Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.086
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 57(8): 1939-1954.e7, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39013465

RESUMO

Antibiotic use in early life disrupts microbial colonization and increases the risk of developing allergies and asthma. We report that mice given antibiotics in early life (EL-Abx), but not in adulthood, were more susceptible to house dust mite (HDM)-induced allergic airway inflammation. This susceptibility was maintained even after normalization of the gut microbiome. EL-Abx decreased systemic levels of indole-3-propionic acid (IPA), which induced long-term changes to cellular stress, metabolism, and mitochondrial respiration in the lung epithelium. IPA reduced mitochondrial respiration and superoxide production and altered chemokine and cytokine production. Consequently, early-life IPA supplementation protected EL-Abx mice against exacerbated HDM-induced allergic airway inflammation in adulthood. These results reveal a mechanism through which EL-Abx can predispose the lung to allergic airway inflammation and highlight a possible preventative approach to mitigate the detrimental consequences of EL-Abx.


Assuntos
Antibacterianos , Asma , Disbiose , Microbioma Gastrointestinal , Indóis , Pyroglyphidae , Animais , Camundongos , Disbiose/imunologia , Indóis/farmacologia , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Asma/imunologia , Pyroglyphidae/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Feminino , Inflamação/imunologia , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Citocinas/metabolismo , Hipersensibilidade/imunologia , Propionatos
2.
Proc Natl Acad Sci U S A ; 121(21): e2400426121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748579

RESUMO

Encapsulins are protein nanocompartments that regulate cellular metabolism in several bacteria and archaea. Myxococcus xanthus encapsulins protect the bacterial cells against oxidative stress by sequestering cytosolic iron. These encapsulins are formed by the shell protein EncA and three cargo proteins: EncB, EncC, and EncD. EncB and EncC form rotationally symmetric decamers with ferroxidase centers (FOCs) that oxidize Fe+2 to Fe+3 for iron storage in mineral form. However, the structure and function of the third cargo protein, EncD, have yet to be determined. Here, we report the x-ray crystal structure of EncD in complex with flavin mononucleotide. EncD forms an α-helical hairpin arranged as an antiparallel dimer, but unlike other flavin-binding proteins, it has no ß-sheet, showing that EncD and its homologs represent a unique class of bacterial flavin-binding proteins. The cryo-EM structure of EncA-EncD encapsulins confirms that EncD binds to the interior of the EncA shell via its C-terminal targeting peptide. With only 100 amino acids, the EncD α-helical dimer forms the smallest flavin-binding domain observed to date. Unlike EncB and EncC, EncD lacks a FOC, and our biochemical results show that EncD instead is a NAD(P)H-dependent ferric reductase, indicating that the M. xanthus encapsulins act as an integrated system for iron homeostasis. Overall, this work contributes to our understanding of bacterial metabolism and could lead to the development of technologies for iron biomineralization and the production of iron-containing materials for the treatment of various diseases associated with oxidative stress.


Assuntos
Proteínas de Bactérias , FMN Redutase , Myxococcus xanthus , Myxococcus xanthus/metabolismo , Myxococcus xanthus/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , FMN Redutase/metabolismo , Cristalografia por Raios X , Mononucleotídeo de Flavina/metabolismo , Ferro/metabolismo , Modelos Moleculares , Microscopia Crioeletrônica
3.
Proc Natl Acad Sci U S A ; 121(24): e2404668121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833473

RESUMO

Developing anticancer drugs with low side effects is an ongoing challenge. Immunogenic cell death (ICD) has received extensive attention as a potential synergistic modality for cancer immunotherapy. However, only a limited set of drugs or treatment modalities can trigger an ICD response and none of them have cytotoxic selectivity. This provides an incentive to explore strategies that might provide more effective ICD inducers free of adverse side effects. Here, we report a metal-based complex (Cu-1) that disrupts cellular redox homeostasis and effectively stimulates an antitumor immune response with high cytotoxic specificity. Upon entering tumor cells, this Cu(II) complex enhances the production of intracellular radical oxidative species while concurrently depleting glutathione (GSH). As the result of heightening cellular oxidative stress, Cu-1 gives rise to a relatively high cytotoxicity to cancer cells, whereas normal cells with low levels of GSH are relatively unaffected. The present Cu(II) complex initiates a potent ferroptosis-dependent ICD response and effectively inhibits in vivo tumor growth in an animal model (c57BL/6 mice challenged with colorectal cancer). This study presents a strategy to develop metal-based drugs that could synergistically potentiate cytotoxic selectivity and promote apoptosis-independent ICD responses through perturbations in redox homeostasis.


Assuntos
Cobre , Glutationa , Homeostase , Oxirredução , Animais , Camundongos , Humanos , Glutationa/metabolismo , Camundongos Endogâmicos C57BL , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Estresse Oxidativo/efeitos dos fármacos , Sinergismo Farmacológico , Morte Celular Imunogênica/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ferroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(11): e2316553121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437553

RESUMO

Developing cost-effective and high-performance electrocatalysts for oxygen reduction reaction (ORR) is critical for clean energy generation. Here, we propose an approach to the synthesis of iron phthalocyanine nanotubes (FePc NTs) as a highly active and selective electrocatalyst for ORR. The performance is significantly superior to FePc in randomly aggregated and molecularly dispersed states, as well as the commercial Pt/C catalyst. When FePc NTs are anchored on graphene, the resulting architecture shifts the ORR potentials above the redox potentials of Fe2+/3+ sites. This does not obey the redox-mediated mechanism operative on conventional FePc with a Fe2+-N moiety serving as the active sites. Pourbaix analysis shows that the redox of Fe2+/3+ sites couples with HO- ions transfer, forming a HO-Fe3+-N moiety serving as the ORR active sites under the turnover condition. The chemisorption of ORR intermediates is appropriately weakened on the HO-Fe3+-N moiety compared to the Fe2+-N state and thus is intrinsically more ORR active.

5.
Proc Natl Acad Sci U S A ; 121(5): e2315871121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38277439

RESUMO

High electrochemical reversibility is required for the application of high-energy-density lithium (Li) metal batteries; however, inactive Li formation and SEI (solid electrolyte interface)-instability-induced electrolyte consumption cause low Coulombic efficiency (CE). The prior interfacial chemical designs in terms of alloying kinetics have been used to enhance the CE of Li metal anode; however, the role of its redox chemistry at heterointerfaces remains a mystery. Herein, the relationship between heterointerfacial redox chemistry and electrochemical transformation reversibility is investigated. It is demonstrated that the lower redox potential at heterointerface contributes to higher CE, and this enhancement in CE is primarily due to the regulation of redox chemistry to Li deposition behavior rather than the formation of SEI films. Low oxidation potential facilitates the formation of the surface with the highly electrochemical binding feature after Li stripping, and low reduction potential can maintain binding ability well during subsequent Li plating, both of which homogenize Li deposition and thus optimize CE. In particular, Mg hetero-metal with ultra-low redox potential enables Li metal anode with significantly improved CE (99.6%) and stable cycle life for 700 cycles at 3.0 mA cm-2. This work provides insight into the heterointerfacial design principle of next-generation negative electrodes for highly reversible metal batteries.

6.
Semin Cell Dev Biol ; 155(Pt A): 48-58, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889996

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) are two enzymes of the Calvin Benson cycle that stand out for some peculiar properties they have in common: (i) they both use the products of light reactions for catalysis (NADPH for GAPDH, ATP for PRK), (ii) they are both light-regulated through thioredoxins and (iii) they are both involved in the formation of regulatory supramolecular complexes in the dark or low photosynthetic conditions, with or without the regulatory protein CP12. In the complexes, enzymes are transiently inactivated but ready to recover full activity after complex dissociation. Fully active GAPDH and PRK are in large excess for the functioning of the Calvin-Benson cycle, but they can limit the cycle upon complex formation. Complex dissociation contributes to photosynthetic induction. CP12 also controls PRK concentration in model photosynthetic organisms like Arabidopsis thaliana and Chlamydomonas reinhardtii. The review combines in vivo and in vitro data into an integrated physiological view of the role of GAPDH and PRK dark complexes in the regulation of photosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Gliceraldeído-3-Fosfato Desidrogenases/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fotossíntese/fisiologia
7.
Proc Natl Acad Sci U S A ; 120(52): e2309387120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127977

RESUMO

Our planet is a self-sustaining ecosystem powered by light energy from the sun, but roughly closed to matter. Many ecosystems on Earth are also approximately closed to matter and recycle nutrients by self-organizing stable nutrient cycles, e.g., microbial mats, lakes, open ocean gyres. However, existing ecological models do not exhibit the self-organization and dynamical stability widely observed in such planetary-scale ecosystems. Here, we advance a conceptual model that explains the self-organization, stability, and emergent features of closed microbial ecosystems. Our model incorporates the bioenergetics of metabolism into an ecological framework. By studying this model, we uncover a crucial thermodynamic feedback loop that enables metabolically diverse communities to almost always stabilize nutrient cycles. Surprisingly, highly diverse communities self-organize to extract [Formula: see text]10[Formula: see text] of the maximum extractable energy, or [Formula: see text]100 fold more than randomized communities. Further, with increasing diversity, distinct ecosystems show strongly correlated fluxes through nutrient cycles. However, as the driving force from light increases, the fluxes of nutrient cycles become more variable and species-dependent. Our results highlight that self-organization promotes the efficiency and stability of complex ecosystems at extracting energy from the environment, even in the absence of any centralized coordination.


Assuntos
Sistemas Ecológicos Fechados , Ecossistema , Modelos Teóricos , Termodinâmica , Nutrientes
8.
Proc Natl Acad Sci U S A ; 120(52): e2311673120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109541

RESUMO

The unbalanced immune state is the dominant feature of myocardial injury. However, the complicated pathology of cardiovascular diseases and the unique structure of cardiac tissue lead to challenges for effective immunoregulation therapy. Here, we exploited oral fullerene nanoscavenger (OFNS) to maintain intestinal redox homeostasis to resolve systemic inflammation for effectively preventing distal myocardial injury through bidirectional communication along the heart-gut immune axis. Observably, OFNS regulated redox microenvironment to repair cellular injury and reduce inflammation in vitro. Subsequently, OFNS prevented myocardial injury by regulating intestinal redox homeostasis and recovering epithelium barrier integrity in vivo. Based on the profiles of transcriptomics and proteomics, we demonstrated that OFNS balanced intestinal and systemic immune homeostasis for remote cardioprotection. Of note, we applied this principle to intervene myocardial infarction in mice and mini-pigs. These findings highlight that locally addressing intestinal redox to inhibit systemic inflammation could be a potent strategy for resolving remote tissue injury.


Assuntos
Fulerenos , Infarto do Miocárdio , Suínos , Camundongos , Animais , Fulerenos/farmacologia , Porco Miniatura , Inflamação/patologia , Infarto do Miocárdio/prevenção & controle , Homeostase , Mucosa Intestinal
9.
J Biol Chem ; 300(3): 105761, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367668

RESUMO

One of the major challenges that remain in the fields of aging and lifespan determination concerns the precise roles that reactive oxygen species (ROS) play in these processes. ROS, including superoxide and hydrogen peroxide, are constantly generated as byproducts of aerobic metabolism, as well as in response to endogenous and exogenous cues. While ROS accumulation and oxidative damage were long considered to constitute some of the main causes of age-associated decline, more recent studies reveal a signaling role in the aging process. In fact, accumulation of ROS, in a spatiotemporal manner, can trigger beneficial cellular responses that promote longevity and healthy aging. In this review, we discuss the importance of timing and compartmentalization of external and internal ROS perturbations in organismal lifespan and the role of redox regulated pathways.


Assuntos
Envelhecimento , Longevidade , Estresse Oxidativo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/metabolismo , Humanos , Animais
10.
J Biol Chem ; 300(4): 107132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432636

RESUMO

Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.


Assuntos
Fenômenos Fisiológicos Celulares , Heme , Animais , Humanos , Ritmo Circadiano/fisiologia , Heme/metabolismo , Hemeproteínas/metabolismo , Oxirredução , Transdução de Sinais , Espaço Intracelular/metabolismo , Fenômenos Fisiológicos Celulares/fisiologia
11.
J Biol Chem ; 300(5): 107301, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641068

RESUMO

Ubiquinol or coenzyme Q (CoQ) is a lipid-soluble electron carrier in the respiratory chain and an electron acceptor for various enzymes in metabolic pathways that intersect at this cofactor hub in the mitochondrial inner membrane. The reduced form of CoQ is an antioxidant, which protects against lipid peroxidation. In this study, we have optimized a UV-detected HPLC method for CoQ analysis from biological materials, which involves a rapid single-step extraction into n-propanol followed by direct sample injection onto a column. Using this method, we have measured the oxidized, reduced, and total CoQ pools and monitored shifts in the CoQ redox status in response to cell culture conditions and bioenergetic perturbations. We find that hypoxia or sulfide exposure induces a reductive shift in the intracellular CoQ pool. The effect of hypoxia is, however, rapidly reversed by exposure to ambient air. Interventions at different loci in the electron transport chain can induce sizeable redox shifts in the oxidative or reductive direction, depending on whether they are up- or downstream of complex III. We have also used this method to confirm that CoQ levels are higher and more reduced in murine heart versus brain. In summary, the availability of a convenient HPLC-based method described herein will facilitate studies on CoQ redox dynamics in response to environmental, nutritional, and endogenous alterations.


Assuntos
Oxirredução , Ubiquinona , Animais , Humanos , Camundongos , Cromatografia Líquida de Alta Pressão/métodos , Ubiquinona/química , Ubiquinona/metabolismo , Miocárdio/enzimologia , Encéfalo/enzimologia , Feminino , Camundongos Endogâmicos C57BL , Células HT29
12.
J Biol Chem ; : 107659, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128728

RESUMO

Chloroplast ATP synthase (CFoCF1) synthesizes ATP by using a proton electrochemical gradient across the thylakoid membrane, termed ΔµH+, as an energy source. This gradient is necessary not only for ATP synthesis but also for reductive activation of CFoCF1 by thioredoxin, using reducing equivalents produced by the photosynthetic electron transport chain. ΔµH+ comprises two thermodynamic components: pH differences across the membrane (ΔpH) and the transmembrane electrical potential (ΔΨ). In chloroplasts, the ratio of these two components in ΔµH+ is crucial for efficient solar energy utilization. However, the specific contribution of each component to the reductive activation of CFoCF1 remains unclear. In this study, an in vitro assay system for evaluating thioredoxin-mediated CFoCF1 reduction is established, allowing manipulation of ΔµH+ components in isolated thylakoid membranes using specific chemicals. Our biochemical analyses revealed that ΔpH formation is essential for thioredoxin-mediated CFoCF1 reduction on the thylakoid membrane, whereas ΔΨ formation is nonessential.

13.
J Biol Chem ; 300(3): 105710, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309504

RESUMO

The bacterial envelope is an essential compartment involved in metabolism and metabolites transport, virulence, and stress defense. Its roles become more evident when homeostasis is challenged during host-pathogen interactions. In particular, the presence of free radical groups and excess copper in the periplasm causes noxious reactions, such as sulfhydryl group oxidation leading to enzymatic inactivation and protein denaturation. In response to this, canonical and accessory oxidoreductase systems are induced, performing quality control of thiol groups, and therefore contributing to restoring homeostasis and preserving survival under these conditions. Here, we examine recent advances in the characterization of the Dsb-like, Salmonella-specific Scs system. This system includes the ScsC/ScsB pair of Cu+-binding proteins with thiol-oxidoreductase activity, an alternative ScsB-partner, the membrane-linked ScsD, and a likely associated protein, ScsA, with a role in peroxide resistance. We discuss the acquisition of the scsABCD locus and its integration into a global regulatory pathway directing envelope response to Cu stress during the evolution of pathogens that also harbor the canonical Dsb systems. The evidence suggests that the canonical Dsb systems cannot satisfy the extra demands that the host-pathogen interface imposes to preserve functional thiol groups. This resulted in the acquisition of the Scs system by Salmonella. We propose that the ScsABCD complex evolved to connect Cu and redox stress responses in this pathogen as well as in other bacterial pathogens.


Assuntos
Proteínas de Bactérias , Proteínas de Transporte , Cobre , Salmonella , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Homeostase , Oxirredução , Oxirredutases/metabolismo , Salmonella/metabolismo , Compostos de Sulfidrila , Proteínas de Transporte/metabolismo
14.
J Biol Chem ; 300(3): 105662, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246354

RESUMO

The reversible oxidation of methionine plays a crucial role in redox regulation of proteins. Methionine oxidation in proteins causes major structural modifications that can destabilize and abrogate their function. The highly conserved methionine sulfoxide reductases protect proteins from oxidative damage by reducing their oxidized methionines, thus restoring their stability and function. Deletion or mutation in conserved methionine sulfoxide reductases leads to aging and several human neurological disorders and also reduces yeast growth on nonfermentable carbon sources. Despite their importance in human health, limited information about their physiological substrates in humans and yeast is available. For the first time, we show that Mxr2 interacts in vivo with two core proteins of the cytoplasm to vacuole targeting (Cvt) autophagy pathway, Atg19, and Ape1 in Saccharomyces cerevisiae. Deletion of MXR2 induces instability and early turnover of immature Ape1 and Atg19 proteins and reduces the leucine aminopeptidase activity of Ape1 without affecting the maturation process of Ape1. Additonally, Mxr2 interacts with the immature Ape1, dependent on Met17 present within the propeptide of Ape1 as a single substitution mutation of Met17 to Leu abolishes this interaction. Importantly, Ape1 M17L mutant protein resists oxidative stress-induced degradation in WT and mxr2Δ cells. By identifying Atg19 and Ape1 as cytosolic substrates of Mxr2, our study maps the hitherto unexplored connection between Mxr2 and the Cvt autophagy pathway and sheds light on Mxr2-dependent oxidative regulation of the Cvt pathway.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Autofagia , Metionina/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoplasma/metabolismo , Vacúolos/metabolismo , Estresse Oxidativo , Estabilidade Proteica
15.
J Biol Chem ; 300(6): 107292, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636659

RESUMO

[FeFe]-hydrogenases catalyze the reversible oxidation of H2 from electrons and protons at an organometallic active site cofactor named the H-cluster. In addition to the H-cluster, most [FeFe]-hydrogenases possess accessory FeS cluster (F-cluster) relays that function in mediating electron transfer with catalysis. There is significant variation in the structural properties of F-cluster relays among the [FeFe]-hydrogenases; however, it is unknown how this variation relates to the electronic and thermodynamic properties, and thus the electron transfer properties, of enzymes. Clostridium pasteurianum [FeFe]-hydrogenase II (CpII) exhibits a large catalytic bias for H2 oxidation (compared to H2 production), making it a notable system for examining if F-cluster properties contribute to the overall function and efficiency of the enzyme. By applying a combination of multifrequency and potentiometric electron paramagnetic resonance, we resolved two electron paramagnetic resonance signals with distinct power- and temperature-dependent properties at g = 2.058 1.931 1.891 (F2.058) and g = 2.061 1.920 1.887 (F2.061), with assigned midpoint potentials of -140 ± 18 mV and -406 ± 12 mV versus normal hydrogen electrode, respectively. Spectral analysis revealed features consistent with spin-spin coupling between the two [4Fe-4S] F-clusters, and possible functional models are discussed that account for the contribution of coupling to the electron transfer landscape. The results signify the interplay of electronic coupling and free energy properties and parameters of the FeS clusters to the electron transfer mechanism through the relay and provide new insight as to how relays functionally complement the catalytic directionality of active sites to achieve highly efficient catalysis.


Assuntos
Clostridium , Hidrogênio , Hidrogenase , Proteínas Ferro-Enxofre , Oxirredução , Hidrogenase/metabolismo , Hidrogenase/química , Clostridium/enzimologia , Hidrogênio/metabolismo , Hidrogênio/química , Transporte de Elétrons , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
16.
J Biol Chem ; : 107678, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151727

RESUMO

Recent studies reveal that biosynthesis of iron-sulfur clusters (Fe-Ss) is essential for cell proliferation, including that of cancer cells. Nonetheless, it remains unclear how Fe-S biosynthesis functions in cell proliferation/survival. Here, we report that proper Fe-S biosynthesis is essential to prevent cellular senescence, apoptosis or ferroptosis, depending on cell context. To assess these outcomes in cancer, we developed an ovarian cancer line with conditional KO of FDX2, a component of the core Fe-S assembly complex. FDX2 loss induced global down-regulation of Fe-S-containing proteins and Fe2+ overload, resulting in DNA damage and p53 pathway activation, and driving the senescence program. p53-deficiency augmented DNA damage responses upon FDX2 loss, resulting in apoptosis rather than senescence. FDX2 loss also sensitized cells to ferroptosis, as evidenced by compromised redox homeostasis of membrane phospholipids (PLs). Our results suggest that p53 status and PL homeostatic activity are critical determinants of diverse biological outcomes of Fe-S deficiency in cancer cells.

17.
Plant J ; 118(5): 1455-1474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38394181

RESUMO

Class I glutaredoxins (GRXs) are catalytically active oxidoreductases and considered key proteins mediating reversible glutathionylation and deglutathionylation of protein thiols during development and stress responses. To narrow in on putative target proteins, it is mandatory to know the subcellular localization of the respective GRXs and to understand their catalytic activities and putative redundancy between isoforms in the same compartment. We show that in Arabidopsis thaliana, GRXC1 and GRXC2 are cytosolic proteins with GRXC1 being attached to membranes through myristoylation. GRXC3 and GRXC4 are identified as type II membrane proteins along the early secretory pathway with their enzymatic function on the luminal side. Unexpectedly, neither single nor double mutants lacking both GRXs isoforms in the cytosol or the ER show phenotypes that differ from wild-type controls. Analysis of electrostatic surface potentials and clustering of GRXs based on their electrostatic interaction with roGFP2 mirrors the phylogenetic classification of class I GRXs, which clearly separates the cytosolic GRXC1 and GRXC2 from the luminal GRXC3 and GRXC4. Comparison of all four studied GRXs for their oxidoreductase function highlights biochemical diversification with GRXC3 and GRXC4 being better catalysts than GRXC1 and GRXC2 for the reduction of bis(2-hydroxyethyl) disulfide. With oxidized roGFP2 as an alternative substrate, GRXC1 and GRXC2 catalyze the reduction faster than GRXC3 and GRXC4, which suggests that catalytic efficiency of GRXs in reductive reactions depends on the respective substrate. Vice versa, GRXC3 and GRXC4 are faster than GRXC1 and GRXC2 in catalyzing the oxidation of pre-reduced roGFP2 in the reverse reaction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citosol , Glutarredoxinas , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Citosol/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Via Secretória , Filogenia
18.
Plant J ; 118(2): 405-422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38163320

RESUMO

Cell polarity is the foundation of cell development and tissue morphogenesis. The investigation of polarized growth provides opportunities to gain profound insights into morphogenesis and tissue functionality in organisms. Currently, there are still many mysteries surrounding the mechanisms that regulate polarized cell growth. Cotton fiber cells serve as an excellent model for studying polarized growth, and provide important clues for unraveling the molecular mechanisms, signaling pathways, and regulatory networks of polarized growth. In this study, we characterized two functional genes, GhMDHAR1AT/DT and GhDHAR2AT/DT with predominant expression during fiber elongation. Loss of function of both genes contributed to a significant increase in fiber length. Transcriptomic data revealed up-regulated expression of antioxidant genes in CRISPR mutant lines, along with delayed expression of secondary wall-related genes and temporally prolonged expression of primary wall-related genes. Experimental evidence demonstrated that the increase in GSH content and glutathione peroxidase (GPX) enzyme activity led to enhanced total antioxidant capacity (T-AOC), resulting in reduced H2O2 levels, which contributed to the extension of fiber elongation stage in CRISPR mutant lines. Moreover, the increased polysaccharide synthesis in CRISPR mutant lines was found to provide an abundant supply of raw materials for fiber cell wall elongation, suggesting that synergistic interplay between redox homeostasis and polysaccharide synthesis in fiber cells may facilitate cell wall remodeling and fiber elongation. This study provides valuable insights for deciphering the mechanisms of cell polarized growth and improving cotton fiber quality.


Assuntos
Antioxidantes , Fibra de Algodão , Peróxido de Hidrogênio , Perfilação da Expressão Gênica , Oxirredução , Homeostase , Polissacarídeos , Gossypium/genética , Regulação da Expressão Gênica de Plantas
19.
Plant J ; 119(1): 460-477, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678554

RESUMO

Maize plastid terminal oxidase1 (ZmPTOX1) plays a pivotal role in seed development by upholding redox balance within seed plastids. This study focuses on characterizing the white kernel mutant 3735 (wk3735) mutant, which yields pale-yellow seeds characterized by heightened protein but reduced carotenoid levels, along with delayed germination compared to wild-type (WT) seeds. We successfully cloned and identified the target gene ZmPTOX1, responsible for encoding maize PTOX-a versatile plastoquinol oxidase and redox sensor located in plastid membranes. While PTOX's established role involves regulating redox states and participating in carotenoid metabolism in Arabidopsis leaves and tomato fruits, our investigation marks the first exploration of its function in storage organs lacking a photosynthetic system. Through our research, we validated the existence of plastid-localized ZmPTOX1, existing as a homomultimer, and established its interaction with ferredoxin-NADP+ oxidoreductase 1 (ZmFNR1), a crucial component of the electron transport chain (ETC). This interaction contributes to the maintenance of redox equilibrium within plastids. Our findings indicate a propensity for excessive accumulation of reactive oxygen species (ROS) in wk3735 seeds. Beyond its known role in carotenoids' antioxidant properties, ZmPTOX1 also impacts ROS homeostasis owing to its oxidizing function. Altogether, our results underscore the critical involvement of ZmPTOX1 in governing seed development and germination by preserving redox balance within the seed plastids.


Assuntos
Germinação , Homeostase , Oxirredução , Proteínas de Plantas , Plastídeos , Sementes , Zea mays , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Germinação/genética , Plastídeos/metabolismo , Plastídeos/genética , Plastídeos/enzimologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zea mays/enzimologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Oxirredutases/metabolismo , Oxirredutases/genética , Regulação da Expressão Gênica de Plantas , Carotenoides/metabolismo
20.
Plant J ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136690

RESUMO

Maintaining an optimal redox status is essential for plant growth and development, particularly when the plants are under stress. AT-hook motif nuclear localized (AHL) proteins are evolutionarily conserved transcription factors in plants. Much of our understanding about this gene family has been derived from studies on clade A members. To elucidate the functions of clade B genes, we first analyzed their spatial expression patterns using transgenic plants expressing a nuclear localized GFP under the control of their promoter sequences. AHL1, 2, 6, 7, and 10 were further functionally characterized owing to their high expression in the root apical meristem. Through mutant analyses and transgenic studies, we showed that these genes have the ability to promote root growth. Using yeast one-hybrid and dual luciferase assays, we demonstrated that AHL1, 2, 6, 7, and 10 are transcription regulators and this activity is required for their roles in root growth. Although mutants for these genes did not showed obvious defects in root growth, transgenic plants expressing their fusion proteins with the SRDX repressor motif exhibited a short-root phenotype. Through transcriptome analysis, histochemical staining and molecular genetics experiments, we found that AHL10 maintains redox homeostasis via direct regulation of glutathione transferase (GST) genes. When the transcript level of GSTF2, a top-ranked target of AHL10, was reduced by RNAi, the short-root phenotype in the AHL10-SRDX expressing plant was largely rescued. These results together suggest that AHL genes function redundantly in promoting root growth through direct regulation of redox homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA