Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 113(4): 819-832, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579923

RESUMO

Rosemary (Salvia rosmarinus) is considered a sacred plant because of its special fragrance and is commonly used in cooking and traditional medicine. Here, we report a high-quality chromosome-level assembly of the S. rosmarinus genome of 1.11 Gb in size; the genome has a scaffold N50 value of 95.5 Mb and contains 40 701 protein-coding genes. In contrast to other diploid Labiataceae, an independent whole-genome duplication event occurred in S. rosmarinus at approximately 15 million years ago. Transcriptomic comparison of two S. rosmarinus cultivars with contrasting carnosic acid (CA) content revealed 842 genes significantly positively associated with CA biosynthesis in S. rosmarinus. Many of these genes have been reported to be involved in CA biosynthesis previously, such as genes involved in the mevalonate/methylerythritol phosphate pathways and CYP71-coding genes. Based on the genomes and these genes, we propose a model of CA biosynthesis in S. rosmarinus. Further, comparative genome analysis of the congeneric species revealed the species-specific evolution of CA biosynthesis genes. The genes encoding diterpene synthase and the cytochrome P450 (CYP450) family of CA synthesis-associated genes form a biosynthetic gene cluster (CPSs-KSLs-CYP76AHs) responsible for the synthesis of leaf and root diterpenoids, which are located on S. rosmarinus chromosomes 1 and 2, respectively. Such clustering is also observed in other sage (Salvia) plants, thus suggesting that genes involved in diterpenoid synthesis are conserved in the Labiataceae family. These findings provide new insights into the synthesis of aromatic terpenoids and their regulation.


Assuntos
Diterpenos , Rosmarinus , Salvia , Rosmarinus/genética , Rosmarinus/metabolismo , Salvia/genética , Salvia/metabolismo , Abietanos/metabolismo , Diterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cromossomos
2.
Plant Biotechnol J ; 22(7): 1833-1847, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38363812

RESUMO

High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Genoma de Planta/genética , Cromossomos de Plantas/genética , Adaptação Fisiológica/genética , Salvia/genética , Salvia/metabolismo , Antioxidantes/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Depsídeos/metabolismo , Multiômica
3.
FASEB J ; 37(9): e23125, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37535015

RESUMO

The evergreen plant rosemary (Salvia rosmarinus) has been employed medicinally for centuries as a memory aid, analgesic, spasmolytic, vasorelaxant and antihypertensive, with recent preclinical and clinical evidence rationalizing some applications. Voltage-gated potassium (Kv) channels in the KCNQ (Kv7) subfamily are highly influential in the nervous system, muscle and epithelia. KCNQ4 and KCNQ5 regulate vascular smooth muscle excitability and contractility and are implicated as antihypertensive drug targets. Here, we found that rosemary extract potentiates homomeric and heteromeric KCNQ4 and KCNQ5 activity, resulting in membrane hyperpolarization. Two rosemary diterpenes, carnosol and carnosic acid, underlie the effects and, like rosemary, are efficacious KCNQ-dependent vasorelaxants, quantified by myography in rat mesenteric arteries. Sex- and estrous cycle stage-dependence of the vasorelaxation matches sex- and estrous cycle stage-dependent KCNQ expression. The results uncover a molecular mechanism underlying rosemary vasorelaxant effects and identify new chemical spaces for KCNQ-dependent vasorelaxants.


Assuntos
Plantas Medicinais , Rosmarinus , Ratos , Animais , Músculo Liso Vascular/fisiologia , Canais de Potássio KCNQ , Vasodilatadores/farmacologia
4.
Biogerontology ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017748

RESUMO

Aging, a natural biological process, presents challenges in maintaining physiological well-being and is associated with increased vulnerability to diseases. Addressing aging mechanisms is crucial for developing effective preventive and therapeutic strategies against age-related ailments. Rosmarinus officinalis L. is a medicinal herb widely used in traditional medicine, containing diverse bioactive compounds that have been studied for their antioxidant and anti-inflammatory properties, which are associated with potential health benefits. Using network pharmacology, this study investigates the anti-aging function and underlying mechanisms of R. officinalis. Through network pharmacology analysis, the top 10 hub genes were identified, including TNF, CTNNB1, JUN, MTOR, SIRT1, and others associated with the anti-aging effects. This analysis revealed a comprehensive network of interactions, providing a holistic perspective on the multi-target mechanism underlying Rosemary's anti-aging properties. GO and KEGG pathway enrichment analysis revealed the relevant biological processes, molecular functions, and cellular components involved in treating aging-related conditions. KEGG pathway analysis shows that anti-aging targets of R. officinalis involved endocrine resistance, pathways in cancer, and relaxin signaling pathways, among others, indicating multifaceted mechanisms. Genes like MAPK1, MMP9, and JUN emerged as significant players. These findings enhance our understanding of R. officinalis's potential in mitigating aging-related disorders through multi-target effects on various biological processes and pathways. Such approaches may reduce the risk of failure in single-target and symptom-based drug discovery and therapy.

5.
Pharmacology ; 109(1): 10-21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37918369

RESUMO

INTRODUCTION: For centuries, Salvia rosmarinus Spenn has been applied as folk medicine to cure different diseases due to its anti-inflammatory, antibacterial, antioxidant, antifungal, and antitumor effects. To find bioactive medicinal herbs exerting a protective effect on airway inflammation and remodeling, we assessed the anti-oxidative and anti-inflammatory effects of an aqueous spray-dried extract of Salvia rosmarinus Spenn. (rosemary) in an ovalbumin-induced asthmatic rat model. METHODS: Rats were randomly divided into normal control (control), asthma, asthma+rosemary extract (RE) (13 mg/kg), asthma+RE (50 mg/kg), and asthma+budesonide groups. After 50 days, animals were anesthetized, and then blood, bronchoalveolar lavage fluid (BALF), and lung tissues were collected for subsequent serological and pathological studies. Histopathology of lung tissues was evaluated by H&E staining. The oxidative stress parameters and airway inflammation factors in BALF and lung tissue were explored. RESULTS: Using thin layer chromatography, the presence of rosmarinic acid was confirmed in aqueous extract of rosemary. Furthermore, RE markedly decreased immunoglobulin E levels (50 mg/kg; p < 0.001 vs. asthma group) and inflammatory cytokines (50 mg/kg; p < 0.001 vs. asthma group) and increased antioxidant enzymes (50 mg/kg, p < 0.001 vs. asthma group). Furthermore, RE at a concentration of 50 mg/kg obviously reduced the number of inflammatory cells, goblet cells, and pathological changes compared to the asthma group. CONCLUSION: The results showed that RE administration might prevent or alleviate allergic asthma-related pathological change, probably via antioxidant and anti-inflammatory mechanisms.


Assuntos
Asma , Rosmarinus , Salvia , Ratos , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Pulmão/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/patologia , Líquido da Lavagem Broncoalveolar , Estresse Oxidativo , Ovalbumina/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
6.
Lett Appl Microbiol ; 77(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39066498

RESUMO

The present study aimed to evaluate the single and combined effects of Si exogenous treatment and Bacillus subtilis subsp. subtilis M1 strain inoculation on rosemary tolerance to low phosphorus (P) availability. Hence, rosemary plants were fertilized with 250 µmol Ca3HPO4 (stressed plants) or 250 µmol KH2PO4 (control plants) under Si treatment and B. subtilis M1 strain inoculation. P starvation negatively affected rosemary growth and its P nutrition. However, exogenous Si supply or B. subtilis M1 strain inoculation significantly (P < 0.001) alleviated the deficiency-induced effects and significantly improved rhizogenesis, acid phosphatase activity, P uptake, and eventually dry weight of shoot and root. Moreover, Si-treatment and/or B. subtilis M1 strain inoculation significantly (P < 0.001) reduced the oxidative damage, in terms of malondialdehyde and hydrogen peroxide accumulation. This was found positively correlated with the higher superoxide dismutase activity, and the elevated non-enzymatic antioxidant molecules accumulation, including total polyphenols in Si-treated and inoculated P-deficient plants. Taken together, Si supplementation and/or B. subtilis M1 strain inoculation could be a good strategy to sustain rosemary plant growth under P starvation conditions.


Assuntos
Bacillus subtilis , Fertilizantes , Fosfatos , Fósforo , Rosmarinus , Silício , Rosmarinus/química , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Fósforo/metabolismo , Fosfatos/metabolismo , Fertilizantes/análise , Silício/farmacologia , Silício/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Antioxidantes/metabolismo
7.
Phytother Res ; 38(6): 3037-3059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38595123

RESUMO

Insomnia affects millions of people worldwide, prompting considerable interest in herbal remedies for its treatment. This review aims to assess the therapeutic potential of such remedies for insomnia by analyzing current scientific evidence. The analysis identified several herbs, including Rosmarinus officinalis, Crocus sativus, Rosa damascena, Curcuma longa, Valeriana officinalis, Lactuca sativa, Portulaca oleracea, Citrus aurantium, Lippia citriodora, and Melissa officinalis, which show promise in improving overall sleep time, reducing sleep latency, and enhancing sleep quality. These plants act on the central nervous system, particularly the serotonergic and gamma-aminobutyric acid (GABA)ergic systems, promoting sedation and relaxation. However, further research is necessary to fully understand their mechanisms of action, optimal dosages, and treatment protocols. Combining herbal medicines with conventional treatments may offer an effective natural alternative for those seeking medication. Nevertheless, individuals should consult their healthcare provider before using herbal remedies for insomnia. While this review provides evidence supporting their use, additional high-quality studies are needed to firmly establish their clinical efficacy.


Assuntos
Hipnóticos e Sedativos , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Hipnóticos e Sedativos/uso terapêutico , Plantas Medicinais/química , Fitoterapia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia , Melissa/química , Sono/efeitos dos fármacos
8.
Chem Biodivers ; 21(4): e202302077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388803

RESUMO

The chemical composition of 71 oil samples from the leaves of Rosmarinus officinalis L., harvested in three provinces: Naâma (Western Algeria), Béchar and Adrar (Algerian Sahara), was investigated by GC-FID, GC/MS and 13CNMR. In total, 52 compounds were identified accounting for 88.8 % to 99.9 % of the total composition. The chemical composition of the oils was largely dominated by monoterpenes, with 1,8-cineole (9.7-70.2 %), camphor (0.3-31.0 %) being the major compounds followed by borneol (0.3-21.0 %), α-pinene (4.5-14.5 %), ß-pinene (0.1-12.0 %), linalool (0.7-9.9 %) and verbenone (up to 11.1 %) which was present only in the samples harvested in Adrar. All compositions (71 samples) were submitted to statistical analysis. Combination of hierarchical clustering dendrogram and principal component analysis suggested the existence of three groups (one of these being subdivided into two sub-groups) which were distinguished on the basis of 1,8-cineole, camphor and verbenone contents. Four essential oil samples, containing 1,8-cineole and/or camphor as main components, exhibited anti-inflammatory activity against lipoxygenase, with IC50 values in the range 93 to 155 µg/mL.


Assuntos
Monoterpenos Bicíclicos , Óleos Voláteis , Rosmarinus , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Eucaliptol , Cânfora , Rosmarinus/química , África do Norte , Folhas de Planta
9.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063231

RESUMO

Chemical residues in food pose health risks such as cancer and liver issues. This has driven the search for safer natural alternatives to synthetic fungicides and preservatives. The aim of this study was to characterize the chemical composition of the essential oils (EO), determine the polyphenolic contents, and evaluate the in vitro antioxidant and antifungal activities of methanol extracts (ME), essential oils (EO), and powders from Rosmarinus officinalis L. (rosemary) and Thymus ciliatus (Desf) Benth. (thyme) from the M'sila region, Algeria. The chemical composition of the EOs was determined by GC-MS. R. officinalis EO was composed of 31 components, mainly camphor (41.22%), camphene (18.14%), and α-pinene (17.49%); T. ciliatus EO was composed of 58 components, mainly, in percentage, α-pinene (22.18), myrcene (13.13), ß-pinene (7.73), ß-caryophyllene (10.21), and germacrene D (9.90). The total phenols and flavonoids were determined spectrophotometrically, and the rosemary ME was found to possess the highest polyphenolic content (127.1 ± 2.40 µg GAE/mg), while the thyme ME had the highest flavonoid content (48.01 ± 0.99 µg QE/mg). The antioxidant activity was assessed using three methods: rosemary ME was the most potent, followed by DPPH (IC50 = 13.43 ± 0.14 µg/mL), ß-carotene/linoleic acid (IC50 = 39.01 ± 2.16 µg/mL), and reducing power (EC50 = 15.03 ± 1.43 µg/mL). Antifungal activity was assessed for 32 pathogenic and foodborne fungi. Four methods were applied to the solid medium. Incorporating the powdered plant into the culture medium (at 10%) reduced the fungal growth to greater than 50% in 21.88% and 6.25% of all fungal isolates, for R. officinalis and T. ciliatus, respectively. The ME, applied by the well diffusion method (0.1 g/mL), was less effective. Different concentrations of EO were tested. Incorporating the EO into the culture medium (1500 µL/L) inhibited 50% of the molds to levels of 50 and 75% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of four fungi. Fumigated EO (15 µL) inhibited 65% of the molds to levels of 65 and 81.25% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of five fungi. There was little to no sporulation in conjunction with the inhibition. Our results revealed some of the potential of the studied plants to fight foodborne molds and presented their promising characteristics as a source of alternatives to chemical pesticides and synthetic preservatives. Further studies are needed to find adequate application techniques in the food safety area.


Assuntos
Antifúngicos , Antioxidantes , Óleos Voláteis , Extratos Vegetais , Rosmarinus , Thymus (Planta) , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Thymus (Planta)/química , Rosmarinus/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antifúngicos/farmacologia , Antifúngicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Monoterpenos Bicíclicos/farmacologia , Monoterpenos Bicíclicos/química , Metanol/química , Pós , Monoterpenos Acíclicos/farmacologia , Monoterpenos/farmacologia , Monoterpenos/análise , Monoterpenos/química , Cânfora/farmacologia , Cânfora/análise , Cânfora/química , Alcenos
10.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39062951

RESUMO

Rosemary has many medicinal and therapeutic properties and therefore it is important to study how to maximize the recovery of its bioactive compounds. In the present study, four different extraction techniques were used, namely stirring extraction (STE), pulsed electric field-assisted extraction (PEF), ultrasound probe-assisted extraction (UPAE), and ultrasound bath-assisted extraction (UBAE). First, some primary experiments were carried out in order to optimize each technique individually through the Plackett-Burman design. Then, each technique was applied under optimal conditions and the results were compared with each other. The optimal total polyphenol content (TPC) of STE is ~19 mg gallic acid equivalents per gram of dry weight (dw), while the antioxidant activity of the extract is 162 µmol ascorbic acid equivalents (AAEs) per gram of dw via FRAP and ~110 µmol AAE per gram of dw via DPPH. As for PEF, the optimal TPC is ~12 mg GAE/g dw, and the FRAP and DPPH values are ~102 and ~70 µmol AAE per gram of dw, respectively. When it comes to UPAE, the optimal TPC is ~16 mg GAE/g dw and the antioxidant capacity of the extract is ~128 µmol AAE/g dw through FRAP and ~98 µmol AAE/g dw through DPPH. UBAE optimal extract yielded ~17 mg GAE/g dw TPC, ~146 µmol AAE/g dw for FRAP, and ~143 µmol AAE/g dw for DPPH. The highest flavonoid content (~6.5 mg rutin equivalent/g dw) and DPPH (~143 µmol ascorbic acid equivalent/g dw) is obtained through UBAE. UPAE has been shown to be more efficient in recovering ascorbic acid (~20 mg/g dw). Additionally, the chlorophyll-to-carotenoid ratios of UPAE and UBAE were 2.98 and 2.96, respectively, indicating that the extracts had a generally positive impact on health. Considering the environmental impact of each extraction technique but also which antioxidant factor needs to be maximized, the most suitable extraction technique will be chosen.


Assuntos
Antioxidantes , Extratos Vegetais , Rosmarinus , Antioxidantes/química , Antioxidantes/isolamento & purificação , Rosmarinus/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Polifenóis/química , Polifenóis/análise , Fracionamento Químico/métodos , Ácido Ascórbico/química , Ácido Ascórbico/análise
11.
Molecules ; 29(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064960

RESUMO

Rosemary essential oil (REO) is widely recognized as a food flavoring and traditional herb and possesses potential antioxidant activity. However, its low yield rate and unclarified antioxidant mechanism warrant further investigation. In this study, an enzyme pretreatment-assisted extraction method with Box-Behnken design (BBD) and response surface methodology (RSM) models was employed to optimize the main factors of REO, and its antioxidant molecular mechanism under oxidative stress was elucidated in hydrogen peroxide-induced human lung carcinoma (A549) cells. The optimized yield (4.10%) of REO was recorded with the following optimum conditions: enzyme amount 1.60%, enzyme digestion pH 5.0, enzyme digestion temperature 46.50 °C, and enzyme digestion time 1.7 h. Meanwhile, 1.8-cineole (53.48%) and ß-pinene (20.23%) exhibited radical scavenging activity higher than that of BHA and BHT. At the cellular level, REO (12.5-50 µg/mL) increased the levels of cell viability, CAT, SOD, and GSH significantly while reducing the contents of ROS, MDA, and GSSG, when compared to H2O2 exposure. Mechanically, REO relieved oxidative stress via activating the Nrf2 signaling pathway and enhancing the protein expression of Nrf2, NQO-1, and HO-1, which was further verified by molecular docking between the main component 1.8-cineole and the Kelch domain of KEAP1. Therefore, REO could be considered as a potent natural antioxidant with a potential strategy in the food and pharmaceutical industries.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Óleos Voláteis , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Peróxido de Hidrogênio , Rosmarinus/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Simulação de Acoplamento Molecular
12.
Molecules ; 29(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338370

RESUMO

The objective of this study was the optimization of the extraction process and the qualitative and quantitative determination of the bioactive metabolites: 12-O-methylcarnosic acid (12MCA), carnosic acid (CA), carnosol (CS), 7-O-methyl-epi-rosmanol (7MER) and rosmanol (RO) in infusions, decoctions, turbulent flow extracts, tinctures and oleolites from three Salvia species: Salvia officinalis L. (common sage, SO), Salvia fruticosa Mill. (Greek sage, SF) and Salvia rosmarinus Spenn (syn Rosmarinus officinalis L.) (rosemary, SR), using Quantitative Proton Nuclear Magnetic Resonance Spectroscopy (1H-qNMR). Regarding the aqueous extracts, decoctions appeared to be richer sources of the studied metabolites than infusions among the three plants. For SR, the turbulent flow extraction under heating was the most efficient one. The optimum time for the preparation of decoctions was found to be 5 min for SF and SO and 15 min for SR. It is noteworthy that SR tinctures were not stable in time due to decomposition of the abietane-type diterpenes CA and CS because of the polar solvent used for their preparation. Contrary to this finding, the oleolites of SR appeared to be very stable. Olive oil as a solvent for extraction was very protective for the contained abietane-type diterpenes. A preliminary stability study on the effect of the storage time of the SF on the abietane-type diterpenes content showed that the total quantity of abietanes decreased by 16.51% and 40.79% after 12 and 36 months, respectively. The results of this investigation also demonstrated that 1H-qNMR is very useful for the analysis of sensitive metabolites, like abietane-type diterpenes, that can be influenced by solvents used in chromatographic analysis.


Assuntos
Diterpenos , Rosmarinus , Salvia , Abietanos/química , Rosmarinus/química , Salvia/química , Grécia , Extratos Vegetais/química , Solventes , Diterpenos/análise
13.
Compr Rev Food Sci Food Saf ; 23(1): e13273, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284599

RESUMO

Rosemary (Rosmarinus officinalis L.) is one of the most famous spice plants belonging to the Lamiaceae family as a remarkably beautiful horticultural plant and economically agricultural crop. The essential oil of rosemary has been enthusiastically welcome in the whole world for hundreds of years. Now, it is wildly prevailing as a promising functional food additive for human health. More importantly, due to its significant aroma, food, and nutritional value, rosemary also plays an essential role in the food/feed additive and food packaging industries. Modern industrial development and fundamental scientific research have extensively revealed its unique phytochemical constituents with biologically meaningful activities, which closely related to diverse human health functions. In this review, we provide a comprehensively systematic perspective on rosemary by summarizing the structures of various pharmacological and nutritional components, biologically functional activities and their molecular regulatory networks required in food developments, and the recent advances in their applications in the food industry. Finally, the temporary limitations and future research trends regarding the development of rosemary components are also discussed and prospected. Hence, the review covering the fundamental research advances and developing prospects of rosemary is a desirable demand to facilitate their better understanding, and it will also serve as a reference to provide many insights for the future promotion of the research and development of functional foods related to rosemary.


Assuntos
Óleos Voláteis , Rosmarinus , Humanos , Extratos Vegetais/química , Rosmarinus/química , Aditivos Alimentares , Alimento Funcional , Óleos Voláteis/farmacologia , Plantas
14.
Environ Res ; 216(Pt 2): 114478, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206926

RESUMO

In this study, the effect of bay laurel (Laurus nobilis) (LE) and rosemary (Salvia rosmarinus) (RE) extracts, in two free forms and loaded with liposome, on the behavior of Listeria monocytogenes and Vibrio parahaemolyticus in silver carp (Hypophthalmichthys molitrix) minced, were examined. After extraction, the extracts were evaluated for phenolic, flavonoid, and antibacterial compounds (determination of MIC and MBC). The treatments studied included control treatment, treatments containing 1 and 1.5% of free extracts, and treatments containing 1 and 1.5% of liposome-coated extracts of LE and RE which were examined at times of 0, 4, 8, and 12 days with 3 replications. The findings indicated that the amount of flavonoid and phenolic compounds and the results of antibacterial tests (MIC and MBC tests) in RE extract were more favorable than LE extract. The aqueous extract of rosemary had higher levels of phenolic (344.66 mg gallic acid/g extract) and flavonoid (245.33 mg Catechin/g extract) compounds compared to the bay laurel extract (257.66 mg gallic acid/g extract) and (151.26 mg Catechin/g extract) respectively. The results of the behavior of L. monocytogenes and V. parahaemolyticus in fish showed that with increasing the storage time at 4 °C, these parameters increased, but in the treatment containing the coated forms of LE and RE extracts (concentration 1.5%), changes were significantly slower than other treatments. According to the obtained results, it can be concluded that in general, adding extracts of bay laurel and rosemary in a concentration of 1.5% reduces the proliferation of bacteria that cause food poisoning.


Assuntos
Carpas , Catequina , Laurus , Listeria monocytogenes , Rosmarinus , Salvia , Vibrio parahaemolyticus , Animais , Lipossomos/farmacologia , Catequina/farmacologia , Extratos Vegetais/farmacologia , Fenóis , Antibacterianos/farmacologia , Flavonoides/farmacologia , Ácido Gálico
15.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511428

RESUMO

Oxidative stress is the most critical factor in multiple functional disorders' development, and natural antioxidants could protect the human body against it. Our study aims to investigate the polyphenol content of four extracts of two medicinal plants (Rosmarinus officinalis L. and Thymus vulgaris L.) and analyze the correlation with their antioxidant activity. The research was carried out on extracts of rosemary and thyme obtained from species cultivated together in plant communities. Both were compared with extracts from species cultivated in individual crops (control crops). Their polyphenols were determined by spectrophotometric methods (dosage of flavones, phenol carboxylic acids, and total polyphenols) and chromatography (UHPLC-MS and FT-ICR MS). Triterpenic acids were also quantified, having a higher concentration in the thyme extract from the culture. The antioxidant activity of the dry extracts was evaluated in vitro (DPPH, ABTS, and FRAP) and in silico (prediction of interactions with BACH1/BACH2 transcription factors). The concentrations of polyphenols are higher in the extracts obtained from the sources collected from the common crops. These observations were also validated following the chromatographic analysis for some compounds. Statistically significant differences in the increase in the antioxidant effect were observed for the extracts from the common batches compared to those from the individual ones. Following the Pearson analysis, the IC50 values for each plant extract were strongly correlated with the concentration of active phytoconstituents. Molecular docking studies revealed that quercetin could bind to BTB domains of BACH1 and BACH2 transcription factors, likely translating into increased antioxidant enzyme expression. Future studies must validate the in silico findings and further investigate phytosociological cultivation's effects.


Assuntos
Lamiaceae , Rosmarinus , Thymus (Planta) , Humanos , Antioxidantes/química , Thymus (Planta)/química , Rosmarinus/química , Lamiaceae/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Polifenóis/química , Fatores de Transcrição de Zíper de Leucina Básica
16.
J Environ Manage ; 329: 117063, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584515

RESUMO

Although the use of composts derived from anaerobic digestates as soil amendments is likely to increase in the future, there is little information concerning the fate of their C and N compounds after their incorporation into soil. This work assesses C and N concentrations and the associated changes in δ15N and δ13C during the composting processes of cattle and pig slurry anaerobic digestates. In addition, the compost effect on C and N fractions and plant uptake were studied during a six-month pot experiment with rosemary plants. The results did not show δ13C and δ15N isotopic discrimination during composting, indicating a previous stabilization of cattle manure and pig slurry during the anaerobic digestion. This fact was also confirmed by the low C losses during the composting processes (1.2-fold and 1.05-fold for the composting piles with cattle and pig slurry anaerobic digestates, respectively). After soil addition, the composts augmented N values (from 0.41 g kg-1 to around 0.56 g kg-1 in low dose and 0.68 g kg-1 in high dose compost amended soils) and δ15N soil values (increases in the range of 50%-156%), but showed only slight differences in C and δ13C values compared to unfertilised control and inorganic fertilized soils. Moreover, the rosemary leaves of the plants grown on the compost amended soils presented higher N and δ15N abundance than control and inorganic fertilized plants. We conclude that δ15N abundance of anaerobic digestate composts is useful to discern its N uptake and could thus be a useful tool to detect whether organic or mineral fertiliser types were used for agricultural production.


Assuntos
Compostagem , Solo , Suínos , Animais , Bovinos , Anaerobiose , Agricultura/métodos , Esterco
17.
Molecules ; 28(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241946

RESUMO

This study investigated the effect of Rosmarinus officinalis L. essential oil, REO (one, two and three percent) on the microbiological and oxidative stability of Sarshir during 20 days of refrigerated storage (4 °C). Initially, the chemical composition (gas chromatography/mass spectrometry, GC/MS), antimicrobial (paper disc diffusion) and antioxidant (DPPH) properties of REO were evaluated. Then, the microbial safety, oxidative stability (peroxide and anisidine values) and overall acceptability of the product after addition of REO to Sarshir and the subsequent storage period were determined. According to GC/MS analysis, the major components of REO were α-pinene (24.6%), 1,8-cineole (14.1%), camphor (13.5%), camphene (8.1%) and limonene (6.1%), respectively. Moreover, it was also found that Limosilactobacillus fermentum (inhibition zone (IZ) of 23.5 mm) and Salmonella Typhi (IZ of 16.4 mm) were the most sensitive and resistant spoilage and pathogenic bacteria against REO, respectively. In addition, the half-maximal inhibitory concentration (IC50) of the REO was measured at 24.8 mg/mL, while the IC50 value of butylated hydroxytoluene (BHT) was 16.6 mg/mL. The highest and lowest bacterial populations were detected in the control and the sample containing 3% REO, respectively. The control had the highest extent of lipid oxidation, while the lowest peroxide and anisidine values were measured in Sarshir containing 3% REO.


Assuntos
Óleos Voláteis , Rosmarinus , Rosmarinus/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Eucaliptol , Peróxidos , Estresse Oxidativo
18.
Molecules ; 28(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894621

RESUMO

Essential oils (EOs) are natural antioxidant alternatives that reduce skin damage. However, EOs are highly volatile; therefore, their nanoencapsulation represents a feasible alternative to increase their stability and favor their residence time on the skin to guarantee their effect. In this study, EOs of Rosmarinus officinalis and Lavandula dentata were nanoencapsulated and evaluated as skin delivery systems with potential antioxidant activity. The EOs were characterized and incorporated into polymeric nanocapsules (NC-EOs) using nanoprecipitation. The antioxidant activity was evaluated using the ferric thiocyanate method. The ex vivo effects on pig skin were evaluated based on biophysical parameters using bioengineering techniques. An ex vivo dermatokinetic evaluation on pig skin was performed using modified Franz cells and the tape-stripping technique. The results showed that the EOs had good antioxidant activity (>65%), which was maintained after nanoencapsulation and purification. The nanoencapsulation of the EOs favored its deposition in the stratum corneum compared to free EOs; the highest deposition rate was obtained for 1,8-cineole, a major component of L. dentata, at 1 h contact time, compared to R. officinalis with a major deposition of the camphor component. In conclusion, NC-EOs can be used as an alternative antioxidant for skin care.


Assuntos
Nanocápsulas , Óleos Voláteis , Animais , Suínos , Óleos Voláteis/farmacologia , Antioxidantes/farmacologia , Pele , Eucaliptol , Polímeros
19.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985829

RESUMO

Candida spp. cause fungal infection that affects patients' oral health. This study aimed to evaluate the isolated and synergistic antifungal effect of Rosa centifolia L., Curcuma longa L., Rosmarinus officinalis L., and Punica granatum L. glycolic extracts against Candida albicans, Candida dubliniensis, Candida tropicalis, and Candida krusei planktonic and biofilm forms. The plant extracts were chemically characterized and the main compounds were quantified by high-performance liquid chromatography (HPLC-DAD) analysis. The minimum inhibitory and minimum fungicidal concentrations of the extracts were determined, and antibiofilm activity was evaluated by MTT assay. Data were analyzed by one-way ANOVA and Tukey's tests, and by Kruskal-Wallis and Dunn's tests, considering a significance level of 5%. The main compounds identified in each of the extracts were: p-coumaric acid (2153.22 µg/100 mL) in the rosemary extract, gallotannins (4318.31 µg/100 mL) in the pomegranate extract, quercetin derivatives (3316.50 µg/100 mL) in the extract of white roses, and curcumin (135.09 µg/100 mL) in the turmeric extract. The combination of R. centifolia and C. longa glycolic extracts was effective against C. albicans, C. dubliniensis, and C. tropicalis biofilms over different periods (p < 0.05). The combination of R. officinalis and P. granatum glycolic extracts was effective against C. albicans and C. krusei biofilms after 30 min, and against C. tropicalis after 24 h, with all combinations showing an average reduction of 50% in cell viability (p < 0.05). In conclusion, the combined plant extracts have antifungal and antibiofilm action against Candida spp. in different concentrations and times of action.


Assuntos
Antifúngicos , Glicóis , Humanos , Antifúngicos/química , Candida , Candida albicans , Candida tropicalis , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Biofilmes
20.
Molecules ; 28(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513364

RESUMO

Rosmarinus officinalis leaves (ROLs) are widely used in the food and cosmetics industries due to their high antioxidant activity and fascinating flavor properties. Carnosic acid (CA) and rosmarinic acid (RA) are regarded as the characteristic antioxidant components of ROLs, and the selective separation of CA and RA remains a significant challenge. In this work, the feasibility of achieving the selective separation of CA and RA from ROLs by solid-phase extraction (SPE) and liquid-liquid extraction (LLE) was studied and compared. The experiments suggested that SPE with CAD-40 macroporous resin as the adsorbent was a good choice for selectively isolating CA from the extracts of ROLs and could produce raw CA with purity levels as high as 76.5%. The LLE with ethyl acetate (EA) as the extraction solvent was more suitable for extracting RA from the diluted extracts of ROLs and could produce raw RA with a purity level of 56.3%. Compared with the reported column chromatography and LLE techniques, the developed SPE-LLE method not only exhibited higher extraction efficiency for CA and RA, but can also produce CA and RA with higher purity.


Assuntos
Extratos Vegetais , Rosmarinus , Extratos Vegetais/química , Extração em Fase Sólida/métodos , Cinamatos/química , Extração Líquido-Líquido/métodos , Rosmarinus/química , Antioxidantes/análise , Cromatografia Líquida de Alta Pressão , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA