Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.069
Filtrar
Mais filtros

Coleção CLAP
Intervalo de ano de publicação
1.
Cell ; 187(1): 110-129.e31, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181737

RESUMO

X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.


Assuntos
Genes Ligados ao Cromossomo X , RNA Longo não Codificante , Cromossomo X , Animais , Feminino , Humanos , Masculino , Camundongos , Inativação Gênica , RNA Longo não Codificante/genética , Cromossomo X/genética , Células-Tronco Pluripotentes/metabolismo
2.
Cell ; 186(12): 2556-2573.e22, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236194

RESUMO

In Drosophila, a dedicated olfactory channel senses a male pheromone, cis-vaccenyl acetate (cVA), promoting female courtship while repelling males. Here, we show that separate cVA-processing streams extract qualitative and positional information. cVA sensory neurons respond to concentration differences in a 5-mm range around a male. Second-order projection neurons encode the angular position of a male by detecting inter-antennal differences in cVA concentration, which are amplified through contralateral inhibition. At the third circuit layer, we identify 47 cell types with diverse input-output connectivity. One population responds tonically to male flies, a second is tuned to olfactory looming, while a third integrates cVA and taste to coincidentally promote female mating. The separation of olfactory features resembles the mammalian what and where visual streams; together with multisensory integration, this enables behavioral responses appropriate to specific ethological contexts.


Assuntos
Proteínas de Drosophila , Receptores Odorantes , Animais , Feminino , Masculino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Comportamento Sexual Animal/fisiologia , Receptores Odorantes/metabolismo , Feromônios/metabolismo , Olfato/fisiologia , Drosophila/metabolismo , Mamíferos/metabolismo
3.
Cell ; 186(18): 3862-3881.e28, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37572660

RESUMO

Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.


Assuntos
Vias Neurais , Comportamento Sexual Animal , Animais , Masculino , Neurônios/fisiologia , Recompensa , Comportamento Sexual Animal/fisiologia , Camundongos
4.
Cell ; 184(2): 507-520.e16, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33382967

RESUMO

Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We have identified three cell types that regulate aggression in Drosophila: one type is sexually shared, and the other two are sex specific. Shared common aggression-promoting (CAP) neurons mediate aggressive approach in both sexes, whereas functionally downstream dimorphic but homologous cell types, called male-specific aggression-promoting (MAP) neurons in males and fpC1 in females, control dimorphic attack. These symmetric circuits underlie the divergence of male and female aggressive behaviors, from their monomorphic appetitive/motivational to their dimorphic consummatory phases. The strength of the monomorphic → dimorphic functional connection is increased by social isolation in both sexes, suggesting that it may be a locus for isolation-dependent enhancement of aggression. Together, these findings reveal a circuit logic for the neural control of behaviors that include both sexually monomorphic and dimorphic actions, which may generalize to other organisms.


Assuntos
Agressão/fisiologia , Drosophila melanogaster/fisiologia , Lógica , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino , Rede Nervosa/fisiologia , Neurônios/fisiologia , Isolamento Social , Taquicininas/metabolismo
5.
Annu Rev Cell Dev Biol ; 37: 519-547, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34613817

RESUMO

Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.


Assuntos
Drosophila melanogaster , Sistema Nervoso , Animais , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Feminino , Masculino , Neurônios/fisiologia , Caracteres Sexuais
6.
Cell ; 176(5): 1190-1205.e20, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712868

RESUMO

Sexually naive animals have to distinguish between the sexes because they show species-typical interactions with males and females without meaningful prior experience. However, central neural pathways in naive mammals that recognize sex of other individuals remain poorly characterized. We examined the role of the principal component of the bed nucleus of stria terminalis (BNSTpr), a limbic center, in social interactions in mice. We find that activity of aromatase-expressing BNSTpr (AB) neurons appears to encode sex of other animals and subsequent displays of mating in sexually naive males. Silencing these neurons in males eliminates preference for female pheromones and abrogates mating success, whereas activating them even transiently promotes male-male mating. Surprisingly, female AB neurons do not appear to control sex recognition, mating, or maternal aggression. In summary, AB neurons represent sex of other animals and govern ensuing social behaviors in sexually naive males.


Assuntos
Sistema Límbico/metabolismo , Núcleos Septais/fisiologia , Comportamento Sexual Animal/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Aromatase/metabolismo , Encéfalo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Neurônios/metabolismo , Feromônios/metabolismo , Caracteres Sexuais , Comportamento Social
7.
Cell ; 178(4): 901-918.e16, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398343

RESUMO

Physiology and metabolism are often sexually dimorphic, but the underlying mechanisms remain incompletely understood. Here, we use the intestine of Drosophila melanogaster to investigate how gut-derived signals contribute to sex differences in whole-body physiology. We find that carbohydrate handling is male-biased in a specific portion of the intestine. In contrast to known sexual dimorphisms in invertebrates, the sex differences in intestinal carbohydrate metabolism are extrinsically controlled by the adjacent male gonad, which activates JAK-STAT signaling in enterocytes within this intestinal portion. Sex reversal experiments establish roles for this male-biased intestinal metabolic state in controlling food intake and sperm production through gut-derived citrate. Our work uncovers a male gonad-gut axis coupling diet and sperm production, revealing that metabolic communication across organs is physiologically important. The instructive role of citrate in inter-organ communication might be significant in more biological contexts than previously recognized.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Drosophila melanogaster/metabolismo , Ingestão de Alimentos/fisiologia , Mucosa Intestinal/metabolismo , Caracteres Sexuais , Maturação do Esperma/fisiologia , Animais , Ácido Cítrico/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Expressão Gênica , Janus Quinases/metabolismo , Masculino , RNA-Seq , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Açúcares/metabolismo , Testículo/metabolismo
8.
Cell ; 176(5): 1206-1221.e18, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30773317

RESUMO

Social behaviors, including behaviors directed toward young offspring, exhibit striking sex differences. Understanding how these sexually dimorphic behaviors are regulated at the level of circuits and transcriptomes will provide insights into neural mechanisms of sex-specific behaviors. Here, we uncover a sexually dimorphic role of the medial amygdala (MeA) in governing parental and infanticidal behaviors. Contrary to traditional views, activation of GABAergic neurons in the MeA promotes parental behavior in females, while activation of this population in males differentially promotes parental versus infanticidal behavior in an activity-level-dependent manner. Through single-cell transcriptomic analysis, we found that molecular sex differences in the MeA are specifically represented in GABAergic neurons. Collectively, these results establish crucial roles for the MeA as a key node in the neural circuitry underlying pup-directed behaviors and provide important insight into the connection between sex differences across transcriptomes, cells, and circuits in regulating sexually dimorphic behavior.


Assuntos
Complexo Nuclear Corticomedial/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Comportamento Animal/fisiologia , Complexo Nuclear Corticomedial/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Poder Familiar , Fatores Sexuais , Comportamento Social
9.
Cell ; 179(6): 1393-1408.e16, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31735496

RESUMO

Behaviors are inextricably linked to internal state. We have identified a neural mechanism that links female sexual behavior with the estrus, the ovulatory phase of the estrous cycle. We find that progesterone-receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) are active and required during this behavior. Activating these neurons, however, does not elicit sexual behavior in non-estrus females. We show that projections of PR+ VMH neurons to the anteroventral periventricular (AVPV) nucleus change across the 5-day mouse estrous cycle, with ∼3-fold more termini and functional connections during estrus. This cyclic increase in connectivity is found in adult females, but not males, and regulated by estrogen signaling in PR+ VMH neurons. We further show that these connections are essential for sexual behavior in receptive females. Thus, estrogen-regulated structural plasticity of behaviorally salient connections in the adult female brain links sexual behavior to the estrus phase of the estrous cycle.


Assuntos
Rede Nervosa/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Estrogênios/metabolismo , Ciclo Estral/efeitos dos fármacos , Feminino , Hormônios Esteroides Gonadais/farmacologia , Hipotálamo Anterior/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ovário/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Receptores de Progesterona/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
10.
Cell ; 179(3): 713-728.e17, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626771

RESUMO

The ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) contains ∼4,000 neurons that project to multiple targets and control innate social behaviors including aggression and mounting. However, the number of cell types in VMHvl and their relationship to connectivity and behavioral function are unknown. We performed single-cell RNA sequencing using two independent platforms-SMART-seq (∼4,500 neurons) and 10x (∼78,000 neurons)-and investigated correspondence between transcriptomic identity and axonal projections or behavioral activation, respectively. Canonical correlation analysis (CCA) identified 17 transcriptomic types (T-types), including several sexually dimorphic clusters, the majority of which were validated by seqFISH. Immediate early gene analysis identified T-types exhibiting preferential responses to intruder males versus females but only rare examples of behavior-specific activation. Unexpectedly, many VMHvl T-types comprise a mixed population of neurons with different projection target preferences. Overall our analysis revealed that, surprisingly, few VMHvl T-types exhibit a clear correspondence with behavior-specific activation and connectivity.


Assuntos
Hipotálamo/citologia , Neurônios/classificação , Comportamento Social , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Comportamento Sexual Animal , Análise de Célula Única , Transcriptoma
11.
Cell ; 171(2): 456-469.e22, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985566

RESUMO

The stereotyped features of neuronal circuits are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors, yet it has not been possible to comprehensively quantify neuronal distributions across animals or genders due to the size and complexity of the mammalian brain. Here we apply our quantitative brain-wide (qBrain) mapping platform to document the stereotyped distributions of mainly inhibitory cell types. We discover an unexpected cortical organizing principle: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas are dominated by input-modulating somatostatin-positive interneurons. Furthermore, we identify local cell type distributions with more cells in the female brain in 10 out of 11 sexually dimorphic subcortical areas, in contrast to the overall larger brains in males. The qBrain resource can be further mined to link stereotyped aspects of neuronal distributions to known and unknown functions of diverse brain regions.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Caracteres Sexuais , Animais , Encéfalo/citologia , Feminino , Humanos , Interneurônios/citologia , Masculino , Mamíferos/fisiologia
12.
Cell ; 171(7): 1532-1544.e15, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29129376

RESUMO

Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission.


Assuntos
Lisofosfatidilcolinas/metabolismo , Malária/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Animais , Feminino , Humanos , Malária/imunologia , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/fisiologia , Reprodução
13.
Cell ; 168(5): 904-915.e10, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28235200

RESUMO

Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa-animals, plants, and protists (including important human pathogens like Plasmodium)-suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life.


Assuntos
Chlamydomonas/metabolismo , Proteínas de Fusão de Membrana/química , Proteínas de Plantas/química , Plasmodium/metabolismo , Proteínas de Protozoários/química , Sequência de Aminoácidos , Evolução Biológica , Chlamydomonas/citologia , Cristalografia por Raios X , Células Germinativas/química , Células Germinativas/metabolismo , Proteínas de Fusão de Membrana/genética , Proteínas de Fusão de Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodium/citologia , Domínios Proteicos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
14.
Annu Rev Genet ; 55: 427-452, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34530640

RESUMO

One of the major cell fate transitions in eukaryotes is entry into meiosis. While in single-celled yeast this decision is triggered by nutrient starvation, in multicellular eukaryotes, such as plants, it is under developmental control. In contrast to animals, plants have only a short germline and instruct cells to become meiocytes in reproductive organs late in development. This situation argues for a fundamentally different mechanism of how plants recruit meiocytes, and consistently, none of the regulators known to control meiotic entry in yeast and animals are present in plants. In recent years, several factors involved in meiotic entry have been identified, especially in the model plant Arabidopsis, and pieces of a regulatory network of germline control in plants are emerging. However, the corresponding studies also show that the mechanisms of meiotic entry control are diversified in flowering plants, calling for further analyses in different plant species.


Assuntos
Arabidopsis , Meiose , Animais , Arabidopsis/genética , Diferenciação Celular , Células Germinativas/fisiologia , Meiose/genética , Mitose/genética
15.
CA Cancer J Clin ; 72(4): 353-359, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35298025

RESUMO

Sexual function is a vital aspect of human health and is recognized as a critical component of cancer survivorship. Understanding and evaluating the impacts of radiotherapy on female sexual function requires precise knowledge of the organs involved in sexual function and the relationship between radiotherapy exposure and sexual tissue function. Although substantial evidence exists describing the impact of radiotherapy on male erectile tissues and related clinical sexual outcomes, there is very little research in this area in females. The lack of biomedical data in female patients makes it difficult to design studies aimed at optimizing sexual function postradiotherapy for female pelvic malignancies. This scoping review identifies and categorizes current research on the impacts of radiotherapy on normal female erectile tissues, including damage to normal functioning, clinical outcomes of radiation-related female erectile tissue damage, and techniques to spare erectile tissues or therapies to treat such damage. An evaluation of the evidence was performed, and a summary of findings was generated according to Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Extension for Scoping Reviews guidelines. Articles were included in the review that involved normal female erectile tissues and radiotherapy side effects. The results show that little scientific investigation into the impacts of radiotherapy on female erectile tissues has been performed. Collaborative scientific investigations by clinical, basic, and behavioral scientists in oncology and radiotherapy are needed to generate radiobiologic and clinical evidence to advance prospective evaluation, prevention, and mitigation strategies that may improve sexual outcomes in female patients.


Assuntos
Sobreviventes de Câncer , Disfunção Erétil , Lesões por Radiação , Disfunções Sexuais Fisiológicas , Disfunção Erétil/etiologia , Disfunção Erétil/prevenção & controle , Feminino , Humanos , Masculino , Ereção Peniana , Lesões por Radiação/etiologia , Disfunções Sexuais Fisiológicas/etiologia
16.
Mol Cell ; 81(4): 675-690.e8, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33453167

RESUMO

Neural network computations are usually assumed to emerge from patterns of fast electrical activity. Challenging this view, we show that a male fly's decision to persist in mating hinges on a biochemical computation that enables processing over minutes to hours. Each neuron in a recurrent network contains slightly different internal molecular estimates of mating progress. Protein kinase A (PKA) activity contrasts this internal measurement with input from the other neurons to represent accumulated evidence that the goal of the network has been achieved. When consensus is reached, PKA pushes the network toward a large-scale and synchronized burst of calcium influx that we call an eruption. Eruptions transform continuous deliberation within the network into an all-or-nothing output, after which the male will no longer sacrifice his life to continue mating. Here, biochemical activity, invisible to most large-scale recording techniques, is the key computational currency directing behavior and motivational state.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster
17.
Genes Dev ; 35(11-12): 914-935, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33985970

RESUMO

Small noncoding piRNAs act as sequence-specific guides to repress complementary targets in Metazoa. Prior studies in Drosophila ovaries have demonstrated the function of the piRNA pathway in transposon silencing and therefore genome defense. However, the ability of the piRNA program to respond to different transposon landscapes and the role of piRNAs in regulating host gene expression remain poorly understood. Here, we comprehensively analyzed piRNA expression and defined the repertoire of their targets in Drosophila melanogaster testes. Comparison of piRNA programs between sexes revealed sexual dimorphism in piRNA programs that parallel sex-specific transposon expression. Using a novel bioinformatic pipeline, we identified new piRNA clusters and established complex satellites as dual-strand piRNA clusters. While sharing most piRNA clusters, the two sexes employ them differentially to combat the sex-specific transposon landscape. We found two piRNA clusters that produce piRNAs antisense to four host genes in testis, including CG12717/pirate, a SUMO protease gene. piRNAs encoded on the Y chromosome silence pirate, but not its paralog, to exert sex- and paralog-specific gene regulation. Interestingly, pirate is targeted by endogenous siRNAs in a sibling species, Drosophila mauritiana, suggesting distinct but related silencing strategies invented in recent evolution to regulate a conserved protein-coding gene.


Assuntos
Adaptação Fisiológica/genética , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Feminino , Masculino , Caracteres Sexuais , Fatores Sexuais
18.
Physiol Rev ; 101(3): 1237-1308, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33180655

RESUMO

A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.


Assuntos
Gônadas/fisiologia , Processos de Determinação Sexual/fisiologia , Diferenciação Sexual/fisiologia , Vertebrados/fisiologia , Animais , Feminino , Masculino
19.
Annu Rev Genet ; 54: 465-486, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228412

RESUMO

Male factor infertility is a common problem. Evidence is emerging regarding the spectrum of systemic disease and illness harbored by infertile men who otherwise appear healthy. In this review, we present evidence that infertile men have poor overall health and increased morbidity and mortality, increased rates of both genitourinary and non-genitourinary malignancy, and greater risks of systemic disease. The review also highlights numerous genetic conditions associated with male infertility as well as emerging translational evidence of genitourinary birth defects and their impact on male infertility. Finally, parallels to the overall health of infertile women are presented. This review highlights the importance of a comprehensive health evaluation of men who present for an infertility assessment.


Assuntos
Infertilidade Masculina/mortalidade , Infertilidade Masculina/patologia , Animais , Feminino , Humanos , Infertilidade Feminina/mortalidade , Infertilidade Feminina/patologia , Masculino
20.
CA Cancer J Clin ; 71(3): 250-263, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33283888

RESUMO

Sexual function is a vital aspect of quality of life among adolescent and young adult (AYA) (ages 15-39 years) cancer survivors. Sexual function encompasses physical, psychosocial, and developmental factors that contribute to sexual health, all of which may be negatively impacted by cancer and treatment. However, limited information is available to inform the care of AYA cancer survivors in this regard. This scoping review, conducted by the Children's Oncology Group AYA Oncology Discipline Committee, summarizes available literature regarding sexual function among AYA cancer survivors, including relevant psychosexual aspects of romantic relationships and body image. Results suggest that, overall, AYA cancer survivors experience a substantial burden of sexual dysfunction. Both physical and psychosocial sequelae influence survivors' sexual health. Interventions to support sexual health and psychosexual adjustment after cancer treatment are needed. Collaborations between the Children's Oncology Group and adult-focused cooperative groups within the National Cancer Institute's National Clinical Trials Network are warranted to advance prospective assessment of sexual dysfunction and test interventions to improve sexual health among AYA cancer survivors.


Assuntos
Sobreviventes de Câncer/psicologia , Relações Interpessoais , Disfunções Sexuais Fisiológicas/epidemiologia , Disfunções Sexuais Psicogênicas/epidemiologia , Saúde Sexual , Adolescente , Adulto , Imagem Corporal/psicologia , Humanos , Orgasmo , Prevalência , Qualidade de Vida , Excitação Sexual , Disfunções Sexuais Fisiológicas/fisiopatologia , Disfunções Sexuais Fisiológicas/psicologia , Disfunções Sexuais Psicogênicas/fisiopatologia , Disfunções Sexuais Psicogênicas/psicologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA