Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(21): e2217189120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186841

RESUMO

Protonation reactions involving organometallic complexes are ubiquitous in redox chemistry and often result in the generation of reactive metal hydrides. However, some organometallic species supported by η5-pentamethylcyclopentadienyl (Cp*) ligands have recently been shown to undergo ligand-centered protonation by direct proton transfer from acids or tautomerization of metal hydrides, resulting in the generation of complexes bearing the uncommon η4-pentamethylcyclopentadiene (Cp*H) ligand. Here, time-resolved pulse radiolysis (PR) and stopped-flow spectroscopic studies have been applied to examine the kinetics and atomistic details involved in the elementary electron- and proton-transfer steps leading to complexes ligated by Cp*H, using Cp*Rh(bpy) as a molecular model (where bpy is 2,2'-bipyridyl). Stopped-flow measurements coupled with infrared and UV-visible detection reveal that the sole product of initial protonation of Cp*Rh(bpy) is [Cp*Rh(H)(bpy)]+, an elusive hydride complex that has been spectroscopically and kinetically characterized here. Tautomerization of the hydride leads to the clean formation of [(Cp*H)Rh(bpy)]+. Variable-temperature and isotopic labeling experiments further confirm this assignment, providing experimental activation parameters and mechanistic insight into metal-mediated hydride-to-proton tautomerism. Spectroscopic monitoring of the second proton transfer event reveals that both the hydride and related Cp*H complex can be involved in further reactivity, showing that [(Cp*H)Rh] is not necessarily an off-cycle intermediate, but, instead, depending on the strength of the acid used to drive catalysis, an active participant in hydrogen evolution. Identification of the mechanistic roles of the protonated intermediates in the catalysis studied here could inform design of optimized catalytic systems supported by noninnocent cyclopentadienyl-type ligands.

2.
Proc Natl Acad Sci U S A ; 119(15): e2114720119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377812

RESUMO

Natural gas is an important fossil energy source that has historically been produced from conventional hydrocarbon reservoirs. It has been interpreted to be of microbial, thermogenic, or, in specific contexts, abiotic origin. Since the beginning of the 21st century, natural gas has been increasingly produced from unconventional hydrocarbon reservoirs including organic-rich shales. Here, we show, based on a careful interpretation of natural gas samples from numerous unconventional hydrocarbon reservoirs and results from recent irradiation experiments, that there is a previously overlooked source of natural gas that is generated by radiolysis of organic matter in shales. We demonstrate that radiolytic gas containing methane, ethane, and propane constitutes a significant end-member that can account for >25% of natural gas mixtures in major shale gas plays worldwide that have high organic matter and uranium contents. The consideration of radiolytic gas in natural gas mixtures provides alternative explanations for so-called carbon isotope reversals and suggests revised interpretations of some natural gas origins. We submit that considering natural gas of radiolytic origin as an additional component in uranium-bearing shale gas formations will lead to a more accurate determination of the origins of natural gas.

3.
Nano Lett ; 24(39): 12249-12253, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39291785

RESUMO

The catalytic activity of gold nanoparticles (AuNPs) has been widely acknowledged; however, Au NPs are considered to be highly inert as radiosensitizers in biological systems. This apparent discrepancy across different fields complicates the understanding of their interfacial reactivity, particularly in terms of electron transfer reactions. Here, we employ pulse radiolysis to determine the rate constants for the reactions of electrons with AuNPs in aqueous solution. Our investigation of AuNPs with different sizes and surface modifications demonstrates the potential influence of the AuNPs design on electron transfer reactions. These findings address long-standing mechanistic contradictions and underscore the significance of interfacial electron dynamics on AuNPs in both catalytic and biological processes.

4.
Nano Lett ; 24(29): 8866-8871, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38976330

RESUMO

Access to intrinsic properties of a 2D material is challenging due to the absence of a bulk that would dominate over surface contamination, and this lack of bulk also precludes effective conventional cleaning methods that are almost always sacrificial. Suspended graphene and carbon contaminants represent the most salient challenge. This work has achieved ultraclean graphene, attested by electron energy loss (EEL) spectra unprecedentedly exhibiting fine-structure features expected from bonding and band structure. In the cleaning process in a transmission electron microscope, radicals generated by radiolysis of intentionally adsorbed water remove organic contaminants, which would otherwise be feedstock of the notorious electron irradiation induced carbon deposition. This method can be readily adapted to other experimental settings and other materials to enable previously inhibited undertakings that rely on the intrinsic properties or ultimate thinness of 2D materials. Importantly, the method is surprisingly simple and robust, easily implementable with common lab equipment.

5.
Small ; : e2403969, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109568

RESUMO

Quantifying the role of experimental parameters on the growth of metal nanocrystals is crucial when designing synthesis protocols that yield specific structures. Here, the effect of temperature on the growth kinetics of radiolytically-formed branched palladium (Pd) nanocrystals is investigated by tracking their evolution using liquid cell transmission electron microscopy (TEM) and applying a temperature-dependent radiolysis model. At early times, kinetics consistent with growth limited is measured by the surface reaction rate, and it is found that the growth rate increases with temperature. After a transition time, kinetics consistent with growth limited by Pd atom supply is measured, which depends on the diffusion rate of Pd ions and atoms and the formation rate of Pd atoms by reduction of Pd ions by hydrated electrons. Growth in this regime is not strongly temperature-dependent, which is attributed to a balance between changes in the reducing agent concentration and the Pd ion diffusion rate. The observations suggest that branched rough surfaces, generally attributed to diffusion-limited growth, can form under surface reaction-limited kinetics. It is further shown that the combination of liquid cell TEM and radiolysis calculations can help identify the processes that determine crystal growth, with prospects for strategies for control during the synthesis of complex nanocrystals.

6.
Chemphyschem ; 25(18): e202400273, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38819992

RESUMO

Photocatalysis using transition-metal complexes is widely considered the future of effective and affordable clean-air technology. In particular, redox-stable, easily accessible ligands are decisive. Here, we report a straightforward and facile synthesis of a new highly stable 2,6-bis(triazolyl)pyridine ligand, containing a nitrile moiety as a masked anchoring group, using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. The reported structure mimics the binding motif of uneasy to synthesize ligands. Pulse radiolysis under oxidizing and reducing conditions provided evidence for the high stability of the formed radical cation and radical anion 2,6-di(1,2,3-triazol-1-yl)-pyridine compound, thus indicating the feasibility of utilizing this as a ligand for redox active metal complexes and the sensitization of metal-oxide semiconductors (e. g., TiO2 nanoparticles or nanotubes).

7.
Chemphyschem ; 25(18): e202300785, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38837507

RESUMO

This work aims to study the effect of radiolytic species induced by water radiolysis on the passive behavior of 316L stainless steel. For this purpose, the stainless steel/neutral and aerated 0.02 M Na2SO4, electrolyte solution interface was irradiated with proton beams. A wide range of energies between 2 and 16 MeV was selected, varying the maximum of the energy deposition between 0.5 and 122 µm in water from the interface. The irradiation experiments were performed at the CEMHTI cyclotron in Orléans and the 4 MV Van de Graaff accelerator at IP2I in Lyon (France). A dedicated irradiation device implemented with a 3-electrode cell dedicated to perform electrochemical measurements allows to measure the surface reactivity of the stainless steel as a function of the irradiation conditions. Results show that whatever the beam energy, the corrosion potential remains unchanged. It indicates that the very short-lived, highly reactive radiolytic species drive the corrosion potential and not only the recombination products such H2O2 or H2. The stainless steel remains in the passive state whatever the irradiation conditions. However, it is shown that, during irradiation, the passive film is less protective. This evolution is attributed to radiolysis of bound water molecules in the passive film.

8.
Environ Sci Technol ; 58(21): 9427-9435, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38747404

RESUMO

Photoexcitation of sulfite (SO32-) is often used to generate hydrated electrons (eaq-) in processes to degrade perfluoroalkyl and polyfluoroalkyl substances (PFASs). Conventional consensus discourages the utilization of SO32- concentrations exceeding 10 mM for effective defluorination. This has hindered our understanding of SO32- chemistry beyond its electron photogeneration properties. In contrast, the radiation-chemical study presented here, directly producing eaq- through water radiolysis, suggests that SO32- plays a previously overlooked activation role in the defluorination. Quantitative 60Co gamma irradiation experiments indicate that the increased SO32- concentration from 0.1 to 1 M enhances the defluorination rate by a remarkable 15-fold, especially for short-chain perfluoroalkyl sulfonate (PFSA). Furthermore, during the treatment of long-chain PFSA (C8F17-SO3-) with a higher concentration of SO32-, the intermediates of C8H17-SO3- and C3F7-COO- were observed, which are absent without SO32-. These observations highlight that a higher concentration of SO32- facilitates both reaction pathways: chain shortening and H/F exchange. Pulse radiolysis measurements show that elevated SO32- concentrations accelerate the bimolecular reaction between eaq- and PFSA by 2 orders of magnitude. 19F NMR measurements and theoretical simulations reveal the noncovalent interactions between SO32- and F atoms, which exceptionally reduce the C-F bond dissociation energy by nearly 40%. As a result, our study offers a more effective strategy for degrading highly persistent PFSA contaminants.


Assuntos
Elétrons , Fluorocarbonos , Sulfitos , Sulfitos/química , Fluorocarbonos/química , Água/química
9.
Biosci Biotechnol Biochem ; 88(11): 1261-1269, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39231804

RESUMO

The molecular modification of chlorogenic acid (1) through γ-irradiation resulted in the formation of five new products: chlorogenosins A (2), B (3), C (4), D (5), and E (6) along with known compounds rosmarinosin B (7), protocatechuic acid (8), and protocatechuic aldehyde (9). The structures of the new compounds were elucidated using spectroscopic methods, including one-dimensional and two-dimensional nuclear magnetic resonance, high-resolution electrospray ionization mass spectroscopy, and circular dichroism spectroscopy. The potential anti-inflammatory activities of all the isolated compounds were determined by evaluating their inhibitory effects on the nitric oxide (NO) production in lipopolysaccharide-induced RAW 264.7 macrophages. Notably, compounds 2 and 3, which contained two hydroxymethyl functionalities instead of the trans-olefinic moiety present in the original chlorogenic acid, exhibited stronger inhibitory effects on NO production than that of the original compound. These findings suggest that the predominant chemical changes induced in chlorogenic acid by γ-irradiation may enhance its anti-inflammatory properties.


Assuntos
Ácido Clorogênico , Raios gama , Óxido Nítrico , Ácido Clorogênico/farmacologia , Ácido Clorogênico/química , Óxido Nítrico/metabolismo , Óxido Nítrico/biossíntese , Camundongos , Animais , Células RAW 264.7 , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
10.
Int J Mol Sci ; 25(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39201695

RESUMO

The reactions of radicals with human serum albumin (HSA) under reductive stress conditions were studied using pulse radiolysis and photochemical methods. It was proved that irradiation of HSA solutions under reductive stress conditions results in the formation of stable protein aggregates. HSA aggregates induced by ionizing radiation are characterized by unique emission, different from the UV emission of non-irradiated solutions. The comparison of transient absorption spectra and the reactivity of hydrated electrons (eaq-) with amino acids or HSA suggests that electron attachment to disulfide bonds is responsible for the transient spectrum recorded in the case of albumin solutions. The reactions of eaq- and CO2•- with HSA lead to the formation of the same products. Recombination of sulfur-centered radicals plays a crucial role in the generation of HSA nanoparticles, which are stabilized by intermolecular disulfide bonds. The process of creating disulfide bridges under the influence of ionizing radiation is a promising method for the synthesis of biocompatible protein nanostructures for medical applications. Our Raman spectroscopy studies indicate strong modification of disulfide bonds and confirm the aggregation of albumins as well. Low-temperature measurements indicate the possibility of electron tunneling through the HSA protein structure to specific CyS-SCy bridges. The current study showed that the efficiency of HSA aggregation depends on two main factors: dose rate (number of pulses per unit time in the case of pulse radiolysis) and the temperature of the irradiated solution.


Assuntos
Agregados Proteicos , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Dissulfetos/química , Oxirredução , Análise Espectral Raman , Radicais Livres/química , Radiólise de Impulso
11.
Int J Mol Sci ; 25(19)2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39408820

RESUMO

This study conducts a comparative analysis of cystamine (RSSR), a disulfide, and cysteamine (RSH), its thiol monomer, to evaluate their efficacy as radioprotectors and antioxidants under high linear energy transfer (LET) and high-dose-rate irradiation conditions. It examines their interactions with reactive primary species produced during the radiolysis of the aqueous ferrous sulfate (Fricke) dosimeter, offering insights into the mechanisms of radioprotection and highlighting their potential to enhance the therapeutic index of radiation therapy, particularly in advanced techniques like FLASH radiotherapy. Using Monte Carlo multi-track chemical modeling to simulate the radiolytic oxidation of ferrous to ferric ions in Fricke-cystamine and Fricke-cysteamine solutions, this study assesses the radioprotective and antioxidant properties of these compounds across a variety of irradiation conditions. Concentrations were varied in both aerated (oxygen-rich) and deaerated (hypoxic) environments, simulating conditions akin to healthy tissue and tumors. Both cystamine and cysteamine demonstrate radioprotective and strong antioxidant properties. However, their effectiveness varies significantly depending on the concentration employed, the conditions of irradiation, and whether or not environmental oxygen is present. Specifically, excluding potential in vivo toxicity, cysteamine substantially reduces the adverse effects of ionizing radiation under aerated, low-LET conditions at concentrations above ~1 mM. However, its efficacy is minimal in hypoxic environments, irrespective of the concentration used. Conversely, cystamine consistently offers robust protective effects in both oxygen-rich and oxygen-poor conditions. The distinct protective capacities of cysteamine and cystamine underscore cysteamine's enhanced potential in radiotherapeutic settings aimed at safeguarding healthy tissues from radiation-induced damage while effectively targeting tumor tissues. This differential effectiveness emphasizes the need for personalized radioprotective strategies, tailored to the specific environmental conditions of the tissue involved. Implementing such approaches is crucial for optimizing therapeutic outcomes and minimizing collateral damage in cancer treatment.


Assuntos
Antioxidantes , Cistamina , Cisteamina , Método de Monte Carlo , Protetores contra Radiação , Cistamina/química , Cistamina/farmacologia , Cisteamina/química , Protetores contra Radiação/farmacologia , Protetores contra Radiação/química , Antioxidantes/farmacologia , Antioxidantes/química , Transferência Linear de Energia , Modelos Químicos , Humanos
12.
Molecules ; 29(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257318

RESUMO

The long time (2 h) required for measurement, expensive chemicals (Ag2SO4), and toxic reagents (K2Cr2O7, HgSO4) limit the application of the standard method for measuring the oxygen equivalent of organic content in wastewater (chemical oxygen demand, COD). In recent years, the COD has increasingly been replaced by the total organic carbon (TOC) parameter. Since the limit values of the pollution levels are usually given in terms of the COD, efforts are being made to find the correlation between these parameters. Several papers have published correlation analyses of COD and TOC for industrial and municipal wastewater, but the relationship has not been discussed for individual chemicals. Here, this relationship was investigated using 70 contaminants (laboratory chemicals, pharmaceuticals, and pesticides). The calculated COD values, in most cases, agreed, within ~10%, with the experimental ones; for tetracyclines and some chloroaromatic molecules, the measured values were 20-50% lower than the calculated values. The COD/TOC ratios were between 2 and 3: for macrolides, they were ~3; for fluoroquinolones and tetracyclines, they were ~2. The molecular structure dependence of the ratio necessitates the establishing of the correlation on an individual basis. In advanced oxidation processes (AOPs), the ratio changes during degradation, limiting the application of TOC instead of COD.

13.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931011

RESUMO

(1) Background: In the quest to accurately model the radiolysis of water in its supercritical state, a detailed understanding of water's molecular structure, particularly how water molecules are arranged in this unique state, is essential. (2) Methods: We conducted molecular dynamics simulations using the SPC/E water model to investigate the molecular structures of supercritical water (SCW) over a wide temperature range, extending up to 800 °C. (3) Results: Our results show that at a constant pressure of 25 MPa, the average intermolecular distance around a reference water molecule remains remarkably stable at ~2.9 Å. This uniformity persists across a substantial temperature range, demonstrating the unique heterogeneous nature of SCW under these extreme conditions. Notably, the simulations also reveal intricate patterns within SCW, indicating the simultaneous presence of regions with high and low density. As temperatures increase, we observe a rise in the formation of molecular clusters, which are accompanied by a reduction in their average size. (4) Conclusions: These findings highlight the necessity of incorporating the molecular complexity of SCW into traditional track-structure chemistry models to improve predictions of SCW behavior under ionizing radiation. The study establishes a foundational reference for further exploration of the properties of supercritical water, particularly for its application in advanced nuclear technologies, including the next generation of water-cooled reactors and their small modular reactor variants that utilize SCW as a coolant.

14.
Biochem Biophys Res Commun ; 671: 343-349, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37329657

RESUMO

Hydroxyl radical protein footprinting (HRPF) using synchrotron radiation is a well-validated method to assess protein structure in the native solution state. In this method, X-ray radiolysis of water generates hydroxyl radicals that can react with solvent accessible side chains of proteins, with mass spectrometry used to detect the resulting labeled products. An ideal footprinting dose provides sufficient labeling to measure the structure but not so much as to influence the results. The optimization of hydroxyl radical dose is typically performed using an indirect Alexa488 fluorescence assay sensitive to hydroxyl radical concentration, but full evaluation of the experiment's outcome relies upon bottom-up liquid chromatography mass spectrometry (LC-MS) measurements to directly determine sites and extent of oxidative labeling at the peptide and protein level. A direct evaluation of the extent of labeling to provide direct and absolute measurements of dose and "safe" dose ranges in terms of, for example, average numbers of labels per protein, would provide immediate feedback on experimental outcomes prior to embarking on detailed LC-MS analyses. To this end, we describe an approach to integrate intact MS screening of labeled samples immediately following exposure, along with metrics to quantify the extent of observed labeling from the intact mass spectra. Intact MS results on the model protein lysozyme were evaluated in the context of Alexa488 assay results and a bottom-up LC-MS analysis of the same samples. This approach provides a basis for placing delivered hydroxyl radical dose metrics on firmer technical grounds for synchrotron X-ray footprinting of proteins, with explicit parameters to increase the likelihood of a productive experimental outcome. Further, the method directs approaches to provide absolute and direct dosimetry for all types of labeling for protein footprinting.


Assuntos
Radical Hidroxila , Pegadas de Proteínas , Pegadas de Proteínas/métodos , Conformação Proteica , Proteínas/química , Espectrometria de Massas/métodos
15.
J Synchrotron Radiat ; 30(Pt 3): 634-642, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067259

RESUMO

Nucleation and growth of minerals has broad implications in the geological, environmental and materials sciences. Recent developments in fast X-ray nanotomography have enabled imaging of crystal growth in solutions in situ with a resolution of tens of nanometres, far surpassing optical microscopy. Here, a low-cost, custom-designed aqueous flow cell dedicated to the study of heterogeneous nucleation and growth of minerals in aqueous environments is shown. To gauge the effects of radiation damage from the imaging process on growth reactions, radiation-induced morphological changes of barite crystals (hundreds of nanometres to ∼1 µm) that were pre-deposited on the wall of the flow cell were investigated. Under flowing solution, minor to major crystal dissolution was observed when the tomography scan frequency was increased from every 30 min to every 5 min (with a 1 min scan duration). The production of reactive radicals from X-ray induced water radiolysis and decrease of pH close to the surface of barite are likely responsible for the observed dissolution. The flow cell shown here can possibly be adopted to study a wide range of other chemical reactions in solutions beyond crystal nucleation and growth where the combination of fast flow and fast scan can be used to mitigate the radiation effects.

16.
J Synchrotron Radiat ; 30(Pt 2): 440-444, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36891857

RESUMO

The storage ring upgrade of the European Synchrotron Radiation Facility makes ESRF-EBS the most brilliant high-energy fourth-generation light source, enabling in situ studies with unprecedented time resolution. While radiation damage is commonly associated with degradation of organic matter such as ionic liquids or polymers in the synchrotron beam, this study clearly shows that highly brilliant X-ray beams readily induce structural changes and beam damage in inorganic matter, too. Here, the reduction of Fe3+ to Fe2+ in iron oxide nanoparticles by radicals in the brilliant ESRF-EBS beam, not observed before the upgrade, is reported. Radicals are created due to radiolysis of an EtOH-H2O mixture with low EtOH concentration (∼6 vol%). In light of extended irradiation times during insitu experiments in, for example, battery and catalysis research, beam-induced redox chemistry needs to be understood for proper interpretation of insitu data.

17.
Chemphyschem ; 24(24): e202300465, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37877631

RESUMO

The reactivity of chromium(III) species with the major oxidizing and reducing radiolysis products of water was investigated in aqueous solutions at temperatures up to 150 °C. The reaction between the hydrated electron (eaq - ) and Cr(III) species showed a positive temperature dependence over this temperature range. The reaction was also studied in pH 2.5 and 3.5 solutions for the first time. This work also studied the reaction between acidic Cr(III) species and the hydroxyl radical (⋅OH). It was found that Cr3+ did not react significantly with the ⋅OH radical, but the first hydrolysis species, Cr(OH)2+ , did with a rate coefficient of k= (7.2±0.3)×108  M-1 s-1 at 25 °C. The oxidation of Cr(OH)2+ by the ⋅OH radical formed an absorbing product species that ultimately oxidized to give Cr(VI). These newly measured reaction rates allow for the development of improved models of aqueous chromium speciation for the effective remediation of liquid high-level nuclear waste via vitrification processes.

18.
Chemphyschem ; 24(5): e202200749, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470592

RESUMO

Acetohydroxamic acid (AHA) has been proposed for inclusion in advanced, single-cycle, used nuclear fuel reprocessing solvent systems for the reduction and complexation of plutonium and neptunium ions. For this application, a detailed description of the fundamental degradation of AHA in dilute aqueous nitric acid is required. To this end, we present a comprehensive, multiscale computer model for the coupled radiolytic and hydrolytic degradation of AHA in aqueous sodium nitrate and nitric acid solutions. Rate coefficients for the reactions of AHA and hydroxylamine (HA) with the oxidizing nitrate radical were measured for the first time using electron pulse radiolysis and used as inputs for the kinetic model. The computer model results are validated by comparison to experimental data from steady-state gamma ray irradiations, for which the agreement is excellent. The presented model accurately predicts the yields of the major degradation products of AHA: acetic acid, HA, nitrous oxide, and molecular hydrogen.

19.
Chemphyschem ; 24(21): e202300288, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37614034

RESUMO

Rate constants for the reactions of muonium (Mu) (the ultralight isotope of the hydrogen atom) with H2 O2 in H2 O and D2 O2 in D2 O have been determined at various temperatures and pH (pD) values. The data are consistent with the three reactions: Mu + H 2 O 2 → k 1 M products ${{\rm{Mu}} + {\rm{H}}_2 {\rm{O}}_2 \mathop \rightarrow \limits ^{{k_{1{\rm{M}}} }}_{} {\rm{products}}}$ , Mu + HO 2 - → k 2 M products ${{\rm{Mu}} + {\rm{HO}}_2^ - \mathop \rightarrow \limits ^{{k_{2{\rm{M}}} }}_{} {\rm{products}}}$ , Mu + O - → k 3 M products ${{\rm{Mu}} + {\rm{O}}^ - \mathop \rightarrow \limits ^{{k_{3{\rm{M}}} }}_{} {\rm{products}}}$ and the equivalent for the deuterated entities. A significant positive H/D isotope effect was found for the undissociated peroxide, while for the anions the effect was negligible or slightly in the opposite direction. In addition, for concentrated solutions of peroxide a study of the muon spin polarization as a function of applied transverse magnetic field yielded results consistent with the rate constants determined from the direct decay measurements, and indicated that the reaction products are diamagnetic, most likely MuH and MuOH, i. e., no muoniated radical products are formed. These results are potentially relevant for management of the radiolysis products in nuclear industry.

20.
Mol Pharm ; 20(2): 1156-1167, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36573995

RESUMO

Astatine-211 (211At) is an alpha emitter applicable to radioimmunotherapy (RIT), a cancer treatment that utilizes radioactive antibodies to target tumors. In the preparation of 211At-labeled monoclonal antibodies (211At-mAbs), the possibility of radionuclide-induced antibody denaturation (radiolysis) is of concern. Our previous study showed that this 211At-induced radiochemical reaction disrupts the cellular binding activity of an astatinated mAb, resulting in attenuation of in vivo antitumor effects, whereas sodium ascorbate (SA), a free radical scavenger, prevents antibody denaturation, contributing to the maintenance of binding and antitumor activity. However, the influence of antibody denaturation on the pharmacokinetics of 211At-mAbs relating to tumor accumulation, blood circulation time, and distribution to normal organs remains unclear. In this study, we use a radioactive anti-human epidermal growth factor receptor 2 (anti-HER2) mAb to demonstrate that an 211At-induced radiochemical reaction disrupts active targeting via an antigen-antibody interaction, whereas SA helps to maintain targeting. In contrast, there was no difference in blood circulation time as well as distribution to normal organs between the stabilized and denatured immunoconjugates, indicating that antibody denaturation may not affect tumor accumulation via passive targeting based on the enhanced permeability and retention effect. In a high-HER2-expressing xenograft model treated with 1 MBq of 211At-anti-HER2 mAbs, SA-dependent maintenance of active targeting contributed to a significantly better response. In treatment with 0.5 or 0.2 MBq, the stabilized radioactive mAb significantly reduced tumor growth compared to the denatured immunoconjugate. Additionally, through a comparison between a stabilized 211At-anti-HER2 mAb and radioactive nontargeted control mAb, we demonstrate that active targeting significantly enhances tumor accumulation of radioactivity and in vivo antitumor effect. In RIT with 211At, active targeting contributes to efficient tumor accumulation of radioactivity, resulting in a potent antitumor effect. SA-dependent protection that successfully maintains tumor targeting will facilitate the clinical application of alpha-RIT.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Anticorpos Monoclonais , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radioisótopos , Radioimunoterapia/métodos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA