Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(1-2): 150-158.e10, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28041849

RESUMO

Bacterial CRISPR-Cas systems utilize sequence-specific RNA-guided nucleases to defend against bacteriophage infection. As a countermeasure, numerous phages are known that produce proteins to block the function of class 1 CRISPR-Cas systems. However, currently no proteins are known to inhibit the widely used class 2 CRISPR-Cas9 system. To find these inhibitors, we searched cas9-containing bacterial genomes for the co-existence of a CRISPR spacer and its target, a potential indicator for CRISPR inhibition. This analysis led to the discovery of four unique type II-A CRISPR-Cas9 inhibitor proteins encoded by Listeria monocytogenes prophages. More than half of L. monocytogenes strains with cas9 contain at least one prophage-encoded inhibitor, suggesting widespread CRISPR-Cas9 inactivation. Two of these inhibitors also blocked the widely used Streptococcus pyogenes Cas9 when assayed in Escherichia coli and human cells. These natural Cas9-specific "anti-CRISPRs" present tools that can be used to regulate the genome engineering activities of CRISPR-Cas9.


Assuntos
Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Endonucleases/antagonistas & inibidores , Engenharia Genética , Listeria monocytogenes/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteína 9 Associada à CRISPR , Escherichia coli , Células HEK293 , Humanos , Listeria monocytogenes/imunologia , Listeria monocytogenes/virologia , Prófagos
2.
Mol Cell ; 82(11): 2161-2166.e3, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35623354

RESUMO

CRISPR systems are prokaryotic adaptive immune systems that use RNA-guided Cas nucleases to recognize and destroy foreign genetic elements. To overcome CRISPR immunity, bacteriophages have evolved diverse families of anti-CRISPR proteins (Acrs). Recently, Lin et al. (2020) described the discovery and characterization of 7 Acr families (AcrVIA1-7) that inhibit type VI-A CRISPR systems. We detail several inconsistencies that question the results reported in the Lin et al. (2020) study. These include inaccurate bioinformatics analyses and bacterial strains that are impossible to construct. Published strains were provided by the authors, but MS2 bacteriophage plaque assays did not support the published results. We also independently tested the Acr sequences described in the original report, in E. coli and mammalian cells, but did not observe anti-Cas13a activity. Taken together, our data and analyses prompt us to question the claim that AcrVIA1-7 reported in Lin et al. are type VI anti-CRISPR proteins.


Assuntos
Bacteriófagos , Proteínas Associadas a CRISPR , Animais , Bacteriófagos/genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/genética , Escherichia coli/metabolismo , Leptotrichia/genética , Mamíferos/metabolismo , Prófagos/genética , Prófagos/metabolismo , Ribonucleases/metabolismo
3.
Annu Rev Microbiol ; 74: 1-19, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32453973

RESUMO

Two strains of good fortune in my career were to stumble upon the Watson-Gilbert laboratory at Harvard when I entered graduate school in 1964, and to study gene regulation in bacteriophage λ when I was there. λ was almost entirely a genetic item a few years before, awaiting biochemical incarnation. Throughout my career I was a relentless consumer of the work of previous and current generations of λ geneticists. Empowered by this background, my laboratory made contributions in two areas. The first was regulation of early gene transcription in λ, the study of which began with the discovery of the Rho transcription termination factor, and the regulatory mechanism of transcription antitermination by the λ N protein, subjects of my thesis work. This was developed into a decades-long program during my career at Cornell, studying the mechanism of transcription termination and antitermination. The second area was the classic problem of prophage induction in response to cellular DNA damage, the study of which illuminated basic cellular processes to survive DNA damage.


Assuntos
Bacteriófago lambda/genética , Dano ao DNA , DNA , Transcrição Gênica , Bacteriófago lambda/fisiologia , Regulação da Expressão Gênica , História do Século XX , Humanos , Masculino , RNA Viral/genética , Pesquisa/história , Fatores de Transcrição
4.
Bioessays ; 45(8): e2300063, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37353919

RESUMO

How much bacterial evolution occurs in our intestines and which factors control it are currently burning questions. The formation of new ecotypes, some of which capable of coexisting for long periods of time, is highly likely in our guts. Horizontal gene transfer driven by temperate phages that can perform lysogeny is also widespread in mammalian intestines. Yet, the roles of mutation and especially lysogeny as key drivers of gut bacterial adaptation remain poorly understood. The mammalian gut contains hundreds of bacterial species, each with many strains and ecotypes, whose abundance varies along the lifetime of a host. A continuous high input of mutations and horizontal gene transfer events mediated by temperate phages drives that diversity. Future experiments to study the interaction between mutations that cause adaptation in microbiomes and lysogenic events with different costs and benefits will be key to understand the dynamic microbiomes of mammals. Also see the video abstract here: https://youtu.be/Zjqsiyb5Pk0.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Animais , Prófagos/genética , Domesticação , Ecótipo , Lisogenia , Bacteriófagos/genética , Bactérias/genética , Mamíferos
5.
J Bacteriol ; 206(6): e0002224, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38771038

RESUMO

Phage-induced lysis of Gram-negative bacterial hosts usually requires a set of phage lysis proteins, a holin, an endopeptidase, and a spanin system, to disrupt each of the three cell envelope layers. Genome annotations and previous studies identified a gene region in the Shewanella oneidensis prophage LambdaSo, which comprises potential holin- and endolysin-encoding genes but lacks an obvious spanin system. By a combination of candidate approaches, mutant screening, characterization, and microscopy, we found that LambdaSo uses a pinholin/signal-anchor-release (SAR) endolysin system to induce proton leakage and degradation of the cell wall. Between the corresponding genes, we found that two extensively nested open-reading frames encode a two-component spanin module Rz/Rz1. Unexpectedly, we identified another factor strictly required for LambdaSo-induced cell lysis, the phage protein Lcc6. Lcc6 is a transmembrane protein of 65 amino acid residues with hitherto unknown function, which acts at the level of holin in the cytoplasmic membrane to allow endolysin release. Thus, LambdaSo-mediated cell lysis requires at least four protein factors (pinholin, SAR endolysin, spanin, and Lcc6). The findings further extend the known repertoire of phage proteins involved in host lysis and phage egress. IMPORTANCE: Lysis of bacteria can have multiple consequences, such as the release of host DNA to foster robust biofilm. Phage-induced lysis of Gram-negative cells requires the disruption of three layers, the outer and inner membranes and the cell wall. In most cases, the lysis systems of phages infecting Gram-negative cells comprise holins to disrupt or depolarize the membrane, thereby releasing or activating endolysins, which then degrade the cell wall. This, in turn, allows the spanins to become active and fuse outer and inner membranes, completing cell envelope disruption and allowing phage egress. Here, we show that the presence of these three components may not be sufficient to allow cell lysis, implicating that also in known phages, further factors may be required.


Assuntos
Bacteriólise , Endopeptidases , Shewanella , Shewanella/virologia , Shewanella/genética , Endopeptidases/metabolismo , Endopeptidases/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Bacteriófago lambda/fisiologia , Bacteriófago lambda/genética
6.
J Bacteriol ; 206(5): e0040223, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38687034

RESUMO

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that commonly causes medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages that infect P. aeruginosa impact numerous virulence phenotypes. Most work on Pf phages has focused on Pf4 and its host P. aeruginosa PAO1. Expanding from Pf4 and PAO1, this study explores diverse Pf phages infecting P. aeruginosa clinical isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene, pflM (PA0718), that enables the effective elimination of Pf prophages from diverse P. aeruginosa hosts. The pflM gene shows diversity among different Pf phage isolates; however, all examined pflM alleles encode the DUF5447 domain. We demonstrate that pflM deletion results in prophage excision but not replication, leading to total prophage loss, indicating a role for lysis/lysogeny decisions for the DUF5447 domain. This study also assesses the effects different Pf phages have on host quorum sensing, biofilm formation, pigment production, and virulence against the bacterivorous nematode Caenorhabditis elegans. We find that Pf phages have strain-specific impacts on quorum sensing and biofilm formation, but nearly all suppress pigment production and increase C. elegans avoidance behavior. Collectively, this research not only introduces a valuable tool for Pf prophage elimination from diverse P. aeruginosa isolates but also advances our understanding of the complex relationship between P. aeruginosa and filamentous Pf phages.IMPORTANCEPseudomonas aeruginosa is an opportunistic bacterial pathogen that is frequently infected by filamentous Pf phages (viruses) that integrate into its chromosome, affecting behavior. Although prior work has focused on Pf4 and PAO1, this study investigates diverse Pf in clinical isolates. A simple method targeting the deletion of the Pf lysogeny maintenance gene pflM (PA0718) effectively eliminates Pf prophages from clinical isolates. The research evaluates the impact Pf prophages have on bacterial quorum sensing, biofilm formation, and virulence phenotypes. This work introduces a valuable tool to eliminate Pf prophages from clinical isolates and advances our understanding of P. aeruginosa and filamentous Pf phage interactions.


Assuntos
Prófagos , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/virologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Prófagos/genética , Prófagos/fisiologia , Virulência , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/virologia , Biofilmes/crescimento & desenvolvimento , Animais , Lisogenia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/fisiologia , Infecções por Pseudomonas/microbiologia
7.
Mol Biol Evol ; 40(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37402639

RESUMO

Social networks can influence the ecology of gut bacteria, shaping the species composition of the gut microbiome in humans and other animals. Gut commensals evolve and can adapt at a rapid pace when colonizing healthy hosts. Here, we aimed at assessing the impact of host-to-host bacterial transmission on Escherichia coli evolution in the mammalian gut. Using an in vivo experimental evolution approach in mice, we found a transmission rate of 7% (±3% 2× standard error [2SE]) of E. coli cells per day between hosts inhabiting the same household. Consistent with the predictions of a simple population genetics model of mutation-selection-migration, the level of shared events resulting from within host evolution is greatly enhanced in cohoused mice, showing that hosts undergoing the same diet and habit are not only expected to have similar microbiome species compositions but also similar microbiome evolutionary dynamics. Furthermore, we estimated the rate of mutation accumulation of E. coli to be 3.0 × 10-3 (±0.8 × 10-3 2SE) mutations/genome/generation, irrespective of the social context of the regime. Our results reveal the impact of bacterial migration across hosts in shaping the adaptive evolution of new strains colonizing gut microbiomes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Evolução Biológica , Escherichia coli/genética , Microbiota/genética , Microbioma Gastrointestinal/genética , Mutação , Mamíferos/microbiologia , Bactérias
8.
Appl Environ Microbiol ; 90(1): e0127323, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38169292

RESUMO

Prophages integrated into bacterial genomes can become cryptic or defective prophages, which may evolve to provide various traits to bacterial cells. Previous research on Marinomonas mediterranea MMB-1 demonstrated the production of defective particles. In this study, an analysis of the genomes of three different strains (MMB-1, MMB-2, and MMB-3) revealed the presence of a region named MEDPRO1, spanning approximately 52 kb, coding for a defective prophage in strains MMB-1 and MMB-2. This prophage seems to have been lost in strain MMB-3, possibly due to the presence of spacers recognizing this region in an I-F CRISPR array in this strain. However, all three strains produce remarkably similar defective particles. Using strain MMB-1 as a model, mass spectrometry analyses indicated that the structural proteins of the defective particles are encoded by a second defective prophage situated within the MEDPRO2 region, spanning approximately 13 kb. This finding was further validated through the deletion of this second defective prophage. Genomic region analyses and the detection of antimicrobial activity of the defective prophage against other Marinomonas species suggest that it is an R-type bacteriocin. Marinomonas mediterranea synthesizes antimicrobial proteins with lysine oxidase activity, and the synthesis of an R-type bacteriocin constitutes an additional mechanism in microbial competition for the colonization of habitats such as the surface of marine plants.IMPORTANCEThe interactions between bacterial strains inhabiting the same environment determine the final composition of the microbiome. In this study, it is shown that some extracellular defective phage particles previously observed in Marinomonas mediterranea are in fact R-type bacteriocins showing antimicrobial activity against other Marinomonas strains. The operon coding for the R-type bacteriocin has been identified.


Assuntos
Anti-Infecciosos , Bacteriocinas , Marinomonas , Marinomonas/genética , Marinomonas/metabolismo , Bacteriocinas/metabolismo , Oxirredutases/metabolismo
9.
Appl Environ Microbiol ; 90(1): e0140823, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38084945

RESUMO

Since 1989, investigations into viral ecology have revealed how bacteriophages can influence microbial dynamics within ecosystems at global scales. Most of the information we know about temperate phages, which can integrate themselves into the host genome and remain dormant via a process called lysogeny, has come from research in aquatic ecosystems. Soil environments remain under-studied, and more research is necessary to fully understand the range of impacts phage infections have on the soil bacteria they infect. The aims of this study were to compare the efficacy of different prophage-inducing agents and to elucidate potential temporal trends in lysogeny within a soil bacterial community. In addition to mitomycin C and acyl-homoserine lactones, our results indicated that halosulfuron methyl herbicides may also be potent inducing agents. In optimizing chemical induction assays, we determined that taking steps to reduce background virus particles and starve cells was critical in obtaining consistent results. A clear seasonal trend in inducible lysogeny was observed in an Appalachian oak-hickory forest soil. The average monthly air temperature was negatively correlated with inducible fraction and burst size, supporting the idea that lysogeny provides a mechanism for phage persistence when temperatures are low and host metabolism is slower. Furthermore, the inducible fraction was negatively correlated with both soil bacterial and soil viral abundance, supporting the idea that lysogeny provides a mechanism for temperate phage persistence when host density is lower. The present study is the first of its kind to reveal clear seasonal trends in inducible lysogeny in any soil.IMPORTANCELysogeny is a relationship in which certain viruses that infect bacteria (phages) may exist within their bacterial host cell as a segment of nucleic acid. In this state, the phage genome is protected from environmental damage and retains the potential to generate progeny particles in the future. It is thought that lysogeny provides a mechanism for long-term persistence for phages when host density is low or hosts are starved-two conditions likely to be found in soils. In the present study, we provide the first known evidence for a seasonal trend in lysogeny in a forest soil. Based on clear relationships observed between lysogeny, temperature, and soil microbial abundance, we find support for previous hypotheses regarding the factors governing lysogeny.


Assuntos
Bacteriófagos , Quercus , Lisogenia , Ecossistema , Estações do Ano , Solo , Bacteriófagos/genética , Bactérias/genética , Florestas
10.
Appl Environ Microbiol ; 90(4): e0009524, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38497640

RESUMO

Horizontal gene transfer, facilitated by mobile genetic elements (MGEs), is an adaptive evolutionary process that contributes to the evolution of bacterial populations and infectious diseases. A variety of MGEs not only can integrate into the bacterial genome but also can survive or even replicate like plasmids in the cytoplasm, thus requiring precise and complete removal for studying their strategies in benefiting host cells. Existing methods for MGE removal, such as homologous recombination-based deletion and excisionase-based methods, have limitations in effectively eliminating certain MGEs. To overcome these limitations, we developed the Cas9-NE method, which combines the CRISPR/Cas9 system with the natural excision of MGEs. In this approach, a specialized single guide RNA (sgRNA) element is designed with a 20-nucleotide region that pairs with the MGE sequence. This sgRNA is expressed from a plasmid that also carries the Cas9 gene. By utilizing the Cas9-NE method, both the integrative and circular forms of MGEs can be precisely and completely eliminated through Cas9 cleavage, generating MGE-removed cells. We have successfully applied the Cas9-NE method to remove four representative MGEs, including plasmids, prophages, and genomic islands, from Vibrio strains. This new approach not only enables various investigations on MGEs but also has significant implications for the rapid generation of strains for commercial purposes.IMPORTANCEMobile genetic elements (MGEs) are of utmost importance for bacterial adaptation and pathogenicity, existing in various forms and multiple copies within bacterial cells. Integrated MGEs play dual roles in bacterial hosts, enhancing the fitness of the host by delivering cargo genes and potentially modifying the bacterial genome through the integration/excision process. This process can lead to alterations in promoters or coding sequences or even gene disruptions at integration sites, influencing the physiological functions of host bacteria. Here, we developed a new approach called Cas9-NE, allowing them to maintain the natural sequence changes associated with MGE excision. Cas9-NE allows the one-step removal of integrated and circular MGEs, addressing the challenge of eliminating various MGE forms efficiently. This approach simplifies MGE elimination in bacteria, expediting research on MGEs.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Bactérias/genética , Ilhas Genômicas , Transferência Genética Horizontal , Plasmídeos/genética , Sequências Repetitivas Dispersas
11.
Appl Environ Microbiol ; 90(3): e0224523, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38319098

RESUMO

Bacterial-fungal interactions are pervasive in the rhizosphere. While an increasing number of endohyphal bacteria have been identified, little is known about their ecology and impact on the associated fungal hosts and the surrounding environment. In this study, we characterized the genome of an Enterobacter sp. Crenshaw (En-Cren), which was isolated from the generalist fungal pathogen Rhizoctonia solani, and examined the genetic potential of the bacterium with regard to the phenotypic traits associated with the fungus. Overall, the En-Cren genome size was typical for members of the genus and was capable of free-living growth. The genome was 4.6 MB in size, and no plasmids were detected. Several prophage regions and genomic islands were identified that harbor unique genes in comparison with phylogenetically closely related Enterobacter spp. Type VI secretion system and cyanate assimilation genes were identified from the bacterium, while some common heavy metal resistance genes were absent. En-Cren contains the key genes for indole-3-acetic acid (IAA) and phenylacetic acid (PAA) biosynthesis, and produces IAA and PAA in vitro, which may impact the ecology or pathogenicity of the fungal pathogen in vivo. En-Cren was observed to move along hyphae of R. solani and on other basidiomycetes and ascomycetes in culture. The bacterial flagellum is essential for hyphal movement, while other pathways and genes may also be involved.IMPORTANCEThe genome characterization and comparative genomics analysis of Enterobacter sp. Crenshaw provided the foundation and resources for a better understanding of the ecology and evolution of this endohyphal bacteria in the rhizosphere. The ability to produce indole-3-acetic acid and phenylacetic acid may provide new angles to study the impact of phytohormones during the plant-pathogen interactions. The hitchhiking behavior of the bacterium on a diverse group of fungi, while inhibiting the growth of some others, revealed new areas of bacterial-fungal signaling and interaction, which have yet to be explored.


Assuntos
Enterobacter , Hifas , Enterobacter/genética , Enterobacter/metabolismo , Hifas/metabolismo , Fenilacetatos/metabolismo , Rhizoctonia/genética
12.
BMC Microbiol ; 24(1): 155, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704526

RESUMO

BACKGROUND: The in-depth understanding of the role of lateral genetic transfer (LGT) in phage-prophage interactions is essential to rationalizing phage applications for human and animal therapy, as well as for food and environmental safety. This in silico study aimed to detect LGT between phages of potential industrial importance and their hosts. METHODS: A large array of genetic recombination detection algorithms, implemented in SplitsTree and RDP4, was applied to detect LGT between various Escherichia, Listeria, Salmonella, Campylobacter, Staphylococcus, Pseudomonas, and Vibrio phages and their hosts. PHASTER and RAST were employed respectively to identify prophages across the host genome and to annotate LGT-affected genes with unknown functions. PhageAI was used to gain deeper insights into the life cycle history of recombined phages. RESULTS: The split decomposition inferences (bootstrap values: 91.3-100; fit: 91.433-100), coupled with the Phi (0.0-2.836E-12) and RDP4 (P being well below 0.05) statistics, provided strong evidence for LGT between certain Escherichia, Listeria, Salmonella, and Campylobacter virulent phages and prophages of their hosts. The LGT events entailed mainly the phage genes encoding for hypothetical proteins, while some of these genetic loci appeared to have been affected even by intergeneric recombination in specific E. coli and S. enterica virulent phages when interacting with their host prophages. Moreover, it is shown that certain L. monocytogenes virulent phages could serve at least as the donors of the gene loci, involved in encoding for the basal promoter specificity factor, for L. monocytogenes. In contrast, the large genetic clusters were determined to have been simultaneously exchanged by many S. aureus prophages and some Staphylococcus temperate phages proposed earlier as potential therapeutic candidates (in their native or modified state). The above genetic clusters were found to encompass multiple genes encoding for various proteins, such as e.g., phage tail proteins, the capsid and scaffold proteins, holins, and transcriptional terminator proteins. CONCLUSIONS: It is suggested that phage-prophage interactions, mediated by LGT (including intergeneric recombination), can have a far-reaching impact on the co-evolutionary trajectories of industrial phages and their hosts especially when excessively present across microbially rich environments.


Assuntos
Prófagos , Recombinação Genética , Prófagos/genética , Campylobacter/virologia , Campylobacter/genética , Staphylococcus/virologia , Staphylococcus/genética , Transferência Genética Horizontal , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/classificação , Listeria/virologia , Listeria/genética , Salmonella/virologia , Salmonella/genética , Evolução Molecular , Bactérias/virologia , Bactérias/genética
13.
BMC Microbiol ; 24(1): 159, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724926

RESUMO

The Hyphomicrobiales bacterial order (previously Rhizobiales) exhibits a wide range of lifestyle characteristics, including free-living, plant-association, nitrogen-fixing, and association with animals (Bartonella and Brucella). This study explores the diversity and evolutionary strategies of bacteriophages within the Hyphomicrobiales order, comparing animal-associated (AAB) with non-animal-associated bacteria (NAAB). We curated 560 high-quality complete genomes of 58 genera from this order and used the PHASTER server for prophage annotation and classification. For 19 genera with representative genomes, we curated 96 genomes and used the Defense-Finder server to summarize the type of anti-phage systems (APS) found in this order. We analyzed the genetic repertoire and length distributions of prophages, estimating evolutionary rates and comparing intact, questionable, and incomplete prophages in both groups. Analyses of best-fit parameters and bootstrap sensitivity were used to understand the evolutionary processes driving prophage gene content. A total of 1860 prophages distributed in Hyphomicrobiales were found, 695 in AAB and 1165 in the NAAB genera. The results revealed a similar number of prophages per genome in AAB and NAAB and a similar length distribution, suggesting shared mechanisms of genetic acquisition of prophage genes. Changes in the frequency of specific gene classes were observed between incomplete and intact prophages, indicating preferential loss or enrichment in both groups. The analysis of best-fit parameters and bootstrap sensitivity tests indicated a higher selection coefficient, induction rate, and turnover in NAAB genomes. We found 68 types of APS in Hyphomicrobiales; restriction modification (RM) and abortive infection (Abi) were the most frequent APS found for all Hyphomicrobiales, and within the AAB group. This classification of APS showed that NAAB genomes have a greater diversity of defense systems compared to AAB, which could be related to the higher rates of prophage induction and turnover in the latter group. Our study provides insights into the distributions of both prophages and APS in Hyphomicrobiales genomes, demonstrating that NAAB carry more defense systems against phages, while AAB show increased prophage stability and an increased number of incomplete prophages. These results suggest a greater role for domesticated prophages within animal-associated bacteria in Hyphomicrobiales.


Assuntos
Evolução Molecular , Genoma Bacteriano , Prófagos , Prófagos/genética , Animais , Genoma Bacteriano/genética , Filogenia , Genoma Viral/genética , Bactérias/virologia , Bactérias/genética , Bactérias/classificação , Variação Genética
14.
Microb Pathog ; 188: 106538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184177

RESUMO

Because of uncontrolled use of antibiotics, emergence of multidrug-resistant Shigella species poses a huge potential of zoonotic transfer from poultry sector. With increasing resistance to current antibiotics, there is a critical need to explore antibiotic alternatives. Using a Shigella flexneri reference strain, we isolated a novel fPSFA phage after inducing with mitomycin C. The phage was found to be stable for wide ranges of temperature -20 °C-65 °C and pH 3 to 11. fPSFA shows a latent period that ranges from 20 to 30 min and generation times of 50-60 min. The genome analysis of phage reveals two major contigs of 23788 bp and 23285 bp with 50.16 % and 39.33 % G + C content containing a total of 80 CDS and 2 tRNA genes. The phage belongs to Straboviridae family and lacks any virulence or antimicrobial resistance gene, thus making it a suitable candidate for treatment of drug-resistant infections. To confirm lytic ability of novel phage, we isolated 54 multidrug-resistant Shigella species from thirty-five poultry fecal samples that shows multiple antibiotic resistance index ranging from 0.15 to 0.75 (from 3 Indian states). The fPSFA showed lytic activity against multidrug-resistant Shigella isolates (73.08 %) (MARI≥0.50). The wide host ranges of fPSFA phage demonstrate its potential to be used as a biocontrol agent.


Assuntos
Bacteriófagos , Shigella , Animais , Prófagos/genética , Aves Domésticas , Genoma Viral , Bacteriófagos/genética , Genômica , Antibacterianos/farmacologia
15.
Biotechnol Bioeng ; 121(1): 317-328, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37747698

RESUMO

The lactic acid bacterium Limosilactobacillus reuteri (formerly Lactobacillus reuteri) is a desirable host for the production of 1,3-propanediol (1,3-PDO) from glycerol when 1,3-PDO is used in the food or cosmetic industry. However, the production is hindered by strain instability, causing cell lysis, and difficult gene manipulation. This study reveals that the stability of L. reuteri DSM 20016 and its 1,3-PDO production, especially in the alcohol dehydrogenases (ADHs)-deletion mutants, are greatly enhanced after the deletion of two prophages (Φ3 and Φ4) present in the L. reuteri's chromosome. The resulting phage-free and ADHs-deletion mutant could produce >825 mM 1,3-PDO in 48 h without cell lysis at the theoretical maximum yield on glucose of ~2 mol/mol. Compared to the wild-type strain, the mutant exhibited a 45.2% increase in 1,3-PDO production titer and a 2.1-fold increase in yield. In addition, this study reports that the transformation efficiency of L. reuteri Δadh2Δadh6 mutant strains were greatly enhanced by >300-fold after the deletion of prophage Φ3, probably due to the removal of a restriction-modification (RM) system which resides in the phage genome. With improved stability and higher transformation efficiency, recombinant L. reuteri DSM 20016 Δadh2Δadh6ΔΦ3ΔΦ4 can be a more reliable and amenable host for industrial applications.


Assuntos
Bacteriófagos , Limosilactobacillus reuteri , Prófagos/genética , Limosilactobacillus reuteri/genética , Propilenoglicóis , Propilenoglicol , Glicerol , Álcool Desidrogenase/genética
16.
Arch Microbiol ; 206(7): 336, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954047

RESUMO

Wild-type Lactococcus lactis strain LAC460 secretes prophage-encoded bacteriocin-like lysin LysL, which kills some Lactococcus strains, but has no lytic effect on the producer. LysL carries two N-terminal enzymatic active domains (EAD), and an unknown C-terminus without homology to known domains. This study aimed to determine whether the C-terminus of LysL carries a cell wall binding domain (CBD) for target specificity of LysL. The C-terminal putative CBD region of LysL was fused with His-tagged green fluorescent protein (HGFPuv). The HGFPuv_CBDlysL gene fusion was ligated into the pASG-IBA4 vector, and introduced into Escherichia coli. The fusion protein was produced and purified with affinity chromatography. To analyse the binding of HGFPuv_CBDLysL to Lactococcus cells, the protein was mixed with LysL-sensitive and LysL-resistant strains, including the LysL-producer LAC460, and the fluorescence of the cells was analysed. As seen in fluorescence microscope, HGFPuv_CBDLysL decorated the cell surface of LysL-sensitive L. cremoris MG1614 with green fluorescence, whereas the resistant L. lactis strains LM0230 and LAC460 remained unfluorescent. The fluorescence plate reader confirmed the microscopy results detecting fluorescence only from four tested LysL-sensitive strains but not from 11 tested LysL-resistant strains. Specific binding of HGFPuv_CBDLysL onto the LysL-sensitive cells but not onto the LysL-resistant strains indicates that the C-terminus of LysL contains specific CBD. In conclusion, this report presents experimental evidence of the presence of a CBD in a lactococcal phage lysin. Moreover, the inability of HGFPuv_CBDLysL to bind to the LysL producer LAC460 may partly explain the host's resistance to its own prophage lysin.


Assuntos
Bacteriocinas , Parede Celular , Lactococcus lactis , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Parede Celular/metabolismo , Bacteriocinas/metabolismo , Bacteriocinas/genética , Bacteriocinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Ligação Proteica
17.
Vet Res ; 55(1): 37, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532498

RESUMO

In the last decade, prophages that possess the ability of lysogenic transformation have become increasingly significant. Their transfer and subsequent activity in the host have a significant impact on the evolution of bacteria. Here, we investigate the role of prophage phi456 with high spontaneous induction in the bacterial genome of Avian pathogenic Escherichia coli (APEC) DE456. The phage particles, phi456, that were released from DE456 were isolated, purified, and sequenced. Additionally, phage particles were no longer observed either during normal growth or induced by nalidixic acid in DE456Δphi456. This indicated that the released phage particles from DE456 were only phi456. We demonstrated that phi456 contributed to biofilm formation through spontaneous induction of the accompanying increase in the eDNA content. The survival ability of DE456Δphi456 was decreased in avian macrophage HD11 under oxidative stress and acidic conditions. This is likely due to a decrease in the transcription levels of three crucial genes-rpoS, katE, and oxyR-which are needed to help the bacteria adapt to and survive in adverse environments. It has been observed through animal experiments that the presence of phi456 in the DE456 genome enhances colonization ability in vivo. Additionally, the number of type I fimbriae in DE456Δphi456 was observed to be reduced under transmission electron microscopy when compared to the wild-type strain. The qRT-PCR results indicated that the expression levels of the subunit of I fimbriae (fimA) and its apical adhesin (fimH) were significantly lower in DE456Δphi456. Therefore, it can be concluded that phi456 plays a crucial role in helping bacterial hosts survive in unfavorable conditions and enhancing the colonization ability in DE456.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Animais , Escherichia coli/genética , Prófagos/genética , Galinhas/microbiologia , Adesinas Bacterianas/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária
18.
Environ Sci Technol ; 58(29): 13000-13009, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38980166

RESUMO

Natural and chemically modified polysaccharides are extensively employed across a wide array of industries, leading to their prevalence in the waste streams of industrialized societies. With projected increasing demand, a pressing challenge is to swiftly assess and predict their biodegradability to inform the development of new sustainable materials. In this study, we developed a scalable method to evaluate polysaccharide breakdown by measuring microbial growth and analyzing microbial genomes. Our approach, applied to polysaccharides with various structures, correlates strongly with well-established regulatory methods based on oxygen demand. We show that modifications to the polysaccharide structure decreased degradability and favored the growth of microbes adapted to break down chemically modified sugars. More broadly, we discovered two main types of microbial communities associated with different polysaccharide structures─one dominated by fast-growing microbes and another by specialized degraders. Surprisingly, we were able to predict biodegradation rates based only on two genomic features that define these communities: the abundance of genes related to rRNA (indicating fast growth) and the abundance of glycoside hydrolases (enzymes that break down polysaccharides), which together predict nearly 70% of the variation in polysaccharide breakdown. This suggests a trade-off, whereby microbes are either adapted for fast growth or for degrading complex polysaccharide chains, but not both. Finally, we observe that viral elements (prophages) encoded in the genomes of degrading microbes are induced in easily degradable polysaccharides, leading to complex dynamics in biomass accumulation during degradation. In summary, our work provides a practical approach for efficiently assessing polymer degradability and offers genomic insights into how microbes break down polysaccharides.


Assuntos
Biodegradação Ambiental , Polissacarídeos , Polissacarídeos/metabolismo , Genômica
19.
Appl Microbiol Biotechnol ; 108(1): 299, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619619

RESUMO

A novel temperate phage, named Hesat, was isolated by the incubation of a dairy strain of Staphylococcus aureus belonging to spa-type t127 with either bovine or ovine milk. Hesat represents a new species of temperate phage within the Phietavirus genus of the Azeredovirinae subfamily. Its genome has a length of 43,129 bp and a GC content of 35.11% and contains 75 predicted ORFs, some of which linked to virulence. This includes (i) a pathogenicity island (SaPln2), homologous to the type II toxin-antitoxin system PemK/MazF family toxin; (ii) a DUF3113 protein (gp30) that is putatively involved in the derepression of the global repressor Stl; and (iii) a cluster coding for a PVL. Genomic analysis of the host strain indicates Hesat is a resident prophage. Interestingly, its induction was obtained by exposing the bacterium to milk, while the conventional mitomycin C-based approach failed. The host range of phage Hesat appears to be broad, as it was able to lyse 24 out of 30 tested S. aureus isolates. Furthermore, when tested at high titer (108 PFU/ml), Hesat phage was also able to lyse a Staphylococcus muscae isolate, a coagulase-negative staphylococcal strain. KEY POINTS: • A new phage species was isolated from a Staphylococcus aureus bovine strain. • Pathogenicity island and PVL genes are encoded within phage genome. • The phage is active against most of S. aureus strains from both animal and human origins.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Humanos , Animais , Ovinos , Staphylococcus aureus/genética , Genômica , Leite
20.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244443

RESUMO

Single-stranded DNA phages of the family Microviridae have fundamentally different evolutionary origins and dynamics than the more frequently studied double-stranded DNA phages. Despite their small size (around 5 kb), which imposes extreme constraints on genomic innovation, they have adapted to become prominent members of viromes in numerous ecosystems and hold a dominant position among viruses in the human gut. We show that multiple, divergent lineages in the family Microviridae have independently become capable of lysogenizing hosts and have convergently developed hypervariable regions in their DNA pilot protein, which is responsible for injecting the phage genome into the host. By creating microviruses with combinations of genomic segments from different phages and infecting Escherichia coli as a model system, we demonstrate that this hypervariable region confers the ability of temperate Microviridae to prevent DNA injection and infection by other microviruses. The DNA pilot protein is present in most microviruses, but has been recruited repeatedly into this additional role as microviruses altered their lifestyle by evolving the ability to integrate in bacterial genomes, which linked their survival to that of their hosts. Our results emphasize that competition between viruses is a considerable and often overlooked source of selective pressure, and by producing similar evolutionary outcomes in distinct lineages, it underlies the prevalence of hypervariable regions in the genomes of microviruses and perhaps beyond.


Assuntos
Microvirus/fisiologia , Superinfecção/virologia , Proteínas Virais/química , DNA Viral/metabolismo , Escherichia coli/virologia , Imunidade , Filogenia , Prófagos/fisiologia , Superinfecção/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA