Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(5): e2318265121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261618

RESUMO

Surgical resections of solid tumors guided by visual inspection of tumor margins have been performed for over a century to treat cancer. Near-infrared (NIR) fluorescence labeling/imaging of tumor in the NIR-I (800 to 900 nm) range with systemically administrated fluorophore/tumor-targeting antibody conjugates have been introduced to improve tumor margin delineation, tumor removal accuracy, and patient survival. Here, we show Au25 molecular clusters functionalized with phosphorylcholine ligands (AuPC, ~2 nm in size) as a preclinical intratumorally injectable agent for NIR-II/SWIR (1,000 to 3,000 nm) fluorescence imaging-guided tumor resection. The AuPC clusters were found to be uniformly distributed in the 4T1 murine breast cancer tumor upon intratumor (i.t.) injection. The phosphocholine coating afforded highly stealth clusters, allowing a high percentage of AuPC to fill the tumor interstitial fluid space homogeneously. Intra-operative surgical navigation guided by imaging of the NIR-II fluorescence of AuPC allowed for complete and non-excessive tumor resection. The AuPC in tumors were also employed as a photothermal therapy (PTT) agent to uniformly heat up and eradicate tumors. Further, we performed in vivo NIR-IIb (1,500 to 1,700 nm) molecular imaging of the treated tumor using a quantum dot-Annexin V (QD-P3-Anx V) conjugate, revealing cancer cell apoptosis following PTT. The therapeutic functionalities of AuPC clusters combined with rapid renal excretion, high biocompatibility, and safety make them promising for clinical translation.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Animais , Camundongos , Feminino , Imagem Óptica , Anexina A5 , Apoptose , Ouro
2.
Nano Lett ; 24(1): 295-304, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117248

RESUMO

Chemodynamic therapy based on the Fenton reaction has been developed as an extremely promising modality for cancer therapeutics. In this study, a core-shell structure nanoplatform was constructed by a Au nanorod externally encapsulating Ce/Zn-based composites (ACZO). The nanoparticles can catalyze the generation of reactive oxygen species (ROS) under acidic conditions and effectively consume existing glutathione (GSH) to destroy the redox balance within the tumor. Moreover, the decomposition of the nanocomplexes under acidic conditions releases large amounts of zinc ions, leading to zinc overload in cancer cells. The photothermal effect generated by the Au nanorods not only provides photothermal therapy (PTT) but also augments the catalytic reaction and ions action mentioned above. This facile strategy to improve the efficacy of chemodynamic therapy by the photothermal enhancement of catalytic activity and zinc ion release provides a promising perspective for potential tumor treatment.


Assuntos
Nanopartículas , Nanotubos , Neoplasias , Humanos , Catálise , Glutationa , Zinco/farmacologia , Íons , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Peróxido de Hidrogênio , Microambiente Tumoral
3.
Nano Lett ; 24(11): 3386-3394, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452250

RESUMO

Utilizing one molecule to realize combinational photodynamic and photothermal therapy upon single-wavelength laser excitation, which relies on a multifunctional phototherapy agent, is one of the most cutting-edge research directions in tumor therapy owing to the high efficacy achieved over a short course of treatment. Herein, a simple strategy of "suitable isolation side chains" is proposed to collectively improve the fluorescence intensity, reactive oxygen species production, photothermal conversion efficiency, and biodegradation capacity. Both in vitro and in vivo results reveal the practical value and huge potential of the designed biodegradable conjugated polymer PTD-C16 with suitable isolation side chains in fluorescence image-guided combinational photodynamic and photothermal therapy. These improvements are achieved through manipulation of aggregated states by only side chain modification without changing any conjugated structure, providing new insight into the design of biodegradable high-performance phototherapy agents.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Polímeros/química , Fototerapia/métodos , Nanopartículas/uso terapêutico , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Linhagem Celular Tumoral
4.
Nano Lett ; 24(28): 8752-8762, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953881

RESUMO

Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Microesferas , Terapia Fototérmica , Pneumonia Estafilocócica/terapia , Terapia por Fagos/métodos , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Verde de Indocianina/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Administração por Inalação , Humanos , Bacteriófagos/química
5.
Nano Lett ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150779

RESUMO

Mild photothermal therapy (PTT) shows the potential for chemosensitization by tumor-localized P-glycoprotein (P-gp) modulation. However, conventional mild PTT struggles with real-time uniform temperature control, obscuring the temperature-performance relationship and resulting in thermal damage. Besides, the time-performance relationship and the underlying mechanism of mild PTT-mediated P-gp reversal remains elusive. Herein, we developed a temperature self-limiting lipid nanosystem (RFE@PD) that integrated a reversible organic heat generator (metal-phenolic complexes) and metal chelator (deferiprone, DFP) encapsulated phase change material. Upon NIR irradiation, RFE@PD released DFP for blocking ligand-metal charge transfer to self-limit temperature below 45 °C, and rapidly reduced P-gp within 3 h via Ubiquitin-proteasome degradation. Consequently, the DOX·HCl-loaded thermo-chemotherapeutic lipid nanosystem (RFE@PD-DOX) led to dramatically improved drug accumulation and 5-fold chemosensitization in MCF-7/ADR tumor models by synchronizing P-gp reversal and drug pulse liberation, achieving a tumor inhibition ratio of 82.42%. This lipid nanosystem integrated with "intrinsic temperature-control" and "temperature-responsive pulse release" casts new light on MDR tumor therapy.

6.
Nano Lett ; 24(3): 777-789, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38183300

RESUMO

Thermoplasmonics has emerged as an extraordinarily versatile tool with profound applications across various biological domains ranging from medical science to cell biology and biophysics. The key feature of nanoscale plasmonic heating involves remote activation of heating by applying laser irradiation to plasmonic nanostructures that are designed to optimally convert light into heat. This unique capability paves the way for a diverse array of applications, facilitating the exploration of critical biological processes such as cell differentiation, repair, signaling, and protein functionality, and the advancement of biosensing techniques. Of particular significance is the rapid heat cycling that can be achieved through thermoplasmonics, which has ushered in remarkable technical innovations such as accelerated amplification of DNA through quantitative reverse transcription polymerase chain reaction. Finally, medical applications of photothermal therapy have recently completed clinical trials with remarkable results in prostate cancer, which will inevitably lead to the implementation of photothermal therapy for a number of diseases in the future. Within this review, we offer a survey of the latest advancements in the burgeoning field of thermoplasmonics, with a keen emphasis on its transformative applications within the realm of biosciences.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Nanoestruturas/química , Temperatura Alta
7.
Int J Cancer ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985144

RESUMO

The precise delivery of drugs to tumor sites and the thermoresistance of tumors remain major challenges in photothermal therapy (PTT). Somatostatin receptor 2 (SSTR2) is proposed as an ideal target for the precise treatment of SCLC. We developed a targeting nano-drug delivery system comprising anti-SSTR2 monoclonal antibody (MAb) surface-modified nanoparticles co-encapsulating Cypate and gambogic acid (GA). The formed SGCPNs demonstrated excellent monodispersity, physiological stability, preferable biocompatibility, and resultant efficient photothermal conversion efficacy. SGCPNs were quickly internalized by SSTR2-overexpressing SCLC cells, triggering the release of GA under acidic and near-infrared (NIR) laser irradiation environments, leading to their escape from lysosomes to the cytosol and then diffusion into the nucleus. SGCPNs can not only decrease the cell survival rate but also inhibit the activity of heat shock protein 90 (HSP90). SGCPNs can be precisely delivered to xenograft tumors of SSTR2-positive SCLC in vivo. Upon NIR laser irradiation, therapy of SGCPNs showed significant tumor regression. In conclusion, SGCPNs provide a new chemo-photothermal synergistic treatment strategy for targeting SCLC.

8.
Biochem Biophys Res Commun ; 723: 150173, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830299

RESUMO

The utilization of photothermal agents (PTAs) in photothermal therapy (PTT) is faced with challenges such as immune clearance and inadequate concentration, which consequently result in residual tumors and an increased risk of recurrence and metastasis. Conversely, excessive treatment can lead to heightened inflammation and inevitable harm to adjacent healthy tissues. To address these issues, we developed a nanosystem (M@PB) consisting of Prussian blue coated with tumor cell membrane for precise photothermal therapy (PTT) and subsequent reduction of inflammation. This system not only evades immune attack due to the homologous biological characteristics of the encapsulating cell membrane but also exhibits active targeting capabilities towards homologous tumors. Furthermore, it effectively reduces excessive phototoxicity by leveraging the distinctive photothermal and anti-inflammatory characteristics of PB nanoparticles. The resulting M@PB nanosystem demonstrates effective photothermal ablation under 808 nm laser irradiation while mitigating the inflammatory response through inhibiting of local production of inflammatory mediators. Our study provides valuable insights into achieving targeted PTT with high efficiency while minimizing post-treatment inflammatory responses.


Assuntos
Membrana Celular , Ferrocianetos , Inflamação , Nanopartículas , Terapia Fototérmica , Ferrocianetos/química , Terapia Fototérmica/métodos , Nanopartículas/química , Inflamação/terapia , Membrana Celular/metabolismo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/patologia
9.
Biochem Biophys Res Commun ; 720: 150131, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38763124

RESUMO

Drug-resistant bacterial infections cause significant harm to public life, health, and property. Biofilm is characterized by overexpression of glutathione (GSH), hypoxia, and slight acidity, which is one of the main factors for the formation of bacterial resistance. Traditional antibiotic therapy gradually loses its efficacy against multi-drug-resistant (MDR) bacteria. Therefore, synergistic therapy, which regulates the biofilm microenvironment, is a promising strategy. A multifunctional nanoplatform, SnFe2O4-PBA/Ce6@ZIF-8 (SBC@ZIF-8), in which tin ferrite (SnFe2O4, denoted as SFO) as the core, loaded with 3-aminobenzeneboronic acid (PBA) and dihydroporphyrin e6 (Ce6), and finally coated with zeolite imidazole salt skeleton 8 (ZIF-8). The platform has a synergistic photothermal therapy (PTT)/photodynamic therapy (PDT) effect, which can effectively remove overexpressed GSH by glutathione peroxidase-like activity, reduce the antioxidant capacity of biofilm, and enhance PDT. The platform had excellent photothermal performance (photothermal conversion efficiency was 55.7 %) and photothermal stability. The inhibition rate of two MDR bacteria was more than 96 %, and the biofilm clearance rate was more than 90 % (150 µg/mL). In the animal model of MDR S. aureus infected wound, after 100 µL SBC@ZIF-8+NIR (150 µg/mL) treatment, the wound area of mice was reduced by 95 % and nearly healed. The serum biochemical indexes and H&E staining results were within the normal range, indicating that the platform could promote wound healing and had good biosafety. In this study, we designed and synthesized multifunctional nanoplatforms with good anti-drug-resistant bacteria effect and elucidated the molecular mechanism of its anti-drug-resistant bacteria. It lays a foundation for clinical application in treating wound infection and promoting wound healing.


Assuntos
Antibacterianos , Estruturas Metalorgânicas , Fotoquimioterapia , Antibacterianos/farmacologia , Antibacterianos/química , Fotoquimioterapia/métodos , Animais , Camundongos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Biofilmes/efeitos dos fármacos , Terapia Fototérmica , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química , Testes de Sensibilidade Microbiana , Compostos Férricos/química , Compostos Férricos/farmacologia , Compostos de Estanho/química , Compostos de Estanho/farmacologia , Zeolitas/química , Zeolitas/farmacologia
10.
Small ; 20(32): e2309495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38511548

RESUMO

Photothermal therapy (PTT) refers to the use of plasmonic nanoparticles to convert electromagnetic radiation in the near infrared region to heat and kill tumor cells. Continuous wave lasers have been used clinically to induce PTT, but the treatment is associated with heat-induced tissue damage that limits usability. Here, the engineering and validation of a novel long-pulsed laser device able to induce selective and localized mild hyperthermia in tumors while reducing the heat affected zone and unwanted damage to surrounding tissue are reported. Long-pulsed PTT induces acute necrotic cell death in heat affected areas and the release of tumor associated antigens. This antigen release triggers maturation and stimulation of CD80/CD86 in dendritic cells in vivo that primes a cytotoxic T cell response. Accordingly, long-pulsed PTT enhances the therapeutic effects of immune checkpoint inhibition and increases survival of mice with bladder cancer. Combined, the data promote long-pulsed PTT as a safe and effective strategy for enhancing therapeutic responses to immune checkpoint inhibitors while minimizing unwanted tissue damage.


Assuntos
Imunoterapia , Terapia Fototérmica , Imunoterapia/métodos , Animais , Terapia Fototérmica/métodos , Camundongos , Neoplasias/terapia , Humanos , Linhagem Celular Tumoral
11.
Small ; 20(14): e2306446, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105592

RESUMO

Copper-based nanozymes exhibit excellent antitumor activity but are easily inactivated due to the disturbance of proteins or other macromolecules with sulfhydryl. A tumor microenvironment-responsive CuMnO@Fe3O4 (CMF) core-shell nanozyme for highly efficient tumor theranostics is developed. A platelet-derived growth factor receptor-ß-recognizing cyclic peptide (PDGFB) target is conjugated to the surface of CMF to fabricate a tumor-specific nanozyme (PCMF). The core-shell nanostructure significantly avoids the oxidation and inactivation of copper-based nanozyme, promoting the antitumor activity of PCMF. The weak acid- and GSH-activated T1 and T2 relaxation rate of PCMF contributes to T1 and T2 dual contrast imaging at the tumor site. In addition, the PCMF disintegrates and produces some metal ions that possess Fenton catalytic activity (i.e., Cu+, Mn2+, and Fe2+) under TME. This process significantly depletes GSH, accelerates Fenton and Fenton-like reactions, enhances cellular reactive oxygen species (ROS) levels, and induces cancer cell apoptosis and ferroptosis. PCMF also exhibits photothermal functions, so it can be used in combined photothermal therapy, ferroptosis therapy, and chemodynamic therapy, improving anticancer activity. This work provides insights into the design of an exquisite nanostructure for high-sensitive and tumor-specific theranostics.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Medicina de Precisão , Cobre , Microambiente Tumoral , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Peróxido de Hidrogênio , Linhagem Celular Tumoral
12.
Small ; 20(26): e2305764, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38368252

RESUMO

Photothermal therapy (PTT) is a new treatment modality for tumors. However, the efficient delivery of photothermal agents into tumors remains difficult, especially in hypoxic tumor regions. In this study, an approach to deliver melanin, a natural photothermal agent, into tumors using genetically engineered bacteria for image-guided photothermal and immune therapy is developed. An Escherichia coli MG1655 is transformed with a recombinant plasmid harboring a tyrosinase gene to produce melanin nanoparticles. Melanin-producing genetically engineered bacteria (MG1655-M) are systemically administered to 4T1 tumor-bearing mice. The tumor-targeting properties of MG1655-M in the hypoxic environment integrate the properties of hypoxia targeting, photoacoustic imaging, and photothermal therapeutic agents in an "all-in-one" manner. This eliminates the need for post-modification to achieve image-guided hypoxia-targeted cancer photothermal therapy. Tumor growth is significantly suppressed by irradiating the tumor with an 808 nm laser. Furthermore, strong antitumor immunity is triggered by PTT, thereby producing long-term immune memory effects that effectively inhibit tumor metastasis and recurrence. This work proposes a new photothermal and immune therapy guided by an "all-in-one" melanin-producing genetically engineered bacteria, which can offer broad potential applications in cancer treatment.


Assuntos
Imunoterapia , Melaninas , Animais , Imunoterapia/métodos , Camundongos , Escherichia coli/genética , Escherichia coli/metabolismo , Linhagem Celular Tumoral , Engenharia Genética , Terapia Fototérmica/métodos , Camundongos Endogâmicos BALB C , Fototerapia/métodos , Neoplasias/terapia , Feminino , Nanopartículas/química
13.
Small ; : e2401655, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966887

RESUMO

Despite the advantages of high tissue penetration depth, selectivity, and non-invasiveness of photothermal therapy for cancer treatment, developing NIR-II photothermal agents with desirable photothermal performance and advanced theranostics ability remains a key challenge. Herein, a universal surface modification strategy is proposed to effectively improve the photothermal performance of vanadium carbide MXene nanosheets (L-V2C) with the removal of surface impurity ions and generation of mesopores. Subsequently, MnOx coating capable of T1-weighted magnetic resonance imaging can be in situ formed through surface redox reaction on L-V2C, and then, stable nanoplatforms (LVM-PEG) under physiological conditions can be obtained after further PEGylation. In the tumor microenvironment irradiated by NIR-II laser, multivalent Mn ions released from LVM-PEG, as a reversible electronic station, can consume the overexpression of glutathione and catalyze a Fenton-like reaction to produce ·OH, resulting in synchronous cellular oxidative damage. Efficient synergistic therapy promotes immunogenic cell death, improving tumor-related immune microenvironment and immunomodulation, and thus, LVM-PEG can demonstrate high accuracy and excellent anticancer efficiency guided by multimodal imaging. As a result, this study provides a new approach for the customization of 2D surface strategies and the study of synergistic therapy mechanisms, highlighting the application of MXene-based materials in the biomedical field.

14.
Small ; : e2309891, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721972

RESUMO

Although the current cancer photothermal therapy (PTT) can produce a powerful therapeutic effect, tumor cells have been proved a protective mechanism through autophagy. In this study, a novel hybrid theranostic nanoparticle (CaCO3@CQ@pDB NPs, CCD NPs) is designed and prepared by integrating a second near-infrared (NIR-II) absorbed conjugated polymer DTP-BBT (pDB), CaCO3, and autophagy inhibitor (chloroquine, CQ) into one nanosystem. The conjugated polymer pDB with asymmetric donor-acceptor structure shows strong NIR-II absorbing capacity, of which the optical properties and photothermal generation mechanism of pDB are systematically analyzed via molecular theoretical calculation. Under NIR-II laser irradiation, pDB-mediated PTT can produce powerful killing ability to tumor cells. At the same time, heat stimulates a large amount of Ca2+ inflow, causing calcium overload induced mitochondrial damage and enhancing the apoptosis of tumor cells. Besides, the released CQ blocks the self-protection mechanism of tumor cells and greatly enhances the attack of PTT and calcium overload therapy. Both in vitro and in vivo experiments confirm that CCD NPs possess excellent NIR-II theranostic capacity, which provides a new nanoplatform for anti-tumor therapy and builds great potential for future clinical research.

15.
Small ; 20(28): e2310795, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38501992

RESUMO

Developing the second near-infrared (NIR-II) photoacoustic (PA) agent is of great interest in bioimaging. Ag2Se quantum dots (QDs) are one kind of potential probe for applications in NIR-II photoacoustic imaging (PAI). However, the surfaces with excess anions of Ag2Se QDs, which increase the probability of nonradiative transitions of excitons benefiting PA imaging, are not conducive to binding electron donor ligands for potential biolabeling and imaging. In this study, Staphylococcus aureus (S. aureus) cells are driven for the biosynthesis of Ag2Se QDs with catalase (CAT). Biosynthesized Ag2Se (bio-Ag2Se-CAT) QDs are produced in Se-enriched environment of S. aureus and have a high Se-rich surface. The photothermal conversion efficiency of bio-Ag2Se-CAT QDs at 808 and 1064 nm is calculated as 75.3% and 51.7%, respectively. Additionally, the PA signal responsiveness of bio-Ag2Se-CAT QDs is ≈10 times that of the commercial PA contrast agent indocyanine green. In particular, the bacterial CAT is naturally attached to bio-Ag2Se-CAT QDs surface, which can effectively relieve tumor hypoxia. The bio-Ag2Se-CAT QDs can relieve heat-initiated oxidative stress while undergoing effective photothermal therapy (PTT). Such biosynthesis method of NIR-II bio-Ag2Se-CAT QDs opens a new avenue for developing multifunctional nanomaterials, showing great promise for PAI, hypoxia alleviation, and PTT.


Assuntos
Catalase , Técnicas Fotoacústicas , Terapia Fototérmica , Pontos Quânticos , Staphylococcus aureus , Pontos Quânticos/química , Técnicas Fotoacústicas/métodos , Catalase/metabolismo , Catalase/química , Animais , Compostos de Prata/química , Humanos , Raios Infravermelhos , Camundongos , Selênio/química
16.
Small ; : e2401299, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38746996

RESUMO

The immunosuppressive tumor microenvironment (TME) reduces the chimeric antigen receptor (CAR) T-cell therapy against solid tumors. Here, a CAR T cell membrane-camouflaged nanocatalyst (ACSP@TCM) is prepared to augment CAR T cell therapy efficacy against solid tumors. ACSP@TCM is prepared by encapsulating core/shell Au/Cu2- xSe and 3-bromopyruvate with a CAR T cell membrane. It is demonstrated that the CAR T cell membrane camouflaging has much better-targeting effect than the homologous tumors cell membrane camouflaging. ACSP@TCM has an appealing synergistic chemodynamic/photothermal therapy (CDT/PTT) effect that can induce the immunogenic cell death (ICD) of NALM 6 cells. Moreover, 3-bromopyruvate can inhibit the efflux of lactic acid by inhibiting the glycolysis process, regulating the acidity of TME, and providing a more favorable environment for the survival of CAR T cells. In addition, the photoacoustic (PA) imaging and computed tomography (CT) imaging performance can guide the ACSP@TCM-mediated tumor therapy. The results demonstrated that the ACSP@TCM significantly enhanced the CAR T cell therapy efficacy against NALM 6 solid tumor mass, and completely eliminated tumors. This work provides an effective tumor strategy for CAR T cell therapy in solid tumors.

17.
Small ; : e2403284, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037367

RESUMO

Thrombus causes a serious condition characterized by the formation of blood clots in blood vessels or heart, potentially leading to life-threatening emergencies. Photothermal therapy (PTT) serves as a treatment for thrombosis that provides noninvasive thrombus dissolution and fewer bleeding side effects. However, the high temperatures generated by PTT can exacerbate vascular inflammation and promote thrombus recurrence. In this study, a photothermal hydrogen sulfide (H2S) nanogenerator (PSA@ADT-OH) is constructed using a perylene-cored photothermal agent (PSA) coassembled with a H2S donor ADT-OH. The system PSA@ADT-OH demonstrates outstanding targeting and accumulation efficiency against blood flow shear forces. It also provides sustained H2S release at thrombus sites, contributing to antiplatelet aggregation, reactive oxygen species clearance, and vascular healing. This approach opens up new possibilities for advanced thrombus treatment.

18.
Small ; 20(33): e2400361, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38708879

RESUMO

Photothermal therapy has emerged as a promising approach for cancer treatment, which can cause ferroptosis to enhance immunotherapeutic efficacy. However, excessively generated immunogenicity will induce serious inflammatory response syndrome, resulting in a discounted therapeutic effect. Herein, a kind of NIR absorption small organic chromophore nanoparticles (TTHM NPs) with high photothermal conversion efficiency (68.33%) is developed, which can induce mitochondria dysfunction, generate mitochondrial superoxide, and following ferroptosis. TTHM NPs-based photothermal therapy is combined with Sulfasalazine (SUZ), a kind of nonsteroidal anti-inflammatory drugs, to weaken inflammation and promote ferroptosis through suppressing glutamate/cystine (Glu/Cys) antiporter system Xc- (xCT). Additionally, the combination of SUZ with PTT can induce immunogenic cell death (ICD), followed by promoting the maturation of DCs and the attraction of CD8+ T cell, which will secrete IFN-γ and trigger self-amplified ferroptosis via inhibiting xCT and simulating Acyl-CoA synthetase long-chain family member 4 (ACSL4). Moreover, the in vivo results demonstrate that this combination therapy can suppress the expression of inflammatory factors, enhance dendritic cell activation, facilitate T-cell infiltration, and realize effective thermal elimination of primary tumors and distant tumors. In general, this work provides an excellent example of combined medication and stimulates new thinking about onco-therapy and inflammatory response.


Assuntos
Anti-Inflamatórios não Esteroides , Ferroptose , Nanopartículas , Terapia Fototérmica , Microambiente Tumoral , Ferroptose/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Nanopartículas/química , Camundongos , Humanos , Sulfassalazina/farmacologia , Inflamação/patologia , Raios Infravermelhos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/tratamento farmacológico
19.
Small ; 20(31): e2310706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38446096

RESUMO

Photothermal treatment (PTT) has emerged as a promising avenue for biofilm elimination, yet its potential drawbacks, such as local hyperpyrexia and bacterial heat resistance, have posed challenges. To address these concerns, an innovative nanoplatform (Au@mSiO2-arg/ICG) is devised that integrates phototherapeutic and gas therapeutic functionalities. This multifaceted nanoplatform is composed of mesoporous silica-coated Au nanorods (Au@mSiO2), supplemented with l-arginine (l-arg) and indocyanine green (ICG), and is engineered for mild temperature PTT aimed at biofilm eradication. Au@mSiO2-arg/ICG nanoparticles (NPs) show excellent antibacterial effects through the generation of nitric oxide (NO) gas, heat, and reactive oxygen species (ROS) under 808 nm light irradiation. The ROS generated by ICG initiates a cascade reaction with l-arg, ultimately yielding NO gas molecules. This localized release of NO not only effectively curbs the expression of heat shock proteins 70 mitigating bacterial thermoresistance, but also reduces extracellular polymeric substance allowing better penetration of the therapeutic agents. Furthermore, this nanoplatform achieves an outstanding biofilm elimination rate of over 99% in an abscess model under 808 nm light irradiation (0.8 W·cm-2), thereby establishing its potential as a dependable strategy for NO-enhanced mild PTT and antibacterial photodynamic therapy (aPDT) in clinical settings.


Assuntos
Biofilmes , Verde de Indocianina , Raios Infravermelhos , Óxido Nítrico , Biofilmes/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Ouro/química , Dióxido de Silício/química , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Arginina/química , Arginina/farmacologia , Animais , Nanotubos/química
20.
Small ; 20(31): e2309583, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38446095

RESUMO

Triple-negative breast cancer (TNBC) is a highly heterogeneous subtype of breast cancer, characterized by aggressiveness and high recurrence rate. As monotherapy provides limited benefit to TNBC patients, combination therapy emerges as a promising treatment approach. Gambogic acid (GA) is an exceedingly promising anticancer agent. Nonetheless, its application potential is hampered by low drug loading efficiency and associated toxic side effects. To overcome these limitations, using mesoporous polydopamine (MPDA) endowed with photothermal conversion capabilities is considered as a delivery vehicle for GA. Meanwhile, GA can inhibit the activity of heat shock protein 90 (HSP90) to enhance the photothermal effect. Herein, GA-loaded MPDA nanoparticles (GA@MPDA NPs) are developed with a high drug loading rate of 75.96% and remarkable photothermal conversion performance. GA@MPDA NPs combined with photothermal treatment (PTT) significantly inhibit the tumor growth, and effectively trigger the immunogenic cell death (ICD), which thereby increase the number of activated effector T cells (CD8+ T cells and CD4+ T cells) in the tumor, and hoist the level of immune-inflammatory cytokines (IFN-γ, IL-6, and TNF-α). The above results suggest that the combination of GA@MPDA NPs with PTT expected to activate the antitumor immune response, thus potentially enhancing the clinical therapeutic effect on TNBC.


Assuntos
Indóis , Polímeros , Neoplasias de Mama Triplo Negativas , Xantonas , Xantonas/química , Xantonas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Indóis/química , Indóis/farmacologia , Polímeros/química , Humanos , Animais , Linhagem Celular Tumoral , Feminino , Porosidade , Camundongos , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA