies revealed that GnRH neurons expressed both nicotinic (α4ß2, α3ß4, and α7) and muscarinic (M1-M5) AChRs. The nicotinic AChRs contributed to the nicotine-elicited inward current and the rise in firing rate. Muscarine via M1 and M3 receptors increased, while via M2 and M4 reduced the frequency of both mPSCs and firing. Optogenetic activation of channelrhodopsin-2-tagged cholinergic axons modified GnRH neuronal activity and evoked cotransmission of ACh and GABA from a subpopulation of boutons. These findings confirm that the central cholinergic system regulates GnRH neurons and activates the pituitary-gonadal axis via ACh and ACh/GABA neurotransmissions in male mice.


Assuntos
Acetilcolina , Hormônio Liberador de Gonadotropina , Camundongos , Animais , Masculino , Acetilcolina/farmacologia , Carbacol/farmacologia , Neurônios/fisiologia , Colinérgicos/farmacologia , Nicotina/farmacologia , Hormônio Luteinizante , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA