RESUMO
Inherited retinal diseases (IRDs) are a rare group of eye disorders characterized by progressive dysfunction and degeneration of retinal cells. In this study, we characterized the raifteirí (raf) zebrafish, a novel model of inherited blindness, identified through an unbiased ENU mutagenesis screen. A mutation in the largest subunit of the endoplasmic reticulum membrane protein complex, emc1 was subsequently identified as the causative raf mutation. We sought to elucidate the cellular and molecular phenotypes in the emc1-/- knockout model and explore the association of emc1 with retinal degeneration. Visual behavior and retinal electrophysiology assays demonstrated that emc1-/- mutants had severe visual impairments. Retinal histology and morphometric analysis revealed extensive abnormalities, including thinning of the photoreceptor layer, in addition to large gaps surrounding the lens. Notably, photoreceptor outer segments were drastically smaller, outer segment protein expression was altered and hyaloid vasculature development was disrupted. Transcriptomic profiling identified cone and rod-specific phototransduction genes significantly downregulated by loss of emc1. These data shed light on why emc1 is a causative gene in inherited retinal disease and how outer segment morphogenesis is regulated.
Assuntos
Morfogênese , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Visão Ocular/fisiologia , Visão Ocular/genética , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Retina/metabolismo , MutaçãoRESUMO
The high allelic heterogeneity in Stargardt disease (STGD1) complicates the design of intervention strategies. A significant proportion of pathogenic intronic ABCA4 variants alters the pre-mRNA splicing process. Antisense oligonucleotides (AONs) are an attractive yet mutation-specific therapeutic strategy to restore these splicing defects. In this study, we experimentally assessed the potential of a splicing modulation therapy to target multiple intronic ABCA4 variants. AONs were inserted into U7snRNA gene cassettes and tested in midigene-based splice assays. Five potent antisense sequences were selected to generate a multiple U7snRNA cassette construct, and this combination vector showed substantial rescue of all of the splicing defects. Therefore, the combination cassette was used for viral synthesis and assessment in patient-derived photoreceptor precursor cells (PPCs). Simultaneous delivery of several modified U7snRNAs through a single AAV, however, did not show substantial splicing correction, probably due to suboptimal transduction efficiency in PPCs and/or a heterogeneous viral population containing incomplete AAV genomes. Overall, these data demonstrate the potential of the U7snRNA system to rescue multiple splicing defects, but also suggest that AAV-associated challenges are still a limiting step, underscoring the need for further optimization before implementing this strategy as a potential treatment for STGD1.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Splicing de RNA , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Doença de Stargardt/genética , Mutação , Células FotorreceptorasRESUMO
BACKGROUND: To delineate the clinical and mutational signatures of patients with CRB1-associated retinopathies. METHODS: This multicentre retrospective cohort study involved 40 patients with CRB1 mutations and 40 age-matched and gender-matched inherited retinal diseases (IRDs). The detailed phenotyping and genotyping characteristics and genotypeâphenotype correlations of the patients were analysed. RESULTS: The mean age of CRB1 cohort was 27.33±14.63 years. Results showed that yellowish geographic macular degeneration (66.67%), small white or yellow dots (65.6%), hyperopia (62.5%), abnormally laminated retina (61.61%), epiretinal membrane (60.6%) and nummular pigment deposits (50%) were the most common signatures in patients with CRB1 mutations. These clinical signatures were notably more prevalent among CRB1 patients than among individuals in other IRD group (p<0.001). Early-onset severe retinal dystrophy/Leber congenital amaurosis (EOSRD/LCA) patients are more likely to present these signatures than retinitis pigmentosa (RP) and macular dystrophy (MD) patients. Furthermore, a significant reduction in central foveal thickness coupled with pronounced thickening of the peripheral retina was observed more distinctly in patients with EOSRD/LCA (p<0.001). The choroidal thickness was not significantly altered compared to the normal controls, but was markedly reduced in the other IRD groups (p<0.001). 55 pathogenic variants were identified, 20 of which were novel. Null mutations were associated with EOSRD/LCA patients, and missense mutations were more prevalent in MD and RP patients. CONCLUSIONS: Key clinical and mutational signatures were demonstrated in this study, providing a comprehensive update on CRB1-associated retinopathies that will aid in diagnosis and lay the foundation for future therapeutic studies.
RESUMO
Retinal photoreceptors have a distinct transcriptomic profile compared to other neuronal subtypes, likely reflecting their unique cellular morphology and function in the detection of light stimuli by way of the ciliary outer segment. We discovered a layer of this molecular specialization by revealing that the vertebrate retina expresses the largest number of tissue-enriched microexons of all tissue types. A subset of these microexons is included exclusively in photoreceptor transcripts, particularly in genes involved in cilia biogenesis and vesicle-mediated transport. This microexon program is regulated by Srrm3, a paralog of the neural microexon regulator Srrm4. Despite the fact that both proteins positively regulate retina microexons in vitro, only Srrm3 is highly expressed in mature photoreceptors. Its deletion in zebrafish results in widespread down-regulation of microexon inclusion from early developmental stages, followed by other transcriptomic alterations, severe photoreceptor defects, and blindness. These results shed light on the transcriptomic specialization and functionality of photoreceptors, uncovering unique cell type-specific roles for Srrm3 and microexons with implications for retinal diseases.
Assuntos
Proteínas , Segmento Externo das Células Fotorreceptoras da Retina , Fatores de Processamento de Serina-Arginina , Visão Ocular , Animais , Éxons , Deleção de Genes , Humanos , Proteínas/genética , Proteínas/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/fisiologia , Transcriptoma , Visão Ocular/genética , Visão Ocular/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genéticaRESUMO
N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff-base conjugate formed through the reversible reaction of retinal (Vitamin A-aldehyde) and phosphatidylethanolamine, plays a crucial role in the visual cycle and visual pigment photoregeneration. However, N-Ret-PE can react with another molecule of retinal to form toxic di-retinoids if not removed from photoreceptors through its transport across photoreceptor membranes by the ATP-binding-cassette transporter ABCA4. Loss-of-function mutations in ABCA4 are known to cause Stargardt disease (STGD1), an inherited retinal degenerative disease associated with the accumulation of fluorescent di-retinoids and severe loss in vision. A larger assessment of retinal-phospholipid Schiff-base conjugates in photoreceptors is needed, along with further investigation of ABCA4 residues important for N-Ret-PE binding. In this study we show that N-Ret-PE formation is dependent on pH and phospholipid content. When retinal is added to liposomes or photoreceptor membranes, 40 to 60% is converted to N-Ret-PE at physiological pH. Phosphatidylserine and taurine also react with retinal to form N-retinylidene-phosphatidylserine and N-retinylidene-taurine, respectively, but at significantly lower levels. N-retinylidene-phosphatidylserine is not a substrate for ABCA4 and reacts poorly with retinal to form di-retinoids. Additionally, amino acid residues within the binding pocket of ABCA4 that contribute to its interaction with N-Ret-PE were identified and characterized using site-directed mutagenesis together with functional and binding assays. Substitution of arginine residues and hydrophobic residues with alanine or residues implicated in STGD1 significantly reduced or eliminated substrate-activated ATPase activity and substrate binding. Collectively, this study provides important insight into conditions which affect retinal-phospholipid Schiff-base formation and mechanisms underlying the pathogenesis of STGD1.
Assuntos
Fosfolipídeos , Doença de Stargardt , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fosfatidilserinas , Retinoides/metabolismo , Doença de Stargardt/metabolismoRESUMO
BACKGROUND: Retinal degenerative disorders (RDDs) cause vision loss by damaging retinal neurons and photoreceptors, affecting individuals of all ages. Cell-based therapy has emerged as an effective approach for the treatment of RDDs with promising results. This meta-analysis aims to comprehensively evaluate the efficacy of cell therapy in treating age-related macular degeneration (AMD), retinitis pigmentosa (RP), and Stargardt macular degeneration (SMD) as the most prevalent RDDs. METHODS: PubMed, Scopus, Web of Science, and Embase were searched using keywords related to various retinal diseases and cell therapy treatments until November 25th, 2023. The studies' quality was evaluated using the Joanna Briggs Institute's (JBI) checklist for quasi-experimental studies. Visual acuity measured as LogMAR score was used as our main outcome. A three-level random-effect meta-analysis was used to explore the visual acuity in patients who received cell-based therapy. Heterogeneity among the included studies was evaluated using subgroup and sensitivity analyses. Moreover, meta-regression for the type of cells, year of publication, and mean age of participants were performed. RESULTS: Overall, 8345 studies were retrieved by the search, and 39 met the eligibility criteria, out of which 18 studies with a total of 224 eyes were included in the meta-analysis. There were 12 studies conducted on AMD, 7 on SMD, and 2 on RP. Cell therapy for AMD showed significant improvement in LogMAR (p < 0.05). Also, cell therapy decreased the LogMAR score in SMD and RP (p < 0.01 and p < 0.0001, respectively). Across all conditions, no substantial publication bias was detected (p < 0.05). CONCLUSION: The findings of the study highlight that the application of cell therapy can enhance the visual acuity in AMD, SMD, and RP.
Assuntos
Degeneração Macular , Retina , Humanos , Degeneração Macular/terapia , Acuidade Visual , Terapia Baseada em Transplante de Células e TecidosRESUMO
PURPOSE: To assess the impact of baseline data on psychophysical and morphological outcomes of subretinal voretigene neparvovec (VN) (Luxturna, Spark Therapeutics, Inc.) treatment. DESIGN: Single-center, retrospective, longitudinal, consecutive case series. PARTICIPANTS: Patients with RPE65-biallelic mutation-associated inherited retinal degeneration (RPE65-IRD) treated between February 2020 and March 2022 with VN and oral immunosuppression according to the manufacturer's recommendation by one surgeon (F.G.H.). METHODS: Retrospective analysis of surgical and clinical records, ancillary testing, and retinal imaging after VN therapy for RPE65-IRD. Descriptive statistics compared data at baseline up to 32 months post-treatment. MAIN OUTCOME MEASURES: Best-corrected visual acuity (BCVA), low-luminance VA (LLVA), Goldmann visual fields (GVFs), chromatic full-field stimulus threshold (FST) testing (FST), scotopic and photopic 2-color threshold perimetry (2CTP), and multimodal retinal imaging. RESULTS: Thirty eyes of 19 patients were analyzed (10 pediatric patients < 20 years; 20 adult patients > 20 years of age; overall range: 8-40 years) with a median follow-up of 15 months (range, 1-32). The fovea was completely or partially detached in 16 eyes, attached in 12 eyes, and not assessable in 2 eyes on intraoperative imaging. Median BCVA at baseline was better in the pediatric group (P < 0.05) and did not change significantly independent of age. Meaningful loss of BCVA (≥ 0.3 logarithm of the minimal angle of resolution [logMAR]) occurred in 5 of 18 adult eyes, and a meaningful gain (≥-0.3 logMAR) occurred in 2 of 18 adult and 2 of 8 pediatric eyes. The LLVA and scotopic 2CTP improved considerably in pediatric patients. Scotopic blue FST improved at all ages but more in pediatric patients (8/8 eyes gained ≥ 10 decibels [dB]; P < 0.05). In pediatric patients, median GVF improved by 20% for target V4e and by 50% for target III4e (target I4e not detected). Novel atrophy developed in 13 of 26 eyes at the site of the bleb or peripheral of vascular arcades. Improvements in FST did not correlate with development of chorioretinal atrophy at 12 months. Mean central retinal thickness was 165.87 µm (± 26.26) at baseline (30 eyes) and 157.69 µm (± 30.3) at 12 months (26 eyes). Eight adult patients were treated unilaterally. The untreated eyes did not show meaningful changes during follow-up. CONCLUSIONS: These data in a clinical setting show the effectiveness of VN therapy with stable median BCVA and mean retinal thickness and improvements of LLVA, FST, and 2CTP up to 32 months. Treatment effects were superior in the pediatric group. We observed new chorioretinal atrophy in 50% of the treated eyes. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Assuntos
Retina , Distrofias Retinianas , Adulto , Humanos , Criança , Estudos Retrospectivos , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Distrofias Retinianas/terapia , Mutação , AtrofiaRESUMO
Familial exudative vitreoretinopathy (FEVR) is linked to disruption of the Norrin/Frizzled-4 signaling pathway, which plays an important role in retinal angiogenesis. Severe or complete knock-down of proteins in the pathway also causes syndromic forms of the condition. Both heterozygous and biallelic pathogenic variants in the FZD4 gene, encoding the pathway's key protein frizzled-4, are known to cause FEVR. However, it is not clear what effect different FZD4 variants have, and whether extraocular features should be expected in those with biallelic pathogenic FZD4 variants. Biallelic FZD4 variants were found in a young boy with isolated, severe FEVR. His parents were heterozygous for one variant each and reported normal vision. In-vitro studies of the two variants, demonstrated that it was the combination of the two which led to severe inhibition of the Norrin/Frizzled-4 pathway. Our observations demonstrate that biallelic FZD4-variants are associated with a severe form of FEVR, which does not necessarily include extraocular features. In addition, variants causing severe FEVR in combination, may have no or minimal effect in heterozygous parents as non-penetrance is also a major feature in dominant FZD4-FEVR disease. This underscores the importance of genetic testing of individuals and families with FEVR.
Assuntos
Alelos , Vitreorretinopatias Exsudativas Familiares , Receptores Frizzled , Humanos , Masculino , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/patologia , Vitreorretinopatias Exsudativas Familiares/genética , Receptores Frizzled/genética , Predisposição Genética para Doença , Heterozigoto , Mutação/genética , Linhagem , Fenótipo , Doenças Retinianas/genética , Doenças Retinianas/patologia , Lactente , Pré-EscolarRESUMO
Female carriers of X-linked inherited retinal diseases (IRDs) are burdened with potentially passing their disease-causing variant to future generations, as well as exhibiting signs of retinal disease themselves. This study aimed to investigate carriers' experiences of genetic testing, emotions relating to having affected children, and their knowledge regarding genetic testing and gene therapy. An online survey was advertised to self-identified carriers worldwide. Two hundred and twenty-eight carriers completed the survey with mean age of 51 years (SD ± 15.0). A majority of respondents resided in the United States of America (51%), Australia (19%), and the United Kingdom (14%). Most carriers identified with feelings of guilt (70%), concern (91%), and anxiety (88%) for their child. Female carriers who had given birth to children had significantly greater gene therapy knowledge compared to carriers who had not (p < 0.05). Respondents agreed that their eyecare provider and general practitioner helped them understand their condition (63%), however, few carriers reported receiving psychological counselling (9%) or family planning advice (5%). Most respondents (78%) agreed that gene therapy should be available to carriers. This study emphasises the importance of providing appropriate counselling to female carriers and illustrates the motivation of many to participate in emerging treatment options, such as gene therapy.
Assuntos
Testes Genéticos , Doenças Retinianas , Criança , Humanos , Feminino , Pessoa de Meia-Idade , Emoções , Inquéritos e Questionários , Doenças Retinianas/genética , Doenças Retinianas/terapia , Austrália/epidemiologiaRESUMO
This research aims to compile recent clinical and genetic data from Turkish patients with inherited retinal disorders and evaluate the effectiveness of targeted Next-generation sequencing panels. The study included Turkish individuals with hereditary retinal diseases who visited the Medical Genetic Department of Erciyes University between 2019 and 2022. One proband per family was selected based on eligibility. We used Hereditary Disorder Solution (HDS) by Sophia Genetics and performed next-generation sequencing (NGS) with Illumina NextSeq-500. Bioinformatics analysis using Sophia DDM® SaaS algorithms and ACMG guidelines classified genomic changes. The study involved 354 probands. Disease-causing variants were found in 58.1% of patients, with ABCA4, USH2A, RDH12, and EYS being the most frequently implicated genes. Forty-eight novel variants were detected. This study enhances the knowledge of clinical diagnoses, symptom onset, inheritance patterns, and genetic details for Turkish individuals with hereditary retinal disease. It contributes to broader health strategies by enabling comparisons with other studies.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Fenótipo , Doenças Retinianas , Humanos , Turquia , Masculino , Doenças Retinianas/genética , Doenças Retinianas/diagnóstico , Feminino , Adulto , Criança , Adolescente , Pessoa de Meia-Idade , Linhagem , Proteínas do Olho/genética , Predisposição Genética para Doença , Oxirredutases do Álcool/genética , Transportadores de Cassetes de Ligação de ATP/genética , Pré-Escolar , Biologia Computacional/métodos , Estudos de Coortes , Adulto Jovem , Testes Genéticos/métodos , Lactente , Proteínas da Matriz ExtracelularRESUMO
Leber congenital amaurosis (LCA) and early-onset retinal degeneration (EORD) are inherited retinal diseases (IRD) characterized by early-onset vision impairment. Herein, we studied 15 Saudi families by whole exome sequencing (WES) and run-of-homozygosity (ROH) detection via AutoMap in 12/15 consanguineous families. This revealed (likely) pathogenic variants in 11/15 families (73%). A potential founder variant was found in RPGRIP1. Homozygous pathogenic variants were identified in known IRD genes (ATF6, CRB1, CABP4, RDH12, RIMS2, RPGRIP1, SPATA7). We established genotype-driven clinical reclassifications for ATF6, CABP4, and RIMS2. Specifically, we observed isolated IRD in the individual with the novel RIMS2 variant, and we found a retina-enriched RIMS2 isoform conserved but not annotated in mouse. The latter illustrates potential different phenotypic consequences of pathogenic variants depending on the particular tissue/cell-type specific isoforms they affect. Lastly, a compound heterozygous genotype in GUCY2D in one non-consanguineous family was demonstrated, and homozygous variants in novel candidate genes ATG2B and RUFY3 were found in the two remaining consanguineous families. Reporting these genes will allow to validate them in other IRD cohorts. Finally, the missing heritability of the two unsolved IRD cases may be attributed to variants in non-coding regions or structural variants that remained undetected, warranting future WGS studies.
Assuntos
Consanguinidade , Sequenciamento do Exoma , Linhagem , Fenótipo , Humanos , Feminino , Masculino , Retina/patologia , Homozigoto , Doenças Retinianas/genética , Isoformas de Proteínas/genética , Exoma/genética , Mutação , Criança , Predisposição Genética para Doença , Amaurose Congênita de Leber/genética , Estudos de Coortes , Genótipo , Estudos de Associação Genética/métodosRESUMO
The dog retina contains a central macula-like region, and there are reports of central retinal disorders in dogs with shared genetic etiologies with humans. Defining central/peripheral gene expression profiles may provide insight into the suitability of dogs as models for human disorders. We determined central/peripheral posterior eye gene expression profiles in dogs and interrogated inherited retinal and macular disease-associated genes for differential expression between central and peripheral regions. Bulk tissue RNA sequencing was performed on 8 mm samples of the dog central and superior peripheral regions, sampling retina and retinal pigmented epithelium/choroid separately. Reads were mapped to CanFam3.1, read counts were analyzed to determine significantly differentially expressed genes (DEGs). A similar analytic pipeline was used with a published bulk-tissue RNA sequencing human dataset. Pathways and processes involved in significantly DEGs were identified (Database for Annotation, Visualization and Integrated Discovery). Dogs and humans shared the extent and direction of central retinal differential gene expression, with multiple shared biological pathways implicated in differential expression. Many genes implicated in heritable retinal disorders in dogs and humans were differentially expressed between central and periphery. Approximately half of genes associated with human age-related macular degeneration were differentially expressed in human and dog tissues. We have identified similarities and differences in central/peripheral gene expression profiles between dogs and humans which can be applied to further define the relevance of dogs as models for human retinal disorders.
Assuntos
Retina , Cães , Animais , Humanos , Retina/metabolismo , Regulação da Expressão Gênica/fisiologia , Perfilação da Expressão Gênica , Modelos Animais de Doenças , Transcriptoma , Epitélio Pigmentado da Retina/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Masculino , Feminino , Corioide/metabolismoRESUMO
BACKGROUND: Alström syndrome (ALMS; #203800) is an ultrarare monogenic recessive disease. This syndrome is associated with variants in the ALMS1 gene, which encodes a centrosome-associated protein involved in the regulation of several ciliary and extraciliary processes, such as centrosome cohesion, apoptosis, cell cycle control and receptor trafficking. The type of variant associated with ALMS is mostly complete loss-of-function variants (97%) and they are mainly located in exons 8, 10 and 16 of the gene. Other studies in the literature have tried to establish a genotype-phenotype correlation in this syndrome with limited success. The difficulty in recruiting a large cohort in rare diseases is the main barrier to conducting this type of study. METHODS: In this study we collected all cases of ALMS published to date. We created a database of patients who had a genetic diagnosis and an individualised clinical history. Lastly, we attempted to establish a genotype-phenotype correlation using the truncation site of the patient's longest allele as a grouping criteria. RESULTS: We collected a total of 357 patients, of whom 227 had complete clinical information, complete genetic diagnosis and meta-information on sex and age. We have seen that there are five variants with high frequency, with p.(Arg2722Ter) being the most common variant, with 28 alleles. No gender differences in disease progression were detected. Finally, truncating variants in exon 10 seem to be correlated with a higher prevalence of liver disorders in patients with ALMS. CONCLUSION: Pathogenic variants in exon 10 of the ALMS1 gene were associated with a higher prevalence of liver disease. However, the location of the variant in the ALMS1 gene does not have a major impact on the phenotype developed by the patient.
Assuntos
Síndrome de Alstrom , Humanos , Síndrome de Alstrom/genética , Síndrome de Alstrom/patologia , Proteínas de Ciclo Celular/genética , Fenótipo , Éxons , Estudos de Associação GenéticaRESUMO
PURPOSE: Gyrate atrophy of the choroid and retina (GACR) is an autosomal recessive inherited metabolic disorder (IMD) characterised by progressive retinal degeneration, leading to severe visual impairment. The rapid developments in ophthalmic genetic therapies warrant knowledge on clinical phenotype of eligible diseases such as GACR to define future therapeutic parameters in clinical trials. METHODS: Retrospective chart analysis was performed in nineteen patients. Data were analysed using IBM SPSS Statistics version 28.0.1.1. RESULTS: Nineteen patients were included with a mean age of 32.6 years (range 8-58). Mean age at onset of ophthalmic symptoms was 7.9 years (range 3-16). Median logMAR of visual acuity at inclusion was 0.26 (range -0.18-3.00). Mean age at cataract surgery was 28.8 years (n = 11 patients). Mean spherical equivalent of the refractive error was -8.96 (range -20.87 to -2.25). Cystoid maculopathy was present in 68% of patients, with a loss of integrity of the foveal ellipsoid zone (EZ) in 24/38 eyes. Of the 14 patients treated with dietary protein restriction, the four patients who started the diet before age 10 showed most benefit. CONCLUSION: This study demonstrates the severe ophthalmic disease course associated with GACR, as well as possible benefit of early dietary treatment. In addition to visual loss, patients experience severe myopia, early-onset cataract, and CME. There is a loss of foveal EZ integrity at a young age, emphasising the need for early diagnosis enabling current and future therapeutic interventions.
RESUMO
PURPOSE: This study aimed to analyze the genetic results of inherited retinal diseases (IRDs) and evaluate the diagnostic usefulness of whole genome sequencing (WGS) in the Korean National Project of Bio Big Data. METHODS: As part of the Korean National Project of Bio Big Data, WGS was performed on 32 individuals with IRDs with no identified pathogenic variants through whole or targeted exome sequencing. RESULTS: Individuals with retinitis pigmentosa (n = 23), cone dystrophy (n = 2), cone-rod dystrophy (n = 2), familial exudative vitreoretinopathy (n = 2), pigmented paravenous chorioretinal atrophy (n = 1), North Carolina macular dystrophy (n = 1), and bull's-eye macular dystrophy (n = 1) were included. WGS revealed genetic mutations in the IQCB1, PRPF31, USH2A, and GUCY2D genes in five cases (15.6%). Two large structural variations and an intronic variant were newly detected in three cases. Two individuals had biallelic missense mutations that were not identified in previous exome sequencing. CONCLUSION: With WGS, the causative variants in 15.6% of unsolved IRDs from the Korean National Project of Bio Big Data were identified. Further research with a larger cohort might unveil the diagnostic usefulness of WGS in IRDs and other diseases.
Assuntos
Doenças Retinianas , Distrofias Retinianas , Humanos , Big Data , Linhagem , Doenças Retinianas/diagnóstico , Doenças Retinianas/genética , Mutação , Sequenciamento Completo do Genoma , República da Coreia/epidemiologia , Análise Mutacional de DNA , Distrofias Retinianas/diagnóstico , Proteínas de Ligação a Calmodulina/genéticaRESUMO
INTRODUCTION: Degeneration in choroideremia, unlike typical centripetal photoreceptor degenerations, is centred temporal to the fovea. Once the fovea is affected, the nasal visual field (temporal retina) is relatively spared, and the preferred retinal locus shifts temporally. Therefore, when reading left to right, only the right eye reads into a scotoma. We investigate how this unique property affects the ability to read an eye chart. METHODS: Standard- and low-luminance visual acuity (VA) for right and left eyes were measured with the Early Treatment of Diabetic Retinopathy Study (ETDRS) chart. Letters in each line were labelled by column position. The numbers of letter errors for each position across the whole chart were summed to produce total column error scores for each participant. Macular sensitivity was assessed using microperimetry. Central sensitivity asymmetry was determined by the temporal-versus-nasal central macular difference and subsequently correlated to a weighted ETDRS column error score. Healthy volunteers and participants with X-linked retinitis pigmentosa GTPase regulator associated retinitis pigmentosa (RPGR-RP) were used as controls. RESULTS: Thirty-nine choroideremia participants (median age 44.9 years [IQR 35.7-53.5]), 23 RPGR-RP participants (median age 30.8 years [IQR 26.5-40.5]) and 35 healthy controls (median age 23.8 years [IQR 20.3-29.0]) were examined. In choroideremia, standard VA in the right eye showed significantly greater ETDRS column errors on the temporal side compared with the nasal side (p = 0.002). This significantly correlated with greater asymmetry in temporal-versus-nasal central macular sensitivity (p = 0.04). No significant patterns in ETDRS column errors or central macular sensitivity were seen in the choroideremia left eyes, nor in RPGR-RP and control eyes. CONCLUSION: Difficulty in tracking across lines during ETDRS VA testing may cause excess errors independent of true VA. VA assessment with single-letter optotype systems may be more suitable, particularly for patients with choroideremia, and potentially other retinal diseases with asymmetric central macular sensitivity or large central scotomas including geographic atrophy.
Assuntos
Coroideremia , Acuidade Visual , Campos Visuais , Humanos , Coroideremia/fisiopatologia , Coroideremia/diagnóstico , Acuidade Visual/fisiologia , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Campos Visuais/fisiologia , Macula Lutea/fisiopatologia , Macula Lutea/diagnóstico por imagem , Adulto Jovem , Leitura , Tomografia de Coerência Óptica/métodos , Testes Visuais/métodos , Testes de Campo Visual/métodosRESUMO
AIM: Clinical registries are an important research tool to enhance our understanding of vision loss in the Australian paediatric population. We aim to provide an update on the epidemiology of visual impairment among Western Australian children using registry data analysis, and to highlight the challenges of registry data collection. METHODS: This is a retrospective study of visual impairment and blindness registrations of children aged 0-16 years in Western Australia from 1996 to 2015. Blindness was defined as visual acuity ≤6/60 in the better-seeing eye or binocular visual field ≤20° diameter, with all other certifications labelled as visual impairment. Certificates were assessed for primary causes of vision loss by age strata and sex. Registration rate trends were analysed across three discrete registration periods. RESULTS: Of 11 800 certificates issued between 1996 and 2015, 728 certificates (6.2%) were issued to 710 children. Five hundred and twenty-nine (74.5%) certificates were issued for visual impairment and 181 (25.5%) for blindness. The leading cause of certification was inherited retinal disease (73, 10.3%), followed by cortical visual impairment (57, 8.0%) and albinism (56, 7.9%). The annual registration rate of visual impairment increased from 0.5 to 9.8 per 100 000 person-years across the study period, whereas blindness rates fell from 2.7 to 1.3. CONCLUSIONS: Overall registration rates of paediatric visual impairment in Western Australia are increasing, but these trends should be interpreted with caution given the known limitations of registry data. Enhancements of the registration process could be achieved through digitisation, inclusion of patient outcome data, and incentives for greater practitioner engagement.
RESUMO
INTRODUCTION: The purpose of this project was to explore the current standards of clinical care genetic testing and counseling for patients with inherited retinal diseases (IRDs) from the perspective of leading experts in selected European countries. Also, to gather opinions on current bottlenecks and future solutions to improve patient care. METHODS: On the initiative of the European Vision Institute, a survey questionnaire with 41 questions was designed and sent to experts in the field from ten European countries. Each participant was asked to answer with reference to the situation in their own country. RESULTS: Sixteen questionnaires were collected by November 2023. IRD genetic tests are performed in clinical care settings for 80% or more of tested patients in 9 countries, and the costs of genetic tests in clinical care are covered by the public health service to the extent of 90% or more in 8 countries. The median proportion of patients who are genetically tested, the median rate of genetically solved patients among those who are tested, and the median proportion of patients receiving counseling are 51-70%, 61-80%, and 61-80%, respectively. Improving the education of healthcare professionals who facilitate patient referrals to specialized centers, improving access of patients to more thorough genotyping, and increasing the number of available counselors were the most advocated solutions. CONCLUSION: There is a significant proportion of IRD patients who are not genetically tested, whose genetic testing is inconclusive, or who do not receive counseling. Educational programs, greater availability of state-of-the-art genotyping and genetic counselors could improve healthcare for IRD patients.
Assuntos
Testes Genéticos , Doenças Retinianas , Humanos , Testes Genéticos/métodos , Europa (Continente) , Doenças Retinianas/genética , Doenças Retinianas/diagnóstico , Inquéritos e Questionários , Aconselhamento GenéticoRESUMO
INTRODUCTION: The objective of this study was to investigate the clinical characteristics and genetic spectrum of adult-onset cone/cone-rod dystrophy (AOCD/AOCRD) in Korean individuals. METHODS: This is a single-center, retrospective cross-sectional study. We analyzed 22 individuals with genetically confirmed cone dystrophy, with symptoms beginning after 30 years of age. All patients underwent comprehensive ophthalmic and electrophysiological examinations. Exome sequencing of 296 genes associated with inherited retinal disease was performed. The clinical features of patients with AOCD/AOCRD and the causative genes and variants detected by exome sequencing were analyzed. RESULTS: The median age at the first visit was 52 years (range, 31-76 years), and the most common initial symptom was reduced visual acuity. In most cases, fundus photography showed a bull's eye pattern with foveal sparing, consistent with perifoveal photoreceptor loss on optical coherence tomography. We identified disease-causing variants in six genes: RP1, CRX, CDHR1, PROM1, CRB1, and GUCY2D. Pathogenic variants in RP1, CRX, and CDHR1 were identified in 77% of the AOCD/AOCRD cases, including p.Cys1399LeufsTer5, p.Arg1933Ter, and p.Ile2061SerfsTer12 in RP1; p.Ter300GlnextTer118 in CRX; and p.Glu201Lys in CDHR1. No characteristic imaging differences were observed for any of the causative genes. Most of the RP1-related AOCD/AOCRD cases showed a decreased amplitude only in the photopic electroretinogram (ERG), whereas CRX-related AOCD/AOCRD cases showed a slightly decreased amplitude in both the scotopic and photopic ERGs. CONCLUSION: In case of visual impairment with bull's eye pattern of RPE atrophy recognized after the middle age, a comprehensive ophthalmic examination and genetic test should be considered, with the possibility of AOCD/AOCRD in East Asians.
Assuntos
Distrofias de Cones e Bastonetes , Adulto , Pessoa de Meia-Idade , Humanos , Idoso , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/patologia , Estudos Retrospectivos , Estudos Transversais , Linhagem , Mutação , Eletrorretinografia , Tomografia de Coerência Óptica , Fenótipo , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas Relacionadas a CaderinasRESUMO
The retina is composed of neuronal layers that include several types of interneurons and photoreceptor cells, and separate underlying retinal pigment epithelium (RPE), Bruch's membrane, and choroid. Different regions of the human retina include the fovea, macula, and periphery, which have unique physiological functions and anatomical features. These regions are also unique in their protein expression, and corresponding cellular and molecular responses to physiological and pathophysiological stimuli. Skeie and Mahajan analyzed regional protein expression in the human choroid-RPE complex. Mitogen-Activated Protein Kinase (MAPK) signaling pathways have been implicated in responses to stimuli such as oxidative stress and inflammation, which are critical factors in retina diseases including age-related macular degeneration. We, therefore, analyzed the Skeie and Mahajan, 2014, dataset for regional differences in the expression of MAPK-related proteins and discussed the potential implications in retinal diseases presenting with regional signs and symptoms. Regional protein expression data from the Skeie and Mahajan, 2014, study were analyzed for members of signaling networks involving MAPK and MAPK-related proteins, categorized by specific MAPK cascades, such as p38, ERK1/2, and JNK1/2, both upstream or downstream of the respective MAPK and MAPK-related proteins. We were able to identify 207 MAPK and MAPK-related proteins, 187 of which belonging to specific MAPK cascades. A total of 31 of these had been identified in the retina with two proteins, DLG2 and FLG downstream, and the other 29 upstream, of MAPK proteins. Our findings provide evidence for potential molecular substrates of retina region-specific disease manifestation and potential new targets for therapeutics development.