Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 242: 117810, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042516

RESUMO

Land use/land cover (LULC) is a crucial factor that directly influences the hydrology and water resources of a watershed. In order to assess the impacts of LULC changes on river runoff in the Danjiang River source area, we analyzed the characteristics of LULC data for three time periods (2000, 2010, and 2020). The LULC changes during these periods were quantified, and three Soil and Water Assessment Tool (SWAT) models were established and combined with eight LULC scenarios to quantitatively analyze the effects of LULC changes on river runoff. The results revealed a decrease in the cropland area and an increase in the forest, grassland, and urban land areas from 2000 to 2020. Grassland, forest, and cropland collectively accounted for over 94% of the total area, and conversions among these land types were frequent. The SWAT models constructed based on the LULC data demonstrated good calibration and validation results. Based on the LULC data in three periods, the area of each LULC type changed slightly, so the simulation results were not significantly different. In the subsequent LULC scenarios, we found that the expansion of cropland, grassland, and urban areas was associated with increased river runoff, while an increase in forest area led to a decrease in river runoff. Among the various LULC types, urban land exerted the greatest influence on changes in river runoff. This study establishes three SWAT models and combines multiple LULC scenarios, which is novel and innovative. It can provide scientific basis for the rational allocation of water resources and the optimization of LULC structure in the Danjiang River source area.


Assuntos
Solo , Movimentos da Água , Rios , Água , Hidrologia/métodos , China
2.
J Environ Manage ; 213: 451-466, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29510367

RESUMO

Optically active water quality components (OAC) transported by flood plumes to nearshore marine environments affect light levels. The definition of minimum OAC concentrations that must be maintained to sustain sufficient light levels for conservation of light-dependant coastal ecosystems exposed to flood waters is necessary to guide management actions in adjacent catchments. In this study, a framework for defining OAC target concentrations using empirical light attenuation models is proposed and applied to the Wet Tropics region of the Great Barrier Reef (GBR) (Queensland, Australia). This framework comprises several steps: (i) light attenuation (Kd(PAR)) profiles and OAC measurements, including coloured dissolved organic matter (CDOM), chlorophyll-a (Chl-a) and suspended particulate matter (SPM) concentrations collected in flood waters; (ii) empirical light attenuation models used to define the contribution of CDOM, Chl-a and SPM to the light attenuation, and; (iii) translation of empirical models into manageable OAC target concentrations specific for wet season conditions. Results showed that (i) Kd(PAR) variability in the Wet Tropics flood waters is driven primarily by SPM and CDOM, with a lower contribution from Chl-a (r2 = 0.5, p < 0.01), (ii) the relative contributions of each OAC varies across the different water bodies existing along flood waters and strongest Kd(PAR) predictions were achieved when the in-situ data were clustered into water bodies with similar satellite-derived colour characteristics ('brownish flood waters', r2 = 0.8, p < 0.01, 'greenish flood waters', r2 = 0.5, p < 0.01), and (iii) that Kd(PAR) simulations are sensitive to the angular distribution of the light field in the clearest flood water bodies. Empirical models developed were used to translate regional light guidelines (established for the GBR) into manageable OAC target concentrations. Preliminary results suggested that a 90th percentile SPM concentration of 11.4 mg L-1 should be maintained during the wet season to sustain favourable light levels for Wet Tropics coral reefs and seagrass ecosystems exposed to 'brownish' flood waters. Additional data will be collected to validate the light attenuation models and the wet season target concentration which in future will be incorporated into wider catchment modelling efforts to improve coastal water quality in the Wet Tropics and the GBR.


Assuntos
Recifes de Corais , Ecossistema , Qualidade da Água , Austrália , Monitoramento Ambiental , Queensland , Estações do Ano
3.
Proc Natl Acad Sci U S A ; 111(13): 4788-91, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639551

RESUMO

Rivers provide critical water supply for many human societies and ecosystems, yet global knowledge of their flow rates is poor. We show that useful estimates of absolute river discharge (in cubic meters per second) may be derived solely from satellite images, with no ground-based or a priori information whatsoever. The approach works owing to discovery of a characteristic scaling law uniquely fundamental to natural rivers, here termed a river's at-many-stations hydraulic geometry. A first demonstration using Landsat Thematic Mapper images over three rivers in the United States, Canada, and China yields absolute discharges agreeing to within 20-30% of traditional in situ gauging station measurements and good tracking of flow changes over time. Within such accuracies, the door appears open for quantifying river resources globally with repeat imaging, both retroactively and henceforth into the future, with strong implications for water resource management, food security, ecosystem studies, flood forecasting, and geopolitics.


Assuntos
Internacionalidade , Rios , Comunicações Via Satélite , Água , Conservação dos Recursos Naturais , Estudos de Viabilidade , Fenômenos Geológicos , Humanos , Hidrodinâmica , Modelos Teóricos , Abastecimento de Água
4.
Mar Environ Res ; 200: 106647, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39032189

RESUMO

River estuaries are specific transition zones that connect coastal and terrestrial environments and are recognized as primary conveyors for land-derived plastics to open oceans. The present study is the first to investigate tidal effects on microplastics (MPs) in the Chao Phraya River estuary. MPs (16-5000 µm) were collected from the water column during the changes in tidal current in order to analyze abundance, characteristics, and ecological risk. The abundance of MPs varied from 1.37 to 4.51 pieces/L and an average of 4.0 ± 3.8 pieces/L were found during the tidal cycle, which implied moderate to relatively high contamination when compared to other estuaries. Moreover, the average abundance of MPs during the low tide period was comparatively higher than that in other tidal phenomena. Morphological characteristics revealed that shape of fragments, shade of blue, size of 16-100 µm and PTFE is dominant in the MPs. The pollution load index (PLICPRE) was 5.98, which denoted that the Chao Phraya River estuary is polluted with MPs at a low contamination level. In contrast, the risk index (RICPRE) of MPs in the water column during the tidal cycle was 318.8, which indicated that the estuarine ecosystem of the Chao Phraya River is under considerable risk. In the present study, an ecological risk assessment was conducted for the Chao Phraya River estuary, which provides basic reference data for the management of pollution control related to MPs in the Chao Phraya River basin.

5.
Mar Pollut Bull ; 202: 116397, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643589

RESUMO

This study presents new data on concentration of dissolved trace elements (DTE) in the Lena River-Laptev Sea mixing zone. Mean concentrations of some dissolved heavy metals in the mixing zone of fresh waters of the Lena River and sea waters of the Laptev Sea on the middle shelf and on the outer shelves are: 0.7± 0.05 µÐœ and 0.5 ± 0.04 µÐœ for Fe, 0.06 ± 0.01 µÐœ and 0.07 ± 0.01 µÐœ for Ni, 0.01 ± 0.003 µÐœ and 0.003 ± 0.002 µÐœ for Zn, 59.2 ± 7.4 nМ and 73.4 ± 12.8 nМ for Cu, respectively. Two major groups of DTE distribution were revealed according to their spatial behavior. The Li, V, As, Rb, Sr, Mo, U concentrations increase towards the outer shelf with increasing salinity. In contrast, mean concentrations of Al, Ti, Mn, Fe, Co decrease with increasing distance from the coast. The identified transport of freshwaters to a distance of 400 km is reflected in the distribution of DTE, which suggests that these elements are able to reach to the Central Arctic Ocean.


Assuntos
Monitoramento Ambiental , Rios , Água do Mar , Oligoelementos , Poluentes Químicos da Água , Oligoelementos/análise , Poluentes Químicos da Água/análise , Rios/química , Água do Mar/química , Metais Pesados/análise , Oceanos e Mares
6.
Mar Pollut Bull ; 200: 116068, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290367

RESUMO

The deposition of MPs in a water column and surface sediment during a mixed spring tidal cycle of the Chao Phraya River estuary was investigated. The settling MPs during flood and ebb tides were collected by deploying traps at 3 m below the surface, while the settled MPs throughout the tidal cycle were collected by deploying traps at 1 m above the bottom. The settling rate of MPs was 2168 pieces/m2/h during highest to low tide, and 639 pieces/m2/h during high to lowest tide. The deposition rate of MPs after the end of the tidal cycle was 3172 pieces/m2/day, while the accumulation rate of MPs in the surface sediment was 1515 pieces/m2/day. The settling MPs tended to decrease inversely to the suspended solids and salinity. The major types of the deposited MPs were polyethylene (36 %) and polyamide (33 %), while that of the surface sediment was epoxy resin (80 %).


Assuntos
Microplásticos , Poluentes Químicos da Água , Estuários , Plásticos , Ondas de Maré , Rios , Tailândia , Monitoramento Ambiental , Poluentes Químicos da Água/análise
7.
Environ Microbiome ; 19(1): 10, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291506

RESUMO

BACKGROUND: Coastal ecosystem variability at tropical latitudes is dependent on climatic conditions. During the wet, rainy season, extreme climatic events such as cyclones, precipitation, and winds can be intense over a short period and may have a significant impact on the entire land‒sea continuum. This study focused on the effect of river runoff across the southwest coral lagoon ecosystem of Grand Terre Island of New Caledonia (South Pacific) after a cyclonic event, which is considered a pulse disturbance at our study site. The variability of coastal microbiomes, studied by the metabarcoding of V4 18S (protists) and V4-V5 16S (bacteria) rDNA genes, after the cyclone passage was associated with key environmental parameters describing the runoff impact (salinity, organic matter proxies, terrestrial rock origin metals) and compared to community structures observed during the dry season. RESULTS: Microbiome biodiversity patterns of the dry season were destructured because of the runoff impact, and land-origin taxa were observed in the coastal areas. After the rainy event, different daily community dynamics were observed locally, with specific microbial taxa explaining these variabilities. Plume dispersal modeling revealed the extent of low salinity areas up to the coral reef area (16 km offshore), but a rapid (< 6 days) recovery to typical steady conditions of the lagoon's hydrology was observed. Conversely, during the same time, some biological components (microbial communities, Chl a) and biogeochemical components (particulate nickel, terrigenous organic matter) of the ecosystem did not recover to values observed during the dry season conditions. CONCLUSION: The ecosystem resilience of subtropical ecosystems must be evaluated from a multidisciplinary, holistic perspective and over the long term. This allows evaluating the risk associated with a potential continued and long-term disequilibrium of the ecosystem, triggered by the change in the frequency and intensity of extreme climatic events in the era of planetary climatic changes.

8.
Open Res Eur ; 3: 67, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645488

RESUMO

The western tropical North Atlantic (WTNA) is a very complex region, with the influence of intense western boundary currents in connection with equatorial zonal currents, important atmospheric forcings (e.g Intertropical Convergence Zone), mesoscale activities (e.g NBC rings), and the world's largest river discharge as the Amazon River runoff. The volume discharge is equivalent to more than one-third of the Atlantic river freshwater input, with a plume that spreads over the region reaching the northwestward Caribbean Sea and eastward longitudes of 30°W, and influencing from physical to biological structures. Therefore, in order to enable and encourage more understanding of the region, here we present a dataset based on an idealized scenario of no river runoff of the Amazon River and Par ´a River in the WTNA. The numerical simulations were conducted with a regional oceanic modeling system (ROMS) model and three pairs of files were generated with the model outputs: (i) ROMS-files, with the parameters of the ROMS-outputs raw data in a NetCDF format and monthly and weekly frequencies; (ii) MATLAB-files, which contain oceanographic parameters also in monthly and weekly frequencies; and (iii) NetCDF-files, with oceanographic parameters again in monthly and weekly frequencies. For each file, we present the coordinates and variable names, descriptions, and correspondent units. The dataset is available in the Science Data Bank repository (doi: https://doi.org/10.57760/sciencedb.02145).

9.
Mar Pollut Bull ; 173(Pt B): 113054, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34744009

RESUMO

We use a multi-tracer approach to identify catchment sources of nitrogen (N) in the skeletons of nearshore Porites corals within the Great Barrier Reef. We measured δ15N, δ13C and C:N ratios of particulate organic matter (POM) sampled from the Pioneer River catchment and identified five distinct end-members: (1) marine planktonic and algal-dominated matter with higher δ15N values from the river mouth and coastal waters; (2) estuarine planktonic and algal matter with lower δ15N values associated with estuarine mixing; (3) lower river freshwater phytoplankton and algal-dominated matter in stratified reservoirs adjacent to catchment weirs, with the 15N-enriched source likely caused by microbial remineralization and denitrification; (4) upper river low δ15N terrigenous soil matter eroded from cane fields bordering waterways; and (5) terrestrial plant detrital matter in forest streams, representing a low δ15N fixed atmospheric nitrogen source. The δ15N values of adjacent, nearshore Porites coral skeletons is reflective of POM composition in coastal waters, with 15N-enriched values reflective of transformed N during flood pulses from the Pioneer River.


Assuntos
Antozoários , Nitrogênio , Animais , Isótopos de Carbono/análise , Monitoramento Ambiental , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Rios , Esqueleto/química
10.
Mar Environ Res ; 164: 105245, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33429217

RESUMO

Marine heterotrophic prokaryotes degrade, transform, and utilize half of the organic matter (OM) produced by photosynthesis, either in dissolved or particulate form. Microbial metabolic rates are affected by a plethora of different factors, spanning from environmental variables to OM composition. To tease apart the environmental drivers underlying the observed organic matter utilization rates, we analysed a 21 year-long time series from the Gulf of Trieste (NE Adriatic Sea). Heterotrophic carbon production (HCP) time series analysis highlighted a long-term structure made up by three periods of coherent observations (1999-2007; 2008-2011; 2012-2019), shared also by OM concentration time series. Temporal patterns of HCP drivers, extracted with a random forest approach, demonstrated that a period of high salinity anomalies (2002-2008) was the main driver of this structure. The reduced river runoff and the consequent depletion of river-borne inorganic nutrients induced a long-term Chl a decline (2006-2009), followed by a steady increase until 2014. HCP driving features over the three periods substantially changed in their seasonal patterns, suggesting that the years following the draught period represented a transition between two long-term regimes. Overall, temperature and particulate organic carbon concentration were the main factors driving HCP rates. The emergence of these variables highlighted the strong control exerted by the temperature-substrate co-limitation on microbial growth. Further exploration revealed that HCP rates did not follow the Arrhenius' linear response to temperature between 2008 and 2011, demonstrating that microbial growth was substrate-limited following the draught event. By teasing apart the environmental drivers of microbial growth on a long-term perspective, we demonstrated that a substantial change happened in the biogeochemistry of one of the most productive areas of the Mediterranean Sea. As planktonic microbes are the foundation of marine ecosystems, understanding their past dynamics may help to explain present and future changes.


Assuntos
Ecossistema , Rios , Carbono/análise , Mar Mediterrâneo , Plâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA