Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 2): 118629, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490626

RESUMO

BACKGROUND: A knowledge gap exists regarding longitudinal assessment of personal radio-frequency electromagnetic field (RF-EMF) exposures globally. It is unclear how the change in telecommunication technology over the years translates to change in RF-EMF exposure. This study aims to evaluate longitudinal trends of micro-environmental personal RF-EMF exposures in Australia. METHODS: The study utilised baseline (2015-16) and follow-up (2022) data on personal RF-EMF exposure (88 MHz-6 GHz) measured across 18 micro-environments in Melbourne. Simultaneous quantile regression analysis was conducted to compare exposure data distribution percentiles, particularly median (P50), upper extreme value (P99) and overall exposure trends. RF-EMF exposures were compared across six exposure source types: mobile downlink, mobile uplink, broadcast, 5G-New Radio, Others and Total (of the aforementioned sources). Frequency-specific exposures measured at baseline and follow-up were compared. Total exposure across different groups of micro-environment types were also compared. RESULTS: For all micro-environmental data, total (median and P99) exposure levels did not significantly change at follow-up. Overall exposure trend of total exposure increased at follow-up. Mobile downlink contributed the highest exposure among all sources showing an increase in median exposure and overall exposure trend. Of seven micro-environment types, five of them showed total exposure levels (median and P99) and overall exposure trend increased at follow-up.


Assuntos
Campos Eletromagnéticos , Exposição Ambiental , Ondas de Rádio , Campos Eletromagnéticos/efeitos adversos , Ondas de Rádio/efeitos adversos , Humanos , Estudos Longitudinais , Vitória , Austrália
2.
Environ Res ; 246: 118124, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199478

RESUMO

A worldwide overview and analysis for the existing limits of human exposure to Radiofrequency Electromagnetic Fields (RF-EMF) is given in this paper. These reference levels have been established by different national and even regional governments, which can be based on the guidelines provided by the recommendations of the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the International Committee on Electromagnetic Safety of the Institute of Electrical and Electronics Engineers (IEEE), and even in the United States of the Federal Communications Commission (FCC), as well as, are based on the so-called precautionary principle. Explicit reference is made to the exposure limits adopted in countries or regions, such as Canada, Italy, Poland, Switzerland, China, Russia, France, and regions of Belgium (Brussels, Flanders, Wallonia), where the limits are much lower than the international standards. The limits are compared to a selected set of in-situ measurements. This clearly shows that the measured values are typically very small compared to the international standards but could be somewhat higher compared to the reduced limits. Based on this observation and the reasonable assumption that the sensitivity of people to Electromagnetic Fields (EMF) is the same everywhere (whole-body), we propose the idea to establish a worldwide reference limit for the general public, thus applicable in all countries, if the ICNIRP considers it appropriate. Research must continue to generate measurement data that demonstrate the levels of exposure to which we are really exposed, and with this, provide arguments to the organizations that established the guidelines, especially the ICNIRP, to evaluate whether the current limits are too much. High and can be modified when considered pertinent. To the best of our knowledge, at no time has the reference level for the general public been exceeded.


Assuntos
Campos Eletromagnéticos , Proteção Radiológica , Humanos , Exposição Ambiental/análise , Polônia , França , Ondas de Rádio/efeitos adversos
3.
Ecotoxicol Environ Saf ; 279: 116486, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820877

RESUMO

Human exposure to radiofrequency electromagnetic fields (RF-EMF) is restricted to prevent thermal effects in the tissue. However, at very low intensity exposure "non-thermal" biological effects, like oxidative stress, DNA or chromosomal aberrations, etc. collectively termed genomic-instability can occur after few hours. Little is known about chronic (years long) exposure with non-thermal RF-EMF. We identified two neighboring housing estates in a rural region with residents exposed to either relatively low (control-group) or relatively high (exposed-group) RF-EMF emitted from nearby mobile phone base stations (MPBS). 24 healthy adults that lived in their homes at least for 5 years volunteered. The homes were surveyed for common types of EMF, blood samples were tested for oxidative status, transient DNA alterations, permanent chromosomal damage, and specific cancer related genetic markers, like MLL gene rearrangements. We documented possible confounders, like age, sex, nutrition, life-exposure to ionizing radiation (X-rays), occupational exposures, etc. The groups matched well, age, sex, lifestyle and occupational risk factors were similar. The years long exposure had no measurable effect on MLL gene rearrangements and c-Abl-gene transcription modification. Associated with higher exposure, we found higher levels of lipid oxidation and oxidative DNA-lesions, though not statistically significant. DNA double strand breaks, micronuclei, ring chromosomes, and acentric chromosomes were not significantly different between the groups. Chromosomal aberrations like dicentric chromosomes (p=0.007), chromatid gaps (p=0.019), chromosomal fragments (p<0.001) and the total of chromosomal aberrations (p<0.001) were significantly higher in the exposed group. No potential confounder interfered with these findings. Increased rates of chromosomal aberrations as linked to excess exposure with ionizing radiation may also occur with non-ionizing radiation exposure. Biological endpoints can be informative for designing exposure limitation strategies. Further research is warranted to investigate the dose-effect-relationship between both, exposure intensity and exposure time, to account for endpoint accumulations after years of exposure. As established for ionizing radiation, chromosomal aberrations could contribute to the definition of protection thresholds, as their rate reflects exposure intensity and exposure time.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Instabilidade Genômica , Estresse Oxidativo , Humanos , Masculino , Feminino , Campos Eletromagnéticos/efeitos adversos , Alemanha , Adulto , Pessoa de Meia-Idade , Instabilidade Genômica/efeitos da radiação , Aberrações Cromossômicas , Exposição Ambiental , Ondas de Rádio/efeitos adversos , Dano ao DNA
4.
Environ Res ; 237(Pt 1): 116921, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598840

RESUMO

Mobile communication technology has evolved rapidly over the last ten years with a drastic increase in wireless data traffic and the deployment of new telecommunication technologies. The aim of this study was to evaluate the ambient radiofrequency electromagnetic field (RF-EMF) levels and temporal changes in various microenvironments in Switzerland in 2014 and 2021. We measured the ambient RF-EMF levels in V/m in the same 49 outdoor areas and in public transport in 2014 and 2021 using portable RF-EMF exposure meters carried in a backpack. The areas were selected to represent some typical types of microenvironments (e.g. urban city centres, suburban and rural areas). We calculated the summary statistics (mean, percentiles) in mW/m2 and converted back to V/m for each microenvironment. We evaluated the distribution and the variability of the ambient RF-EMF levels per microenvironment types in 2021. Finally, we compared the ambient RF-EMF mean levels in 2014 and 2021 using multilevel regression modelling. In outdoor areas, the average ambient RF-EMF mean levels per microenvironment in 2021 ranged from 0.19 V/m in rural areas to 0.43 V/m in industrial areas (overall mean: 0.27 V/m). In public transports, the mean levels were 0.27 V/m in buses, 0.33 V/m in trains and 0.36 V/m in trams. In 2021, mean levels across all outdoor areas were -0.022 V/m lower (95% confidence interval: -0.072, 0.030) than in 2014. Results from our comprehensive measurement study across Switzerland suggest that RF-EMF levels in public places have not significantly changed between 2014 and 2021 despite an 18-fold increase in mobile data transmission during that period. The absence of temporal changes may be owed to the shift to newer mobile communication technologies, which are more efficient.

5.
Sensors (Basel) ; 23(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050643

RESUMO

With the increasing use of wireless communication systems, assessment of exposure to radio-frequency electromagnetic field (RF-EMF) has now become very important due to the rise of public risk perception. Since people spend more than 70% of their daily time in indoor environments, including home, office, and car, the efforts devoted to indoor RF-EMF exposure assessment has also increased. However, assessment of indoor exposure to RF-EMF using a deterministic approach is challenging and time consuming task as it is affected by uncertainties due to the complexity of the indoor environment and furniture structure, existence of multiple reflection, refraction, diffraction and scattering, temporal variability of exposure, and existence of many obstructions with unknown dielectric properties. Moreover, it is also affected by the existence of uncontrolled factors that can influence the indoor RF-EMF exposure such as the constant movement of people and random movement of furniture and doors as people are working in the building. In this study, a statistical approach is utilized to characterize and model the total indoor RF-EMF down-link (DL) exposure from all cellular bands on each floor over the length of a wing since the significance of distance is very low between any two points on each floor in a wing and the variation of RF-EMF DL exposure is mainly influenced by the local indoor environment. Measurements were conducted in three buildings that are located within a few hundred meters vicinity of two base station sites supporting several cellular technologies (2G, 3G, 4G, and 5G). We apply the one-sample Kolmogorov-Smirnov test on the measurement data, and we prove that the indoor RF-EMF DL exposure on each floor over the length of a wing is a random process governed by a Gaussian distribution. We validate this proposition using leave-one-out cross validation technique. Consequently, we conclude that the indoor RF-EMF DL exposure on each floor over the length of a wing can be modeled by a Gaussian distribution and, therefore, can be characterized by the mean and the standard deviation parameters.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Humanos , Exposição Ambiental , Ondas de Rádio
6.
Sensors (Basel) ; 23(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992024

RESUMO

This paper compares different low-cost sensors that can measure (5G) RF-EMF exposure. The sensors are either commercially available (off-the-shelf Software Defined Radio (SDR) Adalm Pluto) or constructed by a research institution (i.e., imec-WAVES, Ghent University and Smart Sensor Systems research group (S³R), The Hague University of Applied Sciences). Both in-lab (GTEM cell) and in-situ measurements have been performed for this comparison. The in-lab measurements tested the linearity and sensitivity, which can then be used to calibrate the sensors. The in-situ testing confirmed that the low-cost hardware sensors and SDR can be used to assess the RF-EMF radiation. The variability between the sensors was 1.78 dB on average, with a maximum deviation of 5.26 dB. Values between 0.09 V/m and 2.44 V/m were obtained at a distance of about 50 m from the base station. These devices can be used to provide the general public and governments with temporal and spatial 5G electromagnetic field values.

7.
Sensors (Basel) ; 22(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366179

RESUMO

The ever-increasing use of wireless communication systems during the last few decades has raised concerns about the potential health effects of electromagnetic fields (EMFs) on humans. Safety limits and exposure assessment methods were developed and are regularly updated to mitigate health risks. Continuous radiofrequency EMF monitoring networks and in situ measurement campaigns provide useful information about environmental EMF levels and their variations over time and in different microenvironments. In this study, published data from the five largest monitoring networks and from two extensive in situ measurement campaigns in different European countries were gathered and processed. Median electric field values for monitoring networks across different countries lay in the interval of 0.67-1.51 V/m. The median electric field value across different microenvironments, as evaluated from in situ measurements, varied from 0.10 V/m to 1.42 V/m. The differences between networks were identified and mainly attributed to variations in population density. No significant trends in the temporal evolution of EMF levels were observed. The influences of parameters such as population density, type of microenvironment, and height of measurement on EMF levels were investigated.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Humanos , Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental/efeitos adversos , Ondas de Rádio/efeitos adversos , Europa (Continente)
8.
Sensors (Basel) ; 23(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616701

RESUMO

(1) Background: This work aims to assess human exposure to EMF due to two different wearable antennas tuned to two 5G bands. (2) Methods: The first one was centered in the lower 5G band, around f = 3.5 GHz, whereas the second one was tuned to the upper 5G band, at 26.5 GHz. Both antennas were positioned on the trunk of four simulated human models. The exposure assessment was performed by electromagnetic numerical simulations. Exposure levels were assessed by quantifying the specific absorption rate averaged on 10 g of tissue (SAR10g) and the absorbed power density (Sab), depending on the frequency of the wearable antenna. (3) Results: the higher exposure values that resulted were always mainly concentrated in a superficial area just below the antenna itself. In addition, these resulting distributions were narrowed around their peak values and tended to flatten toward lower values in farther anatomical body regions. All the exposure levels complied with ICNIRP guidelines when considering realistic input power. (4) Conclusions: This work highlights the importance of performing an exposure assessment when the antenna is placed on the human wearer, considering the growth of wearable technology and its wide variety of application, particularly regarding future 5G networks.


Assuntos
Campos Eletromagnéticos , Dispositivos Eletrônicos Vestíveis , Humanos , Ondas de Rádio
9.
Sensors (Basel) ; 22(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35270862

RESUMO

In an increasingly wireless world, spatiotemporal monitoring of the exposure to environmental radiofrequency (RF) electromagnetic fields (EMF) is crucial to appease public uncertainty and anxiety about RF-EMF. However, although the advent of smart city infrastructures allows for dense networks of distributed sensors, the costs of accurate RF sensors remain high, and dedicated RF monitoring networks remain rare. This paper describes a comprehensive study comprising the design of a low-cost RF-EMF sensor node capable of monitoring four frequency bands used by wireless telecommunications with an unparalleled temporal resolution, its application in a small-scale distributed sensor network consisting of both fixed (on building façades) and mobile sensor nodes (on postal vans), and the subsequent analysis of over a year of data between January 2019 and May 2020, during which slightly less than 10 million samples were collected. From the fixed nodes' results, the potential errors were determined that are induced when sampling at lower speeds (e.g., one sample per 15 min) and measuring for shorter periods of time (e.g., a few weeks), as well as an adequate resolution (30 min) for diurnal and weekly temporal profiles which sufficiently preserves short-term variations. Furthermore, based on the correlation between the sensors, an adequate density of 100 sensor nodes per km2 was deduced for future networks. Finally, the mobile sensor nodes were used to identify potential RF-EMF exposure hotspots in a previously unattainable area of more than 60 km2. In summary, through the analysis of a small number of RF-EMF sensor nodes (both fixed and mobile) in an urban area, this study offers invaluable insights applicable to future designs and deployments of distributed RF-EMF sensor networks.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Cidades , Exposição Ambiental/análise , Ondas de Rádio
10.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216321

RESUMO

Wound healing (WH) proceeds through four distinct phases: hemostasis, inflammation, proliferation, and remodeling. Impaired WH may be the consequence of the alteration of one of these phases and represents a significant health and economic burden to millions of individuals. Thus, new therapeutic strategies are the topics of intense research worldwide. Although radiofrequency electromagnetic field (RF-EMF) has many medical applications in rehabilitation, pain associated with musculoskeletal disorders, and degenerative joint disorders, its impact on WH is not fully understood. The process of WH begins just after injury and continues during the inflammatory and proliferative phases. A thorough understanding of the mechanisms by which RF-EMF can improve WH is required before it can be used as a non-invasive, inexpensive, and easily self-applicable therapeutic strategy. Thus, the aim of this study is to explore the therapeutic potential of different exposure setups of RF-EMF to drive faster healing, evaluating the keratinocytes migration, cytokines, and matrix metalloproteinases (MMPs) expression. The results showed that RF-EMF treatment promotes keratinocytes' migration and regulates the expression of genes involved in healing, such as MMPs, tissue inhibitors of metalloproteinases, and pro/anti-inflammatory cytokines, to improve WH.


Assuntos
Movimento Celular/fisiologia , Citocinas/metabolismo , Cicatrização/fisiologia , Linhagem Celular , Campos Eletromagnéticos , Células HaCaT , Humanos , Inflamação/metabolismo , Inflamação/patologia , Metaloproteinases da Matriz/metabolismo , Ondas de Rádio
11.
Environ Health ; 20(1): 36, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794922

RESUMO

BACKGROUND: The general population is exposed to Radio-Frequency Electromagnetic Fields (RF-EMFs) used by telecommunication networks. Previous studies developed methods to assess this exposure. These methods will be inadequate to accurately assess exposure in 5G technologies or other wireless technologies using adaptive antennas. This is due to the fact that 5G NR (new radio) base stations will focus actively on connected users, resulting in a high spatio-temporal variations in the RF-EMFs. This increases the measurement uncertainty in personal measurements of RF-EMF exposure. Furthermore, a user's exposure from base stations will be dependent on the amount of data usage, adding a new component to the auto-induced exposure, which is often omitted in current studies. GOALS: The objective of this paper is to develop a general study protocol for future personal RF-EMF exposure research adapted to 5G technologies. This protocol will include the assessment of auto-induced exposure of both a user's own devices and the networks' base stations. METHOD: This study draws from lessons learned from previous RF-EMF exposure research and current knowledge on 5G technologies, including studies simulating 5G NR base stations and measurements around 5G NR test sites. RESULTS: To account for auto-induced exposure, an activity-based approach is introduced. In survey studies, an RF-EMF sensor is fixed on the participants' mobile device(s). Based on the measured power density, GPS data and movement and proximity sensors, different activities can be clustered and the exposure during each activity is evaluated. In microenvironmental measurements, a trained researcher performs measurements in predefined microenvironments with a mobile device equipped with the RF-EMF sensor. The mobile device is programmed to repeat a sequence of data transmission scenarios (different amounts of uplink and downlink data transmissions). Based on simulations, the amount of exposure induced in the body when the user device is at a certain location relative to the body, can be evaluated. CONCLUSION: Our protocol addresses the main challenges to personal exposure measurement introduced by 5G NR. A systematic method to evaluate a user's auto-induced exposure is introduced.


Assuntos
Redes de Comunicação de Computadores , Campos Eletromagnéticos , Monitoramento Ambiental/métodos , Ondas de Rádio , Computadores de Mão , Humanos
12.
J Toxicol Environ Health A ; 84(20): 846-857, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34196262

RESUMO

The aim of this study was to examine the potential effects of long-term evolution (LTE) radiofrequency electromagnetic fields (RF-EMF) on cell proliferation using SH-SY5Y neuronal cells. The growth rate and proliferation of SH-SY5Y cells were significantly decreased upon exposure to 1760 MHz RF-EMF at 4 W/kg specific absorption rate (SAR) for 4 hr/day for 4 days. Cell cycle analysis indicated that the cell cycle was delayed in the G0/G1 phase after RF-EMF exposure. However, DNA damage or apoptosis was not involved in the reduced cellular proliferation following RF-EMF exposure because the expression levels of histone H2A.X at Ser139 (γH2AX) were not markedly altered and the apoptotic pathway was not activated. However, SH-SY5Y cells exposed to RF-EMF exhibited a significant elevation in Akt and mTOR phosphorylation levels. In addition, the total amount of p53 and phosphorylated-p53 was significantly increased. Data suggested that Akt/mTOR-mediated cellular senescence led to p53 activation via stimulation of the mTOR pathway in SH-SY5Y cells. The transcriptional activation of p53 led to a rise in expression of cyclin-dependent kinase (CDK) inhibitors p21 and p27. Further, subsequent inhibition of CDK2 and CDK4 produced a fall in phosphorylated retinoblastoma (pRb at Ser807/811), which decreased cell proliferation. Taken together, these data suggest that exposure to RF-EMF might induce Akt/mTOR-mediated cellular senescence, which may delay the cell cycle without triggering DNA damage in SH-SY5Y neuroblastoma cells.


Assuntos
Proliferação de Células/efeitos da radiação , Senescência Celular/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Neuroblastoma/fisiopatologia , Ondas de Rádio/efeitos adversos , Senescência Celular/genética , Humanos , Neuroblastoma/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
13.
Bioelectromagnetics ; 42(3): 191-199, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33527465

RESUMO

The placenta protects the fetus against excessive stress-associated maternal cortisol during pregnancy. We studied whether exposure to radiofrequency electromagnetic field (RF-EMF) radiation during pregnancy can cause changes in dams and their placentas. Pregnant Sprague-Dawley rats were divided into cage-control, sham-exposed, and RF-exposed groups. They were exposed to RF-EMF signals at a whole-body specific absorption rate of 4 W/kg for 8 h/day from gestational Day 1 to 19. Levels of cortisol in the blood, adrenal gland, and placenta were measured by enzyme-linked immunosorbent assay. Levels of adrenocorticotropic hormone and corticotropin-releasing hormone were monitored in maternal blood. Expression levels of placental 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) messenger RNA (mRNA) were measured by reverse transcription polymerase chain reaction. Morphological changes in the placenta were analyzed using hematoxylin and eosin staining. Fetal parts of the placenta were measured using Zen 2.3 blue edition software. Maternal cortisol in circulating blood (RF: 230 ± 24.6 ng/ml and Sham: 156 ± 8.3 ng/ml) and the adrenal gland (RF: 58.3 ± 4.5 ng/ml and Sham: 30 ± 3.8 ng/ml) was significantly increased in the RF-exposed group (P < 0.05). Placental cortisol was stably maintained, and the level of placental 11ß-HSD2 mRNA expression was not changed in the RF-exposed group. RF-EMF exposure during pregnancy caused a significant elevation of cortisol levels in circulating blood; however, no changes in the placental barrier were observed in pregnant rats. Bioelectromagnetics. © 2021 Bioelectromagnetics Society.


Assuntos
Campos Eletromagnéticos , Placenta , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Animais , Campos Eletromagnéticos/efeitos adversos , Feminino , Hidrocortisona , Gravidez , Ratos , Ratos Sprague-Dawley
14.
Sensors (Basel) ; 21(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960513

RESUMO

The densification of multiple wireless communication systems that coexist nowadays, as well as the 5G new generation cellular systems advent towards the millimeter wave (mmWave) frequency range, give rise to complex context-aware scenarios with high-node density heterogeneous networks. In this work, a radiofrequency electromagnetic field (RF-EMF) exposure assessment from an empirical and modeling approach for a large, complex indoor setting with high node density and traffic is presented. For that purpose, an intensive and comprehensive in-depth RF-EMF E-field characterization study is provided in a public library study case, considering dense personal mobile communications (5G FR2 @28 GHz) and wireless 802.11ay (@60 GHz) data access services on the mmWave frequency range. By means of an enhanced in-house deterministic 3D ray launching (3D-RL) simulation tool for RF-EMF exposure assessment, different complex heterogenous scenarios of high complexity are assessed in realistic operation conditions, considering different user distributions and densities. The use of directive antennas and MIMO beamforming techniques, as well as all the corresponding features in terms of radio wave propagation, such as the body shielding effect, dispersive material properties of obstacles, the impact of the distribution of scatterers and the associated electromagnetic propagation phenomena, are considered for simulation. Discussion regarding the contribution and impact of the coexistence of multiple heterogeneous networks and services is presented, verifying compliance with the current established international regulation limits with exposure levels far below the aforementioned limits. Finally, the proposed simulation technique is validated with a complete empirical campaign of measurements, showing good agreement. In consequence, the obtained datasets and simulation estimations, along with the proposed RF-EMF simulation tool, could be a reference approach for the design, deployment and exposure assessment of the current and future wireless communication technologies on the mmWave spectrum, where massive high-node density heterogeneous networks are expected.


Assuntos
Campos Eletromagnéticos , Exposição Ambiental , Comunicação , Ondas de Rádio , Tecnologia sem Fio
15.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069478

RESUMO

Exposure to radiofrequency electromagnetic fields (RF-EMFs) has increased rapidly in children, but information on the effects of RF-EMF exposure to the central nervous system in children is limited. In this study, pups and dams were exposed to whole-body RF-EMF at 4.0 W/kg specific absorption rate (SAR) for 5 h per day for 4 weeks (from postnatal day (P) 1 to P28). The effects of RF-EMF exposure on neurons were evaluated by using both pups' hippocampus and primary cultured hippocampal neurons. The total number of dendritic spines showed statistically significant decreases in the dentate gyrus (DG) but was not altered in the cornu ammonis (CA1) in hippocampal neurons. In particular, the number of mushroom-type dendritic spines showed statistically significant decreases in the CA1 and DG. The expression of glutamate receptors was decreased in mushroom-type dendritic spines in the CA1 and DG of hippocampal neurons following RF-EMF exposure. The expression of brain-derived neurotrophic factor (BDNF) in the CA1 and DG was significantly lower statistically in RF-EMF-exposed mice. The number of post-synaptic density protein 95 (PSD95) puncta gradually increased over time but was significantly decreased statistically at days in vitro (DIV) 5, 7, and 9 following RF-EMF exposure. Decreased BDNF expression was restricted to the soma and was not observed in neurites of hippocampal neurons following RF-EMF exposure. The length of neurite outgrowth and number of branches showed statistically significant decreases, but no changes in the soma size of hippocampal neurons were observed. Further, the memory index showed statistically significant decreases in RF-EMF-exposed mice, suggesting that decreased synaptic density following RF-EMF exposure at early developmental stages may affect memory function. Collectively, these data suggest that hindered neuronal outgrowth following RF-EMF exposure may decrease overall synaptic density during early neurite development of hippocampal neurons.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Neuritos/efeitos da radiação , Ondas de Rádio/efeitos adversos , Animais , Animais Recém-Nascidos/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuritos/metabolismo , Neurogênese , Crescimento Neuronal , Neurônios/metabolismo , Neurônios/efeitos da radiação , Sinapses/metabolismo , Sinapses/efeitos da radiação
16.
Environ Res ; 183: 109196, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032814

RESUMO

This paper describes radiofrequency (RF) electromagnetic field (EMF) measurements in the vicinity of single and banks of advanced metering infrastructure (AMI) smart meters. The measurements were performed in a meter testing and distribution facility as well as in-situ at five urban locations. The measurements consisted of gauging the RF environment at the place of assessment, evaluating the worst-case electric-field levels at various positions around the assessed AMI meter configuration (spatial assessment), which ranged from a single meter to a bank of 81 m, and calculating the duty cycle of the system, i.e. the fraction of time that the AMI meters were actually transmitting (12-h temporal assessment). Both in-situ and in the meter facility, the maximum field levels at 0.3 m from the meter configurations were 10-13 V/m for a single meter and 18-38 V/m for meter banks with 20-81 m. Furthermore, 6-min average duty cycles of 0.01% (1 m) up to 13% (81-m bank) were observed. Next, two general statistical models (one for a single meter and one for a meter bank) were constructed to predict the electric-field strength as a function of distance to any configuration of the assessed AMI meters. For all scenarios, the measured exposure levels (at a minimum distance of 0.3 m) were well below the maximum permissible exposure limits issued by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the U.S. Federal Communications Commission (FCC), and the Institute of Electrical and Electronics Engineers (IEEE). Indeed, the worst-case time-average exposure level at a distance of 0.3 m from an AMI installation was 5.39% of the FCC/IEEE and 9.43% of the ICNIRP reference levels.


Assuntos
Campos Eletromagnéticos , Exposição Ambiental , Ondas de Rádio , Eletricidade , Monitoramento Ambiental , Modelos Estatísticos , Radiação Ionizante
17.
Bioelectromagnetics ; 41(2): 104-112, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31828817

RESUMO

Exposure to a radiofrequency (RF) signal at a specific absorption rate (SAR) of 4 W/kg can increase the body temperature by more than 1 °C. In this study, we investigated the effect of anesthesia on the body temperature of rats after exposure to an RF electromagnetic field at 4 W/kg SAR. We also evaluated the influence of body mass on rats' body temperature. Rats weighing 225 and 339 g were divided into sham- and RF-exposure groups. Each of the resulting four groups was subdivided into anesthetized and non-anesthetized groups. The free-moving rats in the four RF-exposure groups were subjected to a 915 MHz RF identification signal at 4 W/kg whole-body SAR for 8 h. The rectal temperature was measured at 1-h intervals during RF exposure using a small-animal temperature probe. The body temperatures of non-anesthetized, mobile 225 and 339 g rats were not significantly affected by exposure to an RF signal. However, the body temperatures of anesthetized 225 and 339 g rats increased by 1.9 °C and 3.3 °C from baseline at 5 and 6 h of RF exposure, respectively. Three of the five 339 g anesthetized and exposed rats died after 6 h of RF exposure. Thus, anesthesia and body mass influenced RF exposure-induced changes in the body temperature of rats. Bioelectromagnetics. 2020;41:104-112. © 2019 Bioelectromagnetics Society.


Assuntos
Anestesia , Temperatura Corporal/fisiologia , Campos Eletromagnéticos/efeitos adversos , Animais , Radiação Eletromagnética , Masculino , Ondas de Rádio/efeitos adversos , Ratos Sprague-Dawley
18.
Environ Monit Assess ; 192(6): 334, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382839

RESUMO

In this study, radiofrequency electromagnetic field (RF-EMF) measurements were carried out between 2016 and 2018 in one the largest provinces of Turkey; measurement results are compared with the limit values determined by International Commission on Non-Ionizing Radiation Protection (ICNIRP) and Turkey's Information and Communication Technologies Authority (ICTA). In the first stage of a three-phase evaluation, short-term RF-EMF measurements were conducted in 500 locations over a 2-year period. In the second stage, short-term RF-EMF measurement results were analyzed to determine selected locations for long-term RF-EMF measurements to be carried out, including variation of RF-EMF during the day. In the last stage, band selective measurements were taken and the main sources of RF-EMF in the environment were determined. Overall, RF-EMF values do not exceed the limits determined by ICNIRP and ICTA, and they are below levels that threaten public health. In the short-term RF-EMF measurements, RF-EMF levels doubled after fourth generation (4G) systems were introduced. In the long-term RF-EMF measurements, RF-EMF values in the day are 35.4% more than at night. The total measured RF-EMF within the city center is 99.3% base station sourced. Among the six main RF-EMF sources, the devices operating in UMTS2100 band have the most contribution to total RF-EMF of medium with 31.2%. Additionally, we found short-term average electric field strength data are best described by the "exponential distribution," while long-term RF-EMF measurement data is best described by the "Burr distribution."


Assuntos
Campos Eletromagnéticos , Monitoramento Ambiental , Exposição Ambiental , Ondas de Rádio , Turquia
19.
Environ Res ; 178: 108634, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31450151

RESUMO

This paper applies Machine Learning (ML) algorithms to peer-reviewed publications in order to discern whether there are consistent biological impacts of exposure to non-thermal low power radio-frequency electromagnetic fields (RF-EMF). Expanding on previous analysis that identified sensitive plant species, we extracted data from 45 articles published between 1996 and 2016 that included 169 experimental case studies of plant response to RF-EMF. Raw-data from these case studies included six different attributes: frequency, specific absorption rate (SAR), power flux density, electric field strength, exposure time and plant type (species). This dataset has been tested with two different classification algorithms: k-Nearest Neighbor (kNN) and Random Forest (RF). The outputs are estimated using k-fold cross-validation method to identify and compare classifier mean accuracy and computation time. We also developed an optimization technique to distinguish the trade-off between prediction accuracy and computation time based on the classification algorithm. Our analysis illustrates kNN (91.17%) and RF (89.41%) perform similarly in terms of mean accuracy, nonetheless, kNN takes less computation time (3.38 s) to train a model compared to RF (248.12 s). Very strong correlations were observed between SAR and frequency, and SAR with power flux density and electric field strength. Despite the low sample size (169 reported experimental case studies), that limits statistical power, nevertheless, this analysis indicates that ML algorithms applied to bioelectromagnetics literature predict impacts of key plant health parameters from specific RF-EMF exposures. This paper addresses both questions of the methodological importance and relative value of different methods of ML and the specific finding of impacts of RF-EMF on specific measures of plant growth and health. Recognizing the importance of standardizing nomenclature for EMF-RF, we conclude that Machine Learning provides innovative and efficient RF-EMF exposure prediction tools, and we propose future applications in occupational and environmental epidemiology and public health.


Assuntos
Exposição Ambiental , Aprendizado de Máquina , Ondas de Rádio , Campos Eletromagnéticos , Previsões , Humanos
20.
Environ Res ; 172: 109-116, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782530

RESUMO

In the last decades, exposure to radiofrequency electromagnetic fields (RF-EMF) has substantially increased as new wireless technologies have been introduced. Society has become more concerned about the possible effects of RF-EMF on human health in parallel to the increase in their exposure. The appearance of personal exposimeters opens up wide-ranging research possibilities. Despite studies having characterised personal exposure to RF-EMF, part of the population is still worried, to the extent that psychogenic diseases ("nocebo" effect) appear, and patients suffer. It could be interesting to share personal exposure results with the population to better understand and promote public health. The main objective was to characterise personal exposure to environmental RF-EMF in Albacete (166,000 inhabitants, SE Spain), and assess the effect of sharing the results of the study on participants' risk perception. Measurements were taken by a personal Satimo EME SPY 140 exposimeter, which was programmed every 10 s for 24 h. To measure personal exposure to RF-EMF, we worked with 75 volunteers. Their personal exposure, 14 microenvironments in the city, e.g., home, outdoors, work, etc., and possible time differences were analysed. After participating in the study, 35 participants completed a questionnaire about their RF-EMF risk perception, which was also answered by a control sample to compare the results (N = 36). The total average exposure of 14 bands was 37.7 µW/m2, and individual ranges fell between 0.2 µW/m2, recorded in TV4&5, and a maximum of 264.7 µW/m2 in DECT. For Friday, we recorded a mean of 53.9 µW/m2 as opposed to 23.4 µW/m2 obtained on Saturday. The recorded night-time value was 27.5 µW/m2 versus 43.8 µW/m2 recorded in the daytime. The mean personal exposure value also showed differences between weekdays and weekend days, with 39.7 µW/m2 and 26.9 µW/m2, respectively. The main source that contributed to the mean total personal exposure was enhanced cordless telecommunications (DECT) with 50.2%, followed by mobile phones with 18.4% and mobile stations with 11.0% (GSM, DCS and UMTS), while WiFi signals gave 12.5%. In the analysed microenvironments, the mean exposure of homes and workplaces was 34.3 µW/m2 and 55.2 µW/m2, respectively. Outdoors, the mean value was 34.2 µW/m2 and the main sources were DECT, WiFi and mobile phone stations, depending on the place. The risk perception analysis found that 54% of the participants perceived that RF-EMF were less dangerous than before participating in the study, while 43% reported no change in their perceptions. Only 9% of the volunteers who received information about their measurements after the study assessed the possible RF-EMF risk with a value over or equal to 4 (on a scale from 1 to 5) versus 39% of the non-participant controls. We conclude that personal exposure to RF-EMF fell well below the limits recommended by ICNIRP and showed wide temporal and spatial variability. The main exposure sources were DECT, followed by mobile phones and WiFi. Sharing exposure results with participants lowered their risk perception.


Assuntos
Campos Eletromagnéticos , Percepção , Exposição à Radiação , Telefone Celular , Exposição Ambiental , Humanos , Exposição à Radiação/análise , Ondas de Rádio , Assunção de Riscos , Espanha , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA