Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(52): 13804-13809, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229849

RESUMO

Negative and positive feedback effects of ovarian 17ß-estradiol (E2) regulating release of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) are pivotal events in female reproductive function. While ovarian feedback on hypothalamo-pituitary function is a well-established concept, the present study shows that neuroestradiol, locally synthesized in the hypothalamus, is a part of estrogen's positive feedback loop. In experiment 1, E2 benzoate-induced LH surges in ovariectomized female monkeys were severely attenuated by systemic administration of the aromatase inhibitor, letrozole. Aromatase is the enzyme responsible for synthesis of E2 from androgens. In experiment 2, using microdialysis, GnRH and kisspeptin surges induced by E2 benzoate were similarly attenuated by infusion of letrozole into the median eminence of the hypothalamus. Therefore, neuroestradiol is an integral part of the hypothalamic engagement in response to elevated circulating E2 Collectively, we will need to modify the concept of estrogen's positive feedback mechanism.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hormônio Luteinizante/metabolismo , Ovariectomia , Animais , Feminino , Macaca mulatta
2.
Gen Comp Endocrinol ; 199: 86-93, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24472706

RESUMO

In sheep as in rat, it has been highly suggested that neuronal histamine (HA) participates to the estradiol (E2)-induced GnRH and LH surges, through H1 receptor. With the aim of determining if E2 could act directly on HA neurons, we examined here whether HA neurons express estrogen receptor alpha (ERα) in the ewe diencephalon during the breeding season. We first produced a specific polyclonal antibody directed against recombinant ovine histidine decarboxylase (oHDC), the HA synthesizing enzyme. Using both this anti-oHDC antibody and an anti-ERα monoclonal antibody in double label immunohistochemistry, we showed that HA neurons do not express ERα in diencephalon of ewes with different hormonal status. This result diverges from those obtained in rat, in which around three quarters of HA neurons express ERα in their nucleus. This discrepancy between these two mammal species may reflect difference in their neuronal network.


Assuntos
Cruzamento , Diencéfalo/metabolismo , Receptor alfa de Estrogênio/metabolismo , Histamina/metabolismo , Neurônios/metabolismo , Estações do Ano , Ovinos/metabolismo , Animais , Anticorpos/metabolismo , Especificidade de Anticorpos/imunologia , Diencéfalo/citologia , Diencéfalo/efeitos dos fármacos , Diencéfalo/enzimologia , Eletroforese em Gel de Poliacrilamida , Estradiol/farmacologia , Feminino , Histidina Descarboxilase/imunologia , Imuno-Histoquímica , Masculino , Neurônios/efeitos dos fármacos , Ratos , Proteínas Recombinantes/isolamento & purificação
3.
Poult Sci ; 102(4): 102547, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36878099

RESUMO

The preovulatory hormonal surge (PS) consists of elevated circulating luteinizing hormone (LH) and progesterone levels and serves as the primary trigger for ovarian follicle ovulation. Increased LH and progesterone, produced by the pituitary and the granulosa layer of the largest ovarian follicle (F1), respectively, result from hypothalamic stimulation and steroid hormone feedback on the hypothalamo-pituitary-gonadal (HPG) axis. The hypothalamus, pituitary, F1 granulosa, and granulosa layer of the fifth largest follicle (F5) were isolated from converter turkey hens outside and during the PS and subjected to RNA sequencing (n = 6 per tissue). Differentially expressed genes were subjected to functional annotation using DAVID and IPA. A total of 12, 250, 1235, and 1938 DEGs were identified in the hypothalamus, pituitary, F1 granulosa, and F5 granulosa respectively (q<0.05, |fold change|>1.5, FPKM>1). Gene Ontology (GO) analysis revealed key roles for metabolic processes, steroid hormone feedback, and hypoxia induced gene expression changes. Upstream analysis identified a total of 4, 42, 126, and 393 potential regulators of downstream gene expression in the hypothalamus, pituitary, F1G, and F5G respectively, with a total of 63 potential regulators exhibiting differential expression between samples collected outside and during the PS (|z-score|>2). The results from this study serve to increase the current knowledge base surrounding the regulation of the PS in turkey hens. Through GO analysis, downstream processes and functions associated with the PS were linked to identified DEGs, and through upstream analysis, potential regulators of DEGs were identified for further analysis. Linking upstream regulators to the downstream PS and ovulation events could allow for genetic selection or manipulation of ovulation frequencies in turkey hens.


Assuntos
Galinhas , Progesterona , Feminino , Animais , Progesterona/metabolismo , Galinhas/metabolismo , Folículo Ovariano/fisiologia , Hormônio Luteinizante/metabolismo , Ovulação , Perfilação da Expressão Gênica/veterinária , Células da Granulosa/metabolismo
4.
Front Endocrinol (Lausanne) ; 14: 1212854, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900129

RESUMO

Background: The neuroendocrine control of ovulation is orchestrated by neuronal circuits that ultimately drive the release of gonadotropin-releasing hormone (GnRH) from the hypothalamus to trigger the preovulatory surge in luteinizing hormone (LH) secretion. While estrogen feedback signals are determinant in triggering activation of GnRH neurons, through stimulation of afferent kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3VKISS1 neurons), many neuropeptidergic and classical neurotransmitter systems have been shown to regulate the LH surge. Among these, several lines of evidence indicate that the monoamine neurotransmitter serotonin (5-HT) has an excitatory, permissive, influence over the generation of the surge, via activation of type 2 5-HT (5-HT2) receptors. The mechanisms through which this occurs, however, are not well understood. We hypothesized that 5-HT exerts its influence on the surge by stimulating RP3VKISS1 neurons in a 5-HT2 receptor-dependent manner. Methods: We tested this using kisspeptin neuron-specific calcium imaging and electrophysiology in brain slices obtained from male and female mice. Results: We show that exogenous 5-HT reversibly increases the activity of the majority of RP3VKISS1 neurons. This effect is more prominent in females than in males, is likely mediated directly at RP3VKISS1 neurons and requires activation of 5-HT2 receptors. The functional impact of 5-HT on RP3VKISS1 neurons, however, does not significantly vary during the estrous cycle. Conclusion: Taken together, these data suggest that 5-HT2 receptor-mediated stimulation of RP3VKISS1 neuron activity might be involved in mediating the influence of 5-HT on the preovulatory LH surge.


Assuntos
Kisspeptinas , Área Pré-Óptica , Camundongos , Feminino , Masculino , Animais , Área Pré-Óptica/metabolismo , Kisspeptinas/metabolismo , Serotonina/farmacologia , Neurônios/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Receptores de Serotonina , Neurotransmissores
5.
Poult Sci ; 100(4): 100928, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33588341

RESUMO

Dysregulation of the preovulatory surge (PS) leads to lowered egg production. The hypothalamo-pituitary-thyroid (HPT) axis has been shown to influence plasma progesterone levels and follicle ovulation. The presence of thyroid hormone receptors (THR) in the reproductive axis suggests possible effects of thyroid hormone. To further understand the potential role of thyroid hormone on the PS, HPT axis plasma hormone concentrations and gene expression were characterized surrounding the PS in average egg producing hens (AEPH), low egg producing hens (LEPH), and high egg producing hens (HEPH) (n = 3 hens/group). Data were analyzed using the mixed models procedure of SAS, with significance indicated at P < 0.05. Average egg producing hens and HEPH displayed lower levels of triiodothyronine (T3) and higher levels of thyroxine (T4) inside of the PS, whereas LEPH showed inverse T3 and T4 levels relative to the PS. Expression of mRNA for hypothalamic thyrotropin-releasing hormone (TRH), pituitary thyrotropin (TSHB), and the main thyroid hormone metabolism enzyme (DIO2) were downregulated during the PS in AEPH and HEPH. Low egg producing hens displayed higher expression of mRNA for hypothalamic TRH as well as pituitary TSHB and DIO2 compared with HEPH. Average egg producing hens expression of THR mRNAs was upregulated during the PS in the hypothalamus but downregulated in the pituitary. High egg producing hens showed decreased expression of THR mRNAs in both the hypothalamus and pituitary when compared with LEPH. In ovarian follicles, THR mRNAs were more prevalent in the thecal layer of the follicle wall compared with the granulosa layer, and expression tended to decrease with follicle maturity. Minimal differences in follicular THR expression were seen between LEPH and HEPH, indicating that THR expression is unlikely to be responsible for steroid hormone production differences occurring between LEPH and HEPH. Generally, downregulation of the HPT axis was seen during the PS in AEPH and HEPH, whereas upregulation of the HPT axis was seen in LEPH. Further studies will be required to clarify the role of the HPT axis in the regulation of ovulation and egg production rates in turkey hens.


Assuntos
Óvulo , Glândula Tireoide , Animais , Galinhas/genética , Feminino , Expressão Gênica , Sistema Hipotálamo-Hipofisário , Hipotálamo , Folículo Ovariano , Hipófise
6.
Artigo em Inglês | MEDLINE | ID: mdl-28790978

RESUMO

Fertility relies on the proper functioning of the hypothalamic-pituitary-gonadal axis. The hormonal cascade begins with hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH) into the hypophyseal portal system. In turn, the GnRH-activated gonadotrophs in the anterior pituitary release gonadotropins, which then act on the gonads to regulate gametogenesis and sex steroidogenesis. Finally, sex steroids close this axis by feeding back to the hypothalamus. Despite this seeming straightforwardness, the axis is orchestrated by a complex neuronal network in the central nervous system. For reproductive success, GnRH neurons, the final output of this network, must integrate and translate a wide range of cues, both environmental and physiological, to the gonadotrophs via pulsatile GnRH secretion. This secretory profile is critical for gonadotropic function, yet the mechanisms underlying these pulses remain unknown. Literature supports both intrinsically and extrinsically driven GnRH neuronal activity. However, the caveat of the techniques supporting either one of the two hypotheses is the gap between events recorded at a single-cell level and GnRH secretion measured at the population level. This review aims to compile data about GnRH neuronal activity focusing on the physiological output, GnRH secretion.

7.
Domest Anim Endocrinol ; 57: 80-4, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27565234

RESUMO

The number and day of emergence (first detection) of 2-mm follicles and the number and day when the 2-mm follicles reached 3-, 4-, 5-, and 6-mm during wave 1 were determined every 0.5 d (n = 9 heifers). Emergence of the follicles at each of the indicated diameters was normalized to the beginning and ending nadir and the peak of each of a minor FSH surge, the preovulatory surge, and the periovulatory surge. Relative to the day of ovulation (day 0), the minor FSH surge, preovulatory surge, and periovulatory surge encompassed (nadir to nadir) days -7.0 to -2.5 (peak, day -4.0), days -2.5 to -0.5 (peak, day -1.0), and days -0.5 to 4 (peak, day 0), respectively. Distinct mean nadirs occurred between the minor and preovulatory surges and between the preovulatory and periovulatory surges. A small percentage of 2-mm follicles (12%) and 3-mm follicles (2%) emerged during the minor FSH surge. The 4-mm follicles emerged during the preovulatory surge (24% of follicles) and periovulatory surge (76%). The 5-mm and 6-mm follicles emerged only during the periovulatory surge. The first increase (P < 0.05) in number of 2-, 3-, and 4-mm follicles began at 1.5, 1.0, and 0 d, respectively, before the nadir at the beginning of the preovulatory surge. The first increase (P < 0.05) in number of 5- and 6-mm follicles began at 0.5 and 0 d, respectively, before the intervening nadir between the preovulatory and periovulatory surges. Results demonstrated that each of the 3 surges including the minor surge contributed to the emergence of follicles at various diameters during wave 1. The emergence of 2-mm follicles during the descending portion of the minor surge indicated that smaller follicles (eg, 1 mm) apparently emerged during the major portion of the minor surge. The increasing diameter of the 2 largest follicles was not interrupted during the distinct intervening nadir between the preovulatory and periovulatory FSH surges.


Assuntos
Bovinos/fisiologia , Hormônio Foliculoestimulante/metabolismo , Folículo Ovariano/fisiologia , Ovulação/fisiologia , Animais , Feminino , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA