Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Funct Integr Genomics ; 22(6): 1403-1410, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36109405

RESUMO

Knowledgebase for rice sheath blight information (KRiShI) is a manually curated user-friendly knowledgebase for rice sheath blight (SB) disease that allows users to efficiently mine, visualize, search, benchmark, download, and update meaningful data and information related to SB using its easy and interactive interface. KRiShI collects and integrates widely scattered and unstructured information from various scientific literatures, stores it under a single window, and makes it available to the community in a user-friendly manner. From basic information, best management practices, host resistance, differentially expressed genes, proteins, metabolites, resistance genes, pathways, and OMICS scale experiments, KRiShI presents these in the form of easy and comprehensive tables, diagrams, and pictures. The "Search" tab allows users to verify if their input rice gene id(s) are Rhizoctonia solani (R. solani) responsive and/or resistant. KRiShI will serve as a valuable resource for easy and quick access to data and information related to rice SB disease for both the researchers and the farmers. To encourage community curation a submission facility is made available. KRiShI can be found at http://www.tezu.ernet.in/krishi .


Assuntos
Oryza , Oryza/genética , Doenças das Plantas/genética , Bases de Conhecimento
2.
Planta ; 250(5): 1505-1520, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31332521

RESUMO

MAIN CONCLUSION: Our study demonstrates that simultaneous overexpression of RGB1 and RGG1 genes provides multiple stress tolerance in rice by inducing stress responsive genes and better management of ROS scavenging/photosynthetic machineries. The heterotrimeric G-proteins act as signalling molecules and modulate various cellular responses including stress tolerance in eukaryotes. The gamma (γ) subunit of rice G-protein (RGG1) was earlier reported to promote salinity stress tolerance in rice. In the present study, we report that a rice gene-encoding beta (ß) subunit of G-protein (RGB1) gets upregulated during both biotic (upon a necrotrophic fungal pathogen, Rhizoctonia solani infection) and drought stresses. Marker-free transgenic IR64 rice lines that simultaneously overexpress both RGB1 and RGG1 genes under CaMV35S promoter were raised. The overexpressing (OE) lines showed enhanced tolerance to R. solani infection and salinity/drought stresses. Several defense marker genes including OsMPK3 were significantly upregulated in the R. solani-infected OE lines. We also found the antioxidant machineries to be upregulated during salinity as well as drought stress in the OE lines. Overall, the present study provides evidence that concurrent overexpression of G-protein subunits (RGG1 and RGB1) impart multiple (both biotic and abiotic) stress tolerance in rice which could be due to the enhanced expression of stress-marker genes and better management of reactive oxygen species (ROS)-scavenging/photosynthetic machinery. The current study suggests an improved approach for simultaneous improvement of biotic and abiotic stress tolerance in rice which remains a major challenge for its sustainable cultivation.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Doenças das Plantas/imunologia , Espécies Reativas de Oxigênio/metabolismo , Rhizoctonia/fisiologia , Secas , Proteínas de Ligação ao GTP/genética , Expressão Gênica , Oryza/imunologia , Oryza/fisiologia , Fotossíntese , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Salinidade , Tolerância ao Sal , Estresse Fisiológico
3.
Rice (N Y) ; 17(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170415

RESUMO

Reactive oxygen species (ROS) act as a group of signaling molecules in rice functioning in regulation of development and stress responses. Respiratory burst oxidase homologues (Rbohs) are key enzymes in generation of ROS. However, the role of the nine Rboh family members was not fully understood in rice multiple disease resistance and yield traits. In this study, we constructed mutants of each Rboh genes and detected their requirement in rice multiple disease resistance and yield traits. Our results revealed that mutations of five Rboh genes (RbohA, RbohB, RbohE, RbohH, and RbohI) lead to compromised rice blast disease resistance in a disease nursery and lab conditions; mutations of five Rbohs (RbohA, RbohB, RbohC, RbohE, and RbohH) result in suppressed rice sheath blight resistance in a disease nursery and lab conditions; mutations of six Rbohs (RbohA, RbohB, RbohC, RbohE, RbohH and RbohI) lead to decreased rice leaf blight resistance in a paddy yard and ROS production induced by PAMPs and pathogen. Moreover, all Rboh genes participate in the regulation of rice yield traits, for all rboh mutants display one or more compromised yield traits, such as panicle number, grain number per panicle, seed setting rate, and grain weight, resulting in reduced yield per plant except rbohb and rbohf. Our results identified the Rboh family members involved in the regulation of rice resistance against multiple pathogens that caused the most serious diseases worldwide and provide theoretical supporting for breeding application of these Rbohs to coordinate rice disease resistance and yield traits.

4.
Front Plant Sci ; 15: 1348257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414644

RESUMO

Rice sheath blight is a fungal disease caused mainly by Rhizoctonia solani AG1-IA. Toxins are a major pathogenic factor of R. solani, and some studies have reported their toxin components; however, there is no unified conclusion. In this study, we reported the toxin components and their targets that play a role in R. solani AG1-IA. First, toxins produced by R. solani AG1-IA were examined. Several important phytotoxins, including benzoic acid (BZA), 5-hydroxymethyl-2-furanic aid (HFA), and catechol (CAT), were identified by comparative analysis of secondary metabolites from AG1-IA, AG1-IB, and healthy rice. Follow-up studies have shown that the toxin components of this fungus can rapidly disintegrate the biofilm structure while maintaining the content of host plant membrane components, thereby affecting the organelles, which may also explain the lack of varieties highly resistant to sheath blight.

5.
Genes (Basel) ; 15(7)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39062698

RESUMO

Sheath blight (ShB) is the most serious disease of rice (Oryza sativa L.), caused by the soil-borne fungus Rhizoctonia solani Kühn (R. solani). It poses a significant threat to global rice productivity, resulting in approximately 50% annual yield loss. Managing ShB is particularly challenging due to the broad host range of the pathogen, its necrotrophic nature, the emergence of new races, and the limited availability of highly resistant germplasm. In this study, we conducted QTL mapping using an F2 population derived from a cross between a partially resistant accession (IRGC81941A) of Oryza nivara and the susceptible rice cultivar Punjab rice 121 (PR121). Our analysis identified 29 QTLs for ShB resistance, collectively explaining a phenotypic variance ranging from 4.70 to 48.05%. Notably, a cluster of four QTLs (qRLH1.1, qRLH1.2, qRLH1.5, and qRLH1.8) on chromosome 1 consistently exhibit a resistant response against R. solani. These QTLs span from 0.096 to 420.1 Kb on the rice reference genome and contain several important genes, including Ser/Thr protein kinase, auxin-responsive protein, protease inhibitor/seed storage/LTP family protein, MLO domain-containing protein, disease-responsive protein, thaumatin-like protein, Avr9/Cf9-eliciting protein, and various transcription factors. Additionally, simple sequence repeats (SSR) markers RM212 and RM246 linked to these QTLs effectively distinguish resistant and susceptible rice cultivars, showing great promise for marker-assisted selection programs. Furthermore, our study identified pre-breeding lines in the advanced backcrossed population that exhibited superior agronomic traits and sheath blight resistance compared to the recurrent parent. These promising lines hold significant potential for enhancing the sheath blight resistance in elite cultivars through targeted improvement efforts.


Assuntos
Mapeamento Cromossômico , Resistência à Doença , Oryza , Doenças das Plantas , Locos de Características Quantitativas , Rhizoctonia , Oryza/genética , Oryza/microbiologia , Oryza/imunologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Rhizoctonia/patogenicidade , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Fenótipo , Melhoramento Vegetal/métodos
6.
Pest Manag Sci ; 80(8): 3776-3785, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38482986

RESUMO

BACKGROUND: The discovery of agricultural fungicide candidates from natural products is one of the key strategies for developing environment friendly agricultural fungicides with high efficiency, high selectivity and unique modes-of-action. Based on previous work, a series of novel α-methylene-γ-butyrolactone (MBL) derivatives containing benzothiophene moiety were designed and synthesized. RESULTS: The majority of the proposed compounds displayed moderate to considerable antifungal efficacy against the tested pathogenic fungi and oomycetes, some exhibiting broad spectrum antifungal activity. Notably, compounds 2 (3-F-Ph) and 7 (4-Cl-Ph) showed excellent antifungal activity against Rhizoctonia with half maximal effective concentration (EC50) values of 0.94 and 0.99 mg L-1, respectively, comparable to the commercial fungicide tebuconazole (EC50 = 0.96 mg L-1), and also displayed significant inhibitory effects against V alsa mali with EC50 values of 2.26 and 1.67 mg L-1, respectively - better than famoxadone and carabrone. The in vivo protective and curative effects against R. solani of compound 2 were 57.2% and 53.7% at 100 mg L-1, respectively, which were equivalent to tebuconazole (51.6% and 52.4%). Further investigations found that compound 2 altered the ultrastructure of R. solani cell, significantly increased the relative conductivity of the cells, and reduced the activity of complex III in a dose-dependent manner. Molecular docking results showed that compound 2 matched well with the Qo pocket. CONCLUSION: The results revealed that MBL derivatives containing benzothiophene moiety are promising antifungal candidates and provide a new backbone structure for further optimization of novel fungicides. © 2024 Society of Chemical Industry.


Assuntos
4-Butirolactona , Desenho de Fármacos , Fungicidas Industriais , Tiofenos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , 4-Butirolactona/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Tiofenos/farmacologia , Tiofenos/química , Tiofenos/síntese química , Relação Estrutura-Atividade , Rhizoctonia/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Fungos/efeitos dos fármacos
7.
Pest Manag Sci ; 79(2): 655-665, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36223125

RESUMO

BACKGROUND: The use of fungicides to protect crops from diseases is an effective method, and novel environmentally friendly plant-derived fungicides with enhanced performance and low toxicity are urgent requirements for sustainable agriculture. RESULTS: Two kinds of rosin-based acylhydrazone compounds were designed and prepared. Based on the antifungal activity assessment against Rhizoctonia solani, Fusarium oxysporum, Phytophthora capsici, Sclerotinia sclerotiorum, and Botrytis cinerea, acylhydrazone derivatives containing a thiophene ring were screened and showed an inhibitory effect on rice R. solani. Among them, Compound 4n, with an electron-withdrawing group on the benzene ring structure attached to the thiophene ring, showed optimal activity, and the EC50 value was 0.981 mg L-1 , which was lower than that of carbendazim. Furthermore, it was indicated that 4n could affect the mycelial morphology, cell membrane permeability and microstructure, cause the generation of reactive oxygen species in fungal cells, and damage the nucleus and mitochondrial physiological function, resulting in the cell death of R. solani. Meanwhile, Compound 4n exhibited a better therapeutic effect on in vivo rice plants. However, the induction activity of 4n on the defense enzyme in rice leaf sheaths showed that 4n stimulates the initial resistance of rice plants by removing active oxygen, thereby protecting the cell membrane or enhancing the strength of the cell wall. Through the quantitative structure-activity relationship study, the quantitative chemical and electrostatic descriptors significantly affect the binding of 4n with the receptor, which improves its antifungal activity. CONCLUSION: This study provides a basis for exploiting potential rosin-based fungicides in promoting sustainable crop protection. © 2022 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Oryza , Antifúngicos/farmacologia , Antifúngicos/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Relação Estrutura-Atividade , Proteção de Cultivos , Rhizoctonia , Relação Quantitativa Estrutura-Atividade , Tiofenos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
8.
Plant Physiol Biochem ; 196: 520-530, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36764267

RESUMO

Sheath blight disease of rice caused by a soil-borne fungal pathogen Rhizoctonia solani AG1-IA is one of the major threats to rice production globally. During host-pathogen interactions, reactive oxygen species (ROS) play an important role in pathogen virulence and plant defense. For example, necrotrophic pathogens induce ROS production to damage host cells, whereas the host can incite ROS to kill the pathogen. From the host perspective, it is essential to understand how the antioxidant machinery maintains a delicate balance of ROS to protect itself from its lethal effects. Here, we investigated the pathogen-induced accumulation of ROS and implicated damage in two rice genotypes (PR114, susceptible; ShB, moderately tolerant) varying in the level of susceptibility to R. solani AG1-IA. Compared to PR114, ShB exhibited a better antioxidant response and reasonably lesser oxidative damage. Further, we observed elevated levels of jasmonic acid (JA) in ShB, which was otherwise decreased in PR114 in response to pathogen infection. As depicted, an elevated level of JA was in agreement with the expression profiles of genes involved in its biosynthesis and signaling. To further ascertain if the heightened antioxidant response is JA-dependent or independent, methyl jasmonate (MeJA) was exogenously applied to PR114, and antioxidant response in terms of gene expression, enzyme activities, and oxidative damage was studied in R. solani infected samples. Surprisingly, the exogenous application of MeJA complemented the antioxidant response and reduced oxidative damage in PR114, thus suggesting that the antioxidant defense system is under transcriptional control of JA.


Assuntos
Oryza , Espécies Reativas de Oxigênio , Oryza/genética , Antioxidantes , Homeostase , Doenças das Plantas/microbiologia
9.
Genes (Basel) ; 14(9)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37761813

RESUMO

Leaf sheath blight disease (SB) of rice caused by the soil-borne fungus Rhizoctonia solani results in 10-30% global yield loss annually and can reach 50% under severe outbreaks. Many disease resistance genes and receptor-like kinases (RLKs) are recruited early on by the host plant to respond to pathogens. Wall-associated receptor kinases (WAKs), a subfamily of receptor-like kinases, have been shown to play a role in fungal defense. The rice gene WAK91 (OsWAK91), co-located in the major SB resistance QTL region on chromosome 9, was identified by us as a candidate in defense against rice sheath blight. An SNP mutation T/C in the WAK91 gene was identified in the susceptible rice variety Cocodrie (CCDR) and the resistant line MCR010277 (MCR). The consequence of the resistant allele C is a stop codon loss, resulting in an open reading frame with extra 62 amino acid carrying a longer protein kinase domain and additional phosphorylation sites. Our genotype and phenotype analysis of the parents CCDR and MCR and the top 20 individuals of the double haploid SB population strongly correlate with the SNP. The susceptible allele T is present in the japonica subspecies and most tropical and temperate japonica lines. Multiple US commercial rice varieties with a japonica background carry the susceptible allele and are known for SB susceptibility. This discovery opens the possibility of introducing resistance alleles into high-yielding commercial varieties to reduce yield losses incurred by the sheath blight disease.


Assuntos
Infecções por Moraxellaceae , Oryza , Humanos , Códon sem Sentido , Oryza/genética , Resistência à Doença/genética , Alelos , Cromossomos Humanos Par 9
10.
Microbiol Res ; 266: 127219, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36279646

RESUMO

The necrotrophic phytopathogen Rhizoctonia solani (R. solani) causes disease in many plant species. This fungal genome encodes abundant small cysteine-rich (SCR)-secreted proteins in R. solani that may induce pathogenesis. To test their molecular functions, we introduced 10 SCR-secreted protein genes from R. solani into tobacco leaves via agroinfiltration. Consequently, we identified RsMf8HN, a novel SCR protein that triggers cell death and an oxidative burst in tobacco. RsMf8HN comprises 182 amino acids (aa), including a signal peptide (SP) of 17aa, and the protein has unique features: it is orthologous to an allergen protein Mal f 8 occurring in Malassezia species, and possesses a high glycine and serine content. RsMf8HN is coded in a genomic location along with its paralogues and a few other effector candidates. The elicitation of plant immunity by RsMf8HN was dependent on HSP90 and SGT1. RsMf8HN was translocated to multiple locations within the host cells: i.e., nuclei, chloroplasts, and plasma membranes. We confirmed the occurrence of in vivo cross-interactions of RsMf8HN with a rice molecule, the heavy metal-associated isoprenylated plant protein OsHIPP28, which is a protein related to the disease susceptibility factor Pi21. In summary, our results suggest that RsMf8HN is a potential effector that enables necrotrophic phytopathogens to interfere with host plant immunity.


Assuntos
Oryza , Oryza/microbiologia , Doenças das Plantas/microbiologia , Rhizoctonia/genética , Plantas , Imunidade Vegetal/genética
11.
Genes (Basel) ; 13(12)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36553683

RESUMO

Rhizoctonia solani is a species complex composed of many genetically diverse anastomosis groups (AG) and their subgroups. It causes economically important diseases of soybean worldwide. However, the global genetic diversity and distribution of R. solani AG associated with soybean are unknown to date. In this study, the global genetic diversity and distribution of AG associated with soybean were investigated based on rDNA-ITS sequences deposited in GenBank and published literature. The most prevalent AG, was AG-1 (40%), followed by AG-2 (19.13%), AG-4 (11.30%), AG-7 (10.43%), AG-11 (8.70%), AG-3 (5.22%) and AG-5 (3.48%). Most of the AG were reported from the USA and Brazil. Sequence analysis of internal transcribed spacers of ribosomal DNA separated AG associated with soybean into two distinct clades. Clade I corresponded to distinct subclades containing AG-2, AG-3, AG-5, AG-7 and AG-11. Clade II corresponded to subclades of AG-1 subgroups. Furthermore, AG and/or AG subgroups were in close proximity without corresponding to their geographical origin. Moreover, AG or AG subgroups within clade or subclades shared higher percentages of sequence similarities. The principal coordinate analysis also supported the phylogenetic and genetic diversity analyses. In conclusion, AG-1, AG-2, and AG-4 were the most prevalent AG in soybean. The clade or subclades corresponded to AG or AG subgroups and did not correspond to the AG's geographical origin. The information on global genetic diversity and distribution will be helpful if novel management measures are to be developed against soybean diseases caused by R. solani.


Assuntos
Variação Genética , Glycine max , Variação Genética/genética , Glycine max/genética , Filogenia , Genética Populacional , DNA Ribossômico
12.
Front Microbiol ; 13: 884469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694310

RESUMO

Rhizoctonia solani is a pathogen that causes considerable harm to plants worldwide. In the absence of hosts, R. solani survives in the soil by forming sclerotia, and management methods, such as cultivar breeding, crop rotations, and fungicide sprays, are insufficient and/or inefficient in controlling R. solani. One of the most challenging problems facing agriculture in the twenty-first century besides with the impact of global warming. Environmentally friendly techniques of crop production and improved agricultural practices are essential for long-term food security. Trichoderma spp. could serve as an excellent example of a model fungus to enhance crop productivity in a sustainable way. Among biocontrol mechanisms, mycoparasitism, competition, and antibiosis are the fundamental mechanisms by which Trichoderma spp. defend against R. solani, thereby preventing or obstructing its proliferation. Additionally, Trichoderma spp. induce a mixed induced systemic resistance (ISR) or systemic acquired resistance (SAR) in plants against R. solani, known as Trichoderma-ISR. Stimulation of every biocontrol mechanism involves Trichoderma spp. genes responsible for encoding secondary metabolites, siderophores, signaling molecules, enzymes for cell wall degradation, and plant growth regulators. Rhizoctonia solani biological control through genes of Trichoderma spp. is summarized in this paper. It also gives information on the Trichoderma-ISR in plants against R. solani. Nonetheless, fast-paced current research on Trichoderma spp. is required to properly utilize their true potential against diseases caused by R. solani.

13.
Front Genet ; 13: 869465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35706449

RESUMO

Sheath blight (ShB) disease, caused by Rhizoctonia solani, is one of the major biotic stress-oriented diseases that adversely affect the rice productivity worldwide. However, the regulatory mechanisms are not understood yet comprehensively. In the current study, we had investigated the potential roles of miRNAs in economically important indica rice variety Pusa Basmati-1 upon R. solani infection by carrying out in-depth, high-throughput small RNA sequencing with a total data size of 435 million paired-end raw reads from rice leaf RNA samples collected at different time points. Detailed data analysis revealed a total of 468 known mature miRNAs and 747 putative novel miRNAs across all the libraries. Target prediction and Gene Ontology functional analysis of these miRNAs were found to be unraveling various cellular, molecular, and biological functions by targeting various plant defense-related genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to validate the miRNAs and their putative target genes. Out of the selected miRNA-specific putative target genes, miR395a binding and its cleavage site on pentatricopeptide were determined by 5' RACE-PCR. It might be possible that R. solani instigated chloroplast degradation by modulating the pentatricopeptide which led to increased susceptibility to fungal infection.

14.
Curr Res Microb Sci ; 3: 100109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35243446

RESUMO

There is neither resistant rice cultivar nor any control measure against Rhizoctonia solani AG-1 IA (RS), causal of sheath blight and a major threat to global rice production. Rice is a host and Arabidopsis is a nonhost with underlying nonhost resistance (NHR) gene which is largely untested. Using approaches of forward genetics and tools, cytology, and molecular biology, we identified homozygous mutants in Arabidopsis, mapped the NHR gene, and functionally characterized it in response to RS. Rss1 was mapped on Ch 4 between JAERI18 and Ch4_9.18 (844.6 Kb) and identified IMPORTIN ALPHA 2 as the candidate RSS1 gene. We found that breach of immunity in rss1 by RS activates defense responses whereas photosynthetic pigment biosynthesis and developmental processes are negatively regulated. In addition, a gradual decrease in PR1 by 3 dpi revealed that RSS1 positively regulated early SA-mediated resistance. Whereas increased expression of PDF1.2 by 3 dpi supported switching to necrotrophy, SA-mediated defense in Col-0 leading to immune response. Enhanced expression of ATG8a in rss1 supported autophagic cell death. IMPA2, IMPA1, and RAN1 function together to provide NHR against RS. These findings demonstrate that IMPA2 provides NHR against RS in Col-0 that evoke SA-mediated early immunity with boulevard for potential biotechnological application.

15.
J Fungi (Basel) ; 7(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803321

RESUMO

Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops, including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs) have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore, Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and 1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani damping-off and minimize the severity of root rot disease. The most effective treatment method is found when soaking and spraying were used with each other followed by spraying and then soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases in Vicia faba as well as plant growth inducer.

16.
Front Microbiol ; 12: 684923, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497591

RESUMO

The necrotrophic phytopathogen Rhizoctonia solani (R. solani) is a fungus that causes disease in a wide range of plant species. Fungal genomes encode abundant, small cysteine-rich (SCR) secreted proteins, and the probable importance of these to pathogenesis has been highlighted in various pathogens. However, there are currently no reports of an R. solani SCR-secreted protein with evidential elicitor activity. In this study, the molecular function of 10 SCR-secreted protein genes from R. solani was explored by agroinfiltration into Nicotiana benthamiana (N. benthamiana) leaves, and a novel SCR protein RsSCR10 was identified that triggered cell death and oxidative burst in tobacco. RsSCR10 comprises 84 amino acids, including a signal peptide (SP) of 19 amino acids that is necessary for RsSCR10 to induce tobacco cell death. Elicitation of cell death by RsSCR10 was dependent on Hsp90 but not on RAR1, proving its effector activity. Two cysteine residues have important effects on the function of RsSCR10 in inducing cell death. Furthermore, RsSCR10 showed cross-interaction with five rice molecules, and the inferred functions of these rice proteins suggest they are instrumental in how the host copes with adversity. Overall, this study demonstrates that RsSCR10 is a potential effector that has a critical role in R. solani AG1 IA-host interactions.

17.
Plant Pathol J ; 34(3): 218-235, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29887778

RESUMO

Plant growth promoting rhizobacteria and endophytic bacteria were isolated from different varieties of turmeric (Curcuma longa L.) from South India. Totally 50 strains representing, 30 PGPR and 20 endophytic bacteria were identified based on biochemical assays and 16S rDNA sequence analysis. The isolates were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric, by dual culture and liquid culture assays. Results revealed that only five isolates of PGPR and four endophytic bacteria showed more than 70% suppression of test pathogens in both assays. The SEM studies of interaction zone showed significant ultrastructural changes of the hyphae like shriveling, breakage and desication of the pathogens by PGPR B. cereus (RBac-DOB-S24) and endophyte P. aeruginosa (BacDOB-E19). Selected isolates showed multiple Plant growth promoting traits. The rhizome bacterization followed by soil application of B. cereus (RBacDOB-S24) showed lowest Percent Disease Incidence (PDI) of rhizome rot and leaf blight, 16.4% and 15.5% respectively. Similarly, P. aeruginosa (BacDOB-E19) recorded PDI of rhizome rot (17.5%) and leaf blight (17.7%). The treatment of these promising isolates exhibited significant increase in plant height and fresh rhizome yield/plant in comparison with untreated control under greenhouse condition. Thereby, these isolates can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.

18.
ACS Appl Bio Mater ; 1(6): 2062-2072, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34996268

RESUMO

Cationic polymers are prospective fungicidal agents for inhibiting plant diseases because of the controllability of their structure and properties. This study investigates the effect of the hydrophobic-hydrophilic balance on the antifungal activities of antimicrobial polymers against phytopathogenic fungi (Rhizoctonia solani Kühn AG-1(IA)), the pathogen of rice sheath blight (RShB). A series of polydimethylsiloxane-polymethacrylate block copolymers containing quaternary ammonium salts (PDMS-b-QPDMAEMA, labeled as SnQm; n and m represent 1000th of the molecular weight of the PDMS and QPDMAEMA chain, respectively) were synthesized via anionic ring-opening polymerization and atom transfer radical polymerization (ATRP). The abilities of the quaternary ammonium salts to adsorb onto the surface of R. solani sclerotia and permeate the R. solani sclerotia were investigated on the basis of static water contact angles and fluorescence labeling. The results indicated that the moderately hydrophobic PDMS chain helped stabilize the attachment of the hydrophilic QPDMAEMA chain and then help it penetrate the R. solani sclerotia. Its antifungal properties toward R. solani were characterized by determining its minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) and the inhibition rate of R. solani sclerotia germination. The hydrophobic PDMS chains had a significant influence on the antifungal activities of amphiphilic SnQm against R. solani sclerotia. This work highlights the prospective application of amphiphilic antimicrobial polymers as antifungal agents for inhibiting plant diseases.

19.
3 Biotech ; 8(10): 432, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30306001

RESUMO

Web blight/wet root rot caused by Rhizoctonia solani is one of the major constraints for mung bean (Vigna radiata) production. Growing of resistant varieties and use of biocontrol agents are the feasible options available to manage the disease. The present study was conducted to determine the variation in the expression of various defense-related genes in susceptible and resistant mung bean varieties in response to biocontrol agent Trichoderma virens and R. solani interactions. The primers were designed using sequences of defense-related genes, namely PR 10, epoxide hydrolase (EH), catalase and calmodulin available in NCBI database and evaluated against cDNA obtained from both susceptible and resistant mung bean plants at 1-4 days post-inoculation (dpi) with the test pathogen R. solani and biocontrol agent T. virens using conventional PCR and qPCR analyses. R. solani inoculation upregulated the mean expression of PR 10 and calmodulin in susceptible and resistant varieties, respectively, whereas downregulated in the rest of the treatments. Quantitative PCR analysis showed that except catalase in the susceptible variety, which is downregulated, the expression of PR 10, EH, catalase and calmodulin was upregulated in both resistant and susceptible varieties in response to T. virens alone and in the presence of R. solani. In general, the expression of PR 10 and calmodulin was highest at 1 dpi whereas EH and catalase expression were maximum at 4 dpi. The application of T. virens suppressed the development of disease in the presence of R. solani in both susceptible and resistant varieties with more pronounced effect in resistant variety. Thus, the application of biocontrol agent T. virens upregulated the expression of defense-related genes and reduced disease development.

20.
Plant Signal Behav ; 10(2): e988076, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25723847

RESUMO

Colonization of plant rhizosphere/roots by beneficial microorganisms (e.g. plant growth promoting rhizobacteria - PGPR, arbuscular mycorrhizal fungi - AMF) confers broad-spectrum resistance to virulent pathogens and is known as induced systemic resistance (ISR) and mycorrhizal-induced resistance (MIR). ISR or MIR, an indirect mechanism for biocontrol, involves complex signaling networks that are regulated by several plant hormones, the most important of which are salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). In the present study, we investigated if inoculation of potato plantlets with an AMF (Rhizophagus irregularis MUCL 41833) and a PGPR (Pseudomonas sp R41805) either alone or in combination, could elicit host defense response genes in the presence or absence of Rhizoctonia Solani EC-1, a major potato pathogen. RT-qPCR revealed the significant expression of ethylene response factor 3 (EFR3) in mycorrhized potato plantlets inoculated with Pseudomonas sp R41805 and also in mycorrhized potato plantlets inoculated with Pseudomonas sp R41805 and challenged with R. solani. The significance of ethylene response factors (ERFs) in pathogen defense has been well documented in the literature. The results of the present study suggest that the dual inoculation of potato with PGPR and AMF may play a part in the activation of plant systemic defense systems via ERF3.


Assuntos
Etilenos/metabolismo , Glomeromycota/fisiologia , Proteínas de Plantas/metabolismo , Pseudomonas/fisiologia , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia , Regulação da Expressão Gênica de Plantas , Micorrizas/fisiologia , Proteínas de Plantas/genética , Solanum tuberosum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA