Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(10): e2216922120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848561

RESUMO

Plants generate energy flows through natural food webs, driven by competition for resources among organisms, which are part of a complex network of multitrophic interactions. Here, we demonstrate that the interaction between tomato plants and a phytophagous insect is driven by a hidden interplay between their respective microbiotas. Tomato plants colonized by the soil fungus Trichoderma afroharzianum, a beneficial microorganism widely used in agriculture as a biocontrol agent, negatively affects the development and survival of the lepidopteran pest Spodoptera littoralis by altering the larval gut microbiota and its nutritional support to the host. Indeed, experiments aimed to restore the functional microbial community in the gut allow a complete rescue. Our results shed light on a novel role played by a soil microorganism in the modulation of plant-insect interaction, setting the stage for a more comprehensive analysis of the impact that biocontrol agents may have on ecological sustainability of agricultural systems.


Assuntos
Microbioma Gastrointestinal , Microbiota , Solanum lycopersicum , Animais , Solo , Insetos , Agricultura
2.
Plant Cell Environ ; 47(11): 4086-4100, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38894696

RESUMO

Verticillium wilt, caused by the soilborne fungus Verticillium dahliae, poses a serious threat to the health of more than 200 plant species worldwide. Although plant rhizosphere-associated microbiota can influence plant resistance to V. dahliae, empirical evidence underlying Verticillium wilt resistance of perennial trees is scarce. In this study, we systemically investigated the effect of the soil microbiota on the resistance of smoke trees (Cotinus coggygria) to Verticillium wilt using field, greenhouse and laboratory experiments. Comparative analysis of the soil microbiota in the two stands of smoke trees suggested that Bacillus represented the most abundant and key microbial genus related to potential disease suppression. Smoke tree seedlings were inoculated with isolated Bacillus strains, which exhibited disease suppressiveness and plant growth-promoting properties. Furthermore, repletion of Bacillus agents to disease conducive soil significantly resulted in reduced incidence of smoke tree wilt and increased resistance of the soil microbiota to V. dahliae. Finally, we explored a more effective combination of Bacillus agents with the fungicide propiconazole to combat Verticillium wilt. The results establish a foundation for the development of an effective control for this disease. Overall, this work provides a direct link between Bacillus enrichment and disease resistance of smoke trees, facilitating the development of green control strategies and measurements of soil-borne diseases.


Assuntos
Bacillus , Resistência à Doença , Doenças das Plantas , Microbiologia do Solo , Bacillus/fisiologia , Doenças das Plantas/microbiologia , Rizosfera , Verticillium/fisiologia , Ascomicetos/fisiologia
3.
Int Microbiol ; 27(1): 311-324, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37386210

RESUMO

Management and improving saline-alkali land is necessary for sustainable agricultural development. We conducted a field experiment to investigate the effects of spraying lactic acid bacteria (LAB) on the cucumber and tomato plant soils. Three treatments were designed, including spraying of water, viable or sterilized LAB preparations to the soils of cucumber and tomato plants every 20 days. Spraying sterilized or viable LAB could reduce the soil pH, with a more obvious effect by using viable LAB, particularly after multiple applications. Metagenomic sequencing revealed that the soil microbiota in LAB-treated groups had higher alpha-diversity and more nitrogen-fixing bacteria compared with the water-treated groups. Both viable and sterilized LAB, but not water application, increased the complexity of the soil microbiota interactive network. The LAB-treated subgroups were enriched in some KEGG pathways compared with water or sterilized LAB subgroups, such as environmental information processing-related pathways in cucumber plant; and metabolism-related pathways in tomato plant, respectively. Redundancy analysis revealed association between some soil physico-chemical parameters (namely soil pH and total nitrogen) and bacterial biomarkers (namely Rhodocyclaceae, Pseudomonadaceae, Gemmatimonadaceae, and Nitrosomonadales). Our study demonstrated that LAB is a suitable strategy for decreasing soil pH and improving the microbial communities in saline-alkali land.


Assuntos
Lactobacillales , Solanum lycopersicum , Álcalis , Bactérias/genética , Solo , Plantas , Água , Microbiologia do Solo
4.
Environ Res ; 252(Pt 3): 119012, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704010

RESUMO

Microplastics and heavy metals are ubiquitous and persistent contaminants that are widely distributed worldwide, yet little is known about the effects of their interaction on soil ecosystems. A soil incubation experiment was conducted to investigate the individual and combined effects of polyethylene microplastics (PE-MPs) and lead (Pb) on soil enzymatic activities, microbial biomass, respiration rate, and community diversity. The results indicate that the presence of PE-MPs notably reduced soil pH and elevated soil Pb bioavailability, potentially exacerbated the combined toxicity on the biogeochemical cycles of soil nutrients, microbial biomass carbon and nitrogen, and the activities of soil urease, sucrase, and alkaline phosphatase. Soil CO2 emissions increased by 7.9% with PE-MPs alone, decreased by 46.3% with single Pb, and reduced by 69.4% with PE-MPs and Pb co-exposure, compared to uncontaminated soils. Specifically, the presence of PE-MPs and Pb, individually and in combination, facilitated the soil metabolic quotient, leading to reduced microbial metabolic efficiency. Moreover, the addition of Pb and PE-MPs modified the composition of the microbial community, leading to the enrichment of specific taxa. Tax4Fun analysis showed the effects of Pb, PE-MPs and their combination on the biogeochemical processes and ecological functions of microbes were mainly by altering amino acid metabolism, carbohydrate metabolism, membrane transport, and signal transduction. These findings offer valuable insights into the ecotoxicological effects of combined PE-MPs and Pb on soil microbial dynamics, reveals key assembly mechanisms and environmental drivers, and highlights the potential threat of MPs and heavy metals to the multifunctionality of soil ecosystems.


Assuntos
Biomassa , Chumbo , Microplásticos , Polietileno , Microbiologia do Solo , Poluentes do Solo , Chumbo/toxicidade , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Polietileno/toxicidade , Solo/química , Ecotoxicologia
5.
Environ Geochem Health ; 46(4): 123, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483669

RESUMO

Soil is one of the largest reservoirs of microbial diversity in nature. Although soil management is vital for agricultural purposes, intensive practices can have a significant impact on fertility, microbial community, and resistome. Thus, the aim of this study was to evaluate the effects of an intensive soil management system on the chemical attributes, composition and structure of prevalent bacterial communities, and presence and abundance of antimicrobial resistance genes (ARGs). The chemical characterization, bacterial diversity and relative abundance of ARGs were evaluated in soils from areas of intensive vegetable cultivation and forests. Results indicate that levels of nutrients and heavy metals were higher in soil samples from cultivated areas. Similarly, greater enrichment and diversity of bacterial genera was detected in agricultural areas. Of the 18 target ARGs evaluated, seven were detected in studied soils. The oprD gene exhibited the highest abundance among the studied genes and was the only one that showed a significantly different prevalence between areas. The oprD gene was identified only from soil of the cultivated areas. The blaSFO, erm(36), oprD and van genes, in addition to the pH, showed greater correlation with in soil of cultivated areas, which in turn exhibited higher contents of nutrients. Thus, in addition to changes in chemical attributes and in the microbial community of the soil, intensive agricultural cultivation systems cause a modification of its resistome, reinforcing the importance of the study of antimicrobial resistance in a One Health approach.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Solo/química , Genes Bacterianos , Brasil , Bactérias , Resistência Microbiana a Medicamentos/genética , Microbiota/genética , Florestas , Microbiologia do Solo , Esterco/microbiologia
6.
Plant J ; 109(3): 508-522, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34743401

RESUMO

Soil is a living ecosystem, the health of which depends on fine interactions among its abiotic and biotic components. These form a delicate equilibrium maintained through a multilayer network that absorbs certain perturbations and guarantees soil functioning. Deciphering the principles governing the interactions within soils is of critical importance for their management and conservation. Here, we focus on soil microbiota and discuss the complexity of interactions that impact the composition and function of soil microbiota and their interaction with plants. We discuss how physical aspects of soils influence microbiota composition and how microbiota-plant interactions support plant growth and responses to nutrient deficiencies. We predict that understanding the principles determining the configuration and functioning of soil microbiota will contribute to the design of microbiota-based strategies to preserve natural resources and develop more environmentally friendly agricultural practices.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Microbiota , Plantas/microbiologia , Microbiologia do Solo , Rizosfera
7.
Mol Ecol ; 32(23): 6294-6303, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35770463

RESUMO

To understand soil biodiversity we need to know how soil communities are assembled. However, the relationship between soil community assembly and environmental factors, and the linkages between soil microbiota taxonomic groups and their body sizes, remain unexplored in tropical seasonal rainforests. Systematic and stratified random sampling was used to collect 243 soil and organism samples across a 20-ha plot in a tropical seasonal rainforest in southwestern China. High-throughput sequencing, variation analysis and principal coordinates of neighbourhood matrices were performed. Soil community composition, spatial distribution and assembly processes based on propagule size (including archaea, bacteria, fungi and nematodes) were investigated. The results showed that: (i) the community assembly of small soil microorganisms (bacteria, fungi) was mostly influenced by stochastic processes while that of larger soil organisms (nematodes) was more deterministic; (ii) the independent effects of habitat (including soil and topographic variables) and its interaction with plant attributes for community structure significantly decreased with increasing body size; and (iii) plant leaf phosphorus directly influenced the spatial distribution of soil-available phosphorus, which indicates their indirect impact on the assembly of the soil communities. Our data suggest that the assembly of multitrophic soil communities can be explained to some extent by changes in above-ground plant attributes. This highlights the importance of above- and below-ground linkages in influencing multitrophic soil microbiota community assembly.


Assuntos
Microbiota , Floresta Úmida , Solo/química , Estações do Ano , Plantas/microbiologia , Biodiversidade , Microbiota/genética , Bactérias/genética , Fungos/genética , Tamanho Corporal , Microbiologia do Solo , Fósforo
8.
Ann Bot ; 131(7): 1081-1095, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36661120

RESUMO

BACKGROUND AND AIMS: Growing evidence has suggested that plant responses to model soil microorganisms are context dependent; however, few studies have investigated the effects of whole soil microbial communities on plant performance in different abiotic and biotic conditions. To address this, we examined how soil phosphorus (P) availability and different planting patterns regulate soil microbial effects on the growth of two native plant species in a semiarid steppe. METHODS: We carried out a glasshouse experiment to explore the effects of the whole indigenous soil microbiota on the growth and performance of Leymus chinensis and Cleistogenes squarrosa using soil sterilization with different soil P availabilities and planting patterns (monoculture and mixture). Transcriptome sequencing (RNA-seq) was used to explain the potential molecular mechanisms of the soil microbial effects on C. squarrosa. KEY RESULTS: The soil sterilization treatment significantly increased the biomass of L. chinensis and C. squarrosa in both monoculture and mixture conditions, which indicated that the soil microbiota had negative growth effects on both plants. The addition of P neutralized the negative microbial effects for both L. chinensis and C. squarrosa, whereas the mixture treatment amplified the negative microbial effects on L. chinensis but alleviated them on C. squarrosa. Transcriptomic analysis from C. squarrosa roots underscored that the negative soil microbial effects were induced by the upregulation of defence genes. The P addition treatment resulted in significant decreases in the number of differentially expressed genes attributable to the soil microbiota, and some defence genes were downregulated. CONCLUSIONS: Our results underline that indigenous soil microbiota have negative effects on the growth of two dominant plant species from a semiarid steppe, but their effects are highly dependent on the soil P availability and planting patterns. They also indicate that defence genes might play a key role in controlling plant growth responses to the soil microbiota.


Assuntos
Fósforo , Solo , Microbiologia do Solo , Plantas , Poaceae/fisiologia
9.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175442

RESUMO

Two saline-alkali-tolerant bacterial strains, Priestia aryabhattai JL-5 and Staphylococcus pseudoxylosus XW-4, were isolated, with high capabilities of hydrolyzing phosphate and producing cellulase, respectively. The molecular mechanisms regulating the saline-alkali tolerance in the strain JL-5 were further investigated using transcriptome analysis. The contents of lactic acid and proline and the enzymatic activity of glutamine synthetase in the strain JL-5 were significantly increased. The properties of saline-alkali soils were significantly improved by the enhanced growth of the indicator plant Leymus chinensis under the combined applications of the strains JL-5 and XW-4 mixed with corn straw. The contents of catalase, peroxidase, superoxide dismutase and proline of L. chinensis were significantly increased, and the content of malondialdehyde was significantly decreased in the combined treatment of both bacterial strains. The contents of available nitrogen, phosphorus and potassium and organic matters in the soil treated with both strains were significantly increased, as well as the diversity and abundance of the soil microbiota. Our study evidently demonstrated the synergistic effects of the strains JL-5 and XW-4, indicator plants and the local microbiota in terms of improving the saline-alkali soil properties, providing strong experimental evidence to support the commercial development of the combined application of both strains to improve the properties of saline-alkali soils.


Assuntos
Álcalis , Solo , Álcalis/farmacologia , Poaceae , Zea mays , Plantas , Solução Salina , Bactérias , Prolina
10.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110621

RESUMO

Cannabis sativa L. is a plant that humankind has been using for millennia. The basis of its widespread utilization is its adaptability to so many different climatic conditions, with easy cultivability in numerous diverse environments. Because of its variegate phytochemistry, C. sativa has been used in many sectors, although the discovery of the presence in the plant of several psychotropic substances (e.g., Δ9-tetrahydrocannabinol, THC) caused a drastic reduction of its cultivation and use together with its official ban from pharmacopeias. Fortunately, the discovery of Cannabis varieties with low content of THC as well as the biotechnological development of new clones rich in many phytochemical components endorsed with peculiar and many important bioactivities has demanded the reassessment of these species, the study and use of which are currently experiencing new and important developments. In this review we focus our attention on the phytochemistry, new matrices, suitable agronomic techniques, and new biological activities developed in the five last years.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Cannabis/química , Canabinoides/química , Agonistas de Receptores de Canabinoides , Encéfalo , Dronabinol/farmacologia
11.
Chimia (Aarau) ; 77(11): 777-782, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047846

RESUMO

Anthelminthics (AHs) are used to control gastrointestinal nematodes (GINs) in productive animals. They are rapidly excreted by animals, ending up in soil through direct deposition of animal dung or application of animal excreta as manures. Most environmental research on AHs has focused on their toxicity to aquatic organisms and soil fauna while their interactions with the soil microbiota, a key component of a functioning soil ecosystem, have been overlooked. In this article, we summarize current knowledge on the interactions of Ahs with the soil (micro) biota, we highlight recent evidence for the toxicity of AHs on soil microorganisms and discuss those results in the frame of the current environmental risk assessment (ERA) of veterinary medicines.


Assuntos
Anti-Infecciosos , Microbiota , Drogas Veterinárias , Animais , Medição de Risco , Solo
12.
BMC Microbiol ; 22(1): 193, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941528

RESUMO

BACKGROUND: Plant microbiome and its manipulation inaugurate a new era for plant biotechnology with the potential to benefit sustainable crop production. Here, we used the large-scale 16S rDNA sequencing analysis to unravel the dynamic, structure, and composition of exophytic and endophytic microbial communities in two hybrid commercial cultivars of sugarcane (R570 and SP80-3280), two cultivated genotypes (Saccharum officinarum and Saccharum barberi) and one wild species (Saccharum spontaneum). RESULTS: Our analysis identified 1372 amplicon sequence variants (ASVs). The microbial communities' profiles are grouped by two, root and bulk soils and stem and leave when these four components are compared. However, PCoA-based data supports that endophytes and epiphytes communities form distinct groups, revealing an active host-derived mechanism to select the resident microbiota. A strong genotype-influence on the assembly of microbial communities in Saccharum ssp. is documented. A total of 220 ASVs persisted across plant cultivars and species. The ubiquitous bacteria are two potential beneficial bacteria, Acinetobacter ssp., and Serratia symbiotica. CONCLUSIONS: The results presented support the existence of common and cultivar-specific ASVs in two commercial hybrids, two cultivated canes and one species of Saccharum across tissues (leaves, stems, and roots). Also, evidence is provided that under the experimental conditions described here, each genotype bears its microbial community with little impact from the soil conditions, except in the root system. It remains to be demonstrated which aspect, genotype, environment or both, has the most significant impact on the microbial selection in sugarcane fields.


Assuntos
Microbiota , Saccharum , Bactérias/genética , Genótipo , Microbiota/genética , Raízes de Plantas/microbiologia , Saccharum/microbiologia , Solo , Microbiologia do Solo
13.
Microb Ecol ; 83(2): 447-458, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34031701

RESUMO

The selection of tree species used for the afforestation of urban forests is very important for maintaining the urban ecosystem, while soil microbe is one of the driving factors of material cycling in the urban forest ecosystem and for health of forests. In this study, the characteristics of surface soil bacterial and fungal community structure in four urban forests (primarily composed of Fraxinus mandshurica (Fm), Quercus mongolica (Qm), Pinus sylvestris var. mongolica (Ps), and Pinus tabulaeformis var. Mukdensis (Pt) as the main dominant tree species, respectively) were investigated by high-throughput sequencing. Our results showed that the alpha diversity of the soil microbial community in the Fm urban forest was the highest, while the lowest was in the Ps urban forest. In the bacterial community, Proteobacteria was the most predominant phylum in soils from Fm, Ps, and Pt urban forests. The most relatively abundant phylum of the Qm urban forest soil was Acidobacteria. The relative abundances of the bacterial communities at the genus level in the soil of four urban forests were significantly different. The soil bacterial communities in Ps and Pt urban forests were more similar, and Qm and Fm were also more similar. In the fungal community, Basidiomycota was the most predominant phylum in soils from Qm, Ps, and Pt urban forests. The phylum with the greatest relative abundance in the Fm urban forest soil was Ascomycota. There were differences in the fungal community between Qm, Fm, Ps, and Pt urban forests. Soil microbial community composition was affected by environmental factors: soil bacterial and fungal community compositions were significantly related to soil electrical conductivity (EC), alkali hydrolysable nitrogen (AHN), total nitrogen (TN), and total phosphorus (TP). In conclusion, the soil microbial community structure was related to both forest's tree species and soil properties.


Assuntos
Microbiota , Micobioma , China , Florestas , Solo/química , Microbiologia do Solo , Árvores
14.
Environ Res ; 214(Pt 2): 113832, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35810814

RESUMO

Soil ecosystem imparts a fundamental role in the growth and survival of the living creatures. The interaction between living and non-living constituents of the environment is important for the regulation of life in the ecosystem. Biochar is a carbon rich product present in the soil that is responsible for various applications in diversified fields. In this review, we focused on the collaboration between the soil, biochar and microbial community present in the soil and consequences of it in the ecosystem. Herein, it primarily discusses on the different approaches of the production and characterization of biochar. Furthermore, this review also discusses about the optimistic interaction of biochar with soil microbes and their role in plant growth. Eventually, it reveals the various physio-chemical properties of biochar, including its specific surface area, porous nature, ion exchange capacity, and pH, which aid in the modification of the soil environment. Furthermore, it elaborately discloses the impact of the biochar addition in the soil focusing mainly on its interaction with microbial communities such as bacteria and fungi. The physicochemical properties of biochar significantly interact with microbes and improve the beneficial microbes growth and increase soil nutrients, which resulting reasonable plant growth. The main focus remains on the role of biochar-soil microbiota in remediation of pollutants, soil amendment and inhibition of pathogenicity among plants by promoting resistance potential. It highlights the fact that adding biochar to soil modulates the soil microbial community by increasing soil fertility, paving the way for its use in farming, and pollutant removal.


Assuntos
Microbiota , Poluentes do Solo , Carvão Vegetal/química , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
15.
Pestic Biochem Physiol ; 188: 105272, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464377

RESUMO

Optimization of crop production in recent times has become essential to fulfil food demands of constantly increasing human populations worldwide. To address this formidable challenge, application of agro-chemicals including synthetic pesticides in intensive farm practices has increased alarmingly. The excessive and indiscriminate application of pesticides to foster food production however, leads to its exorbitant deposition in soils. After accumulation in soils beyond threshold limits, pesticides harmfully affect the abundance, diversity and composition and functions of rhizosphere microbiome. Also, the cost of pesticides and emergence of resistance among insect-pests against pesticides are other reasons that require attention. Due to this, loss in soil nutrient pool cause a substantive reduction in agricultural production which warrant the search for newer environmentally friendly technology for sustainable crop production. Rhizosphere microbes, in this context, play vital roles in detoxifying the polluted environment making soil amenable for cultivation through detoxification of pollutants, rhizoremediation, bioremediation, pesticide degradation, and stress alleviation, leading to yield optimization. The response of soil microorganisms to range of chemical pesticides is variable ranging from unfavourable to the death of beneficial microbes. At cellular and biochemical levels, pesticides destruct the morphology, ultrastructure, viability/cellular permeability, and many biochemical reactions including protein profiles of soil bacteria. Several classes of pesticides also disturb the molecular interaction between crops and their symbionts impeding the overall useful biological processes. The harmful impact of pesticides on soil microbes, however, is poorly researched. In this review, the recent findings related with potential effects of synthetic pesticides on a range of soil microbiota is highlighted. Emphasis is given to find and suggest strategies to minimize the chemical pesticides usage in the real field conditions to preserve the viability of soil beneficial bacteria and soil quality for safe and sustainable crop production even in pesticide contaminated soils.


Assuntos
Microbiota , Praguicidas , Humanos , Solo , Praguicidas/toxicidade , Bactérias , Rizosfera
16.
J Environ Manage ; 310: 114748, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35192978

RESUMO

In post-mining rehabilitation, successful mine closure planning requires specific, measurable, achievable, relevant and time-bound (SMART) completion criteria, such as returning ecological communities to match a target level of similarity to reference sites. Soil microbiota are fundamentally linked to the restoration of degraded ecosystems, helping to underpin ecological functions and plant communities. High-throughput sequencing of soil eDNA to characterise these communities offers promise to help monitor and predict ecological progress towards reference states. Here we demonstrate a novel methodology for monitoring and evaluating ecological restoration using three long-term (>25 year) case study post-mining rehabilitation soil eDNA-based bacterial community datasets. Specifically, we developed rehabilitation trajectory assessments based on similarity to reference data from restoration chronosequence datasets. Recognising that numerous alternative options for microbiota data processing have potential to influence these assessments, we comprehensively examined the influence of standard versus compositional data analyses, different ecological distance measures, sequence grouping approaches, eliminating rare taxa, and the potential for excessive spatial autocorrelation to impact on results. Our approach reduces the complexity of information that often overwhelms ecologically-relevant patterns in microbiota studies, and enables prediction of recovery time, with explicit inclusion of uncertainty in assessments. We offer a step change in the development of quantitative microbiota-based SMART metrics for measuring rehabilitation success. Our approach may also have wider applications where restorative processes facilitate the shift of microbiota towards reference states.


Assuntos
Microbiota , Solo , Bactérias/genética , Benchmarking , Microbiologia do Solo
17.
World J Microbiol Biotechnol ; 38(11): 213, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053362

RESUMO

The soils of Lakshadweep Islands are formed as a result of the fragmentation of coral limestone, that is carbonate-rich, with neutral pH, but poor in plant nutrients. Coconut palm (Cocos nucifera L.) is the main crop cultivated, supporting the life and livelihood of the islanders. No external fertilizer application or major plant protection measures are adopted for their cultivation as the Islands were declared to go organic decades back. Yet, Lakshadweep has one of the highest productivity of coconut compared with other coconut growing areas in India. Therefore, a question arises: how is such a high coconut productivity sustained? We try to answer by estimating in three main islands (i) the nutrients added to the soil via the litter generated by coconut palms and (ii) the role of soil microbiota, including arbuscular mycorrhizae, for the high productivity. Our results indicated that, besides adding a substantial quantum of organic carbon, twice the needed amount of nitrogen, extra 20% phosphorus to the already P-rich soils, 43-45% of potassium required by palms could be easily met by the total coconut biomass residues returned to the soil. Principal Component Analysis showed that soil organic carbon %, potassium, and organic carbon added via the palm litter and AM spore load scored >± 0.95 in PC1, whereas, available K in the soil, bacteria, actinomycetes, phosphate solubilizers and fluorescent pseudomonads scored above >± 0.95 in PC2. Based on our analysis, we suggest that the autochthonous nutrients added via the coconut biomass residues, recycled by the soil microbial communities, could be one of the main reasons for sustaining a high productivity of the coconut palms in Lakshadweep Islands, in the absence of any external fertilizer application, mimicking a semi-closed-loop forest ecosystem.


Assuntos
Fertilizantes , Microbiota , Carbono/análise , Cocos , Fertilizantes/análise , Nitrogênio/análise , Nutrientes/análise , Plantas , Potássio/análise , Solo/química , Microbiologia do Solo
18.
New Phytol ; 230(3): 1156-1168, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32984980

RESUMO

Plant associated mutualists can mediate invasion success by affecting the ecological niche of nonnative plant species. Anthropogenic disturbance is also key in facilitating invasion success through changes in biotic and abiotic conditions, but the combined effect of these two factors in natural environments is understudied. To better understand this interaction, we investigated how disturbance and its interaction with mycorrhizas could impact range dynamics of nonnative plant species in the mountains of Norway. Therefore, we studied the root colonisation and community composition of arbuscular mycorrhizal (AM) fungi in disturbed vs undisturbed plots along mountain roads. We found that roadside disturbance strongly increases fungal diversity and richness while also promoting AM fungal root colonisation in an otherwise ecto-mycorrhiza and ericoid-mycorrhiza dominated environment. Surprisingly, AM fungi associating with nonnative plant species were present across the whole elevation gradient, even above the highest elevational limit of nonnative plants, indicating that mycorrhizal fungi are not currently limiting the upward movement of nonnative plants. We conclude that roadside disturbance has a positive effect on AM fungal colonisation and richness, possibly supporting the spread of nonnative plants, but that there is no absolute limitation of belowground mutualists, even at high elevation.


Assuntos
Micorrizas , Ecossistema , Fungos , Noruega , Plantas , Solo , Microbiologia do Solo , Simbiose
19.
Plant Cell Environ ; 44(12): 3515-3525, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562029

RESUMO

Environmental heterogeneity is a major driver of plant-microbiome assembly, but the specific climate and soil conditions that are involved remain poorly understood. To better understand plant microbiome formation, we examined the bacteria and fungi that colonize wild strawberry (Fragaria vesca) plants in North American and European populations. Using transects as replicates, we found strong overlap among the environmental conditions that best predict the overall similarity and richness of the plant microbiome, including soil nutrients that replicate across continents. Temperature is also among the main predictors of diversity for both bacteria and fungi in both the leaf and, unexpectedly, the root microbiome. Our results indicate that a small number of environmental factors, and their interactions, consistently contribute to plant microbiome formation, which has implications for predicting the contributions of microbes to plant productivity in ever-changing environments.


Assuntos
Fenômenos Fisiológicos Bacterianos , Meio Ambiente , Fragaria/microbiologia , Fungos/fisiologia , Microbiota , Microbiologia do Solo , Europa (Continente) , América do Norte
20.
Environ Geochem Health ; 43(6): 2347-2356, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33113031

RESUMO

Although bioaugmentation is known as effective and environmentally friendly method increasing removal of hydrocarbons from oil-contaminated soil, it sometimes fails in soil restoration and disturbs the ecological state of soil. We studied possible scenarios of the introduction of oil-degrading bacteria into oil-contaminated podzolic soil assessing the environmental safety of different bacterial preparations in a long-term field experiment. Integral indicators characterizing the state of biocenosis included biological activity of soil and aboveground biomass of grasses. It has been established that bacterial preparations can have both positive and negative effects on the ecological state of soil and oil biodegradation. Of the five bacterial preparations studied, one had a pronounced positive effect on soil biological activity and oil mineralization processes. Two preparations did not accelerate oil biodegradation and were characterized by a weaker positive effect or even a lack of influence. Two more bacterial preparations had a significant negative impact on soil biological properties. These preparations slowed oil mineralization in soil. Both positive and negative effects of bacterial preparations were observed only during the first two years after their application. All preparations were not effective during the latter stages of long-term remediation processes. The results indicate that successful application of bioaugmentation for the restoration of oil-contaminated soil requires testing of environmental safety of bacterial preparations in a long-term field experiments prior to any treatment processes.


Assuntos
Inoculantes Agrícolas/metabolismo , Bactérias/metabolismo , Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Petróleo , Poluição por Petróleo , Federação Russa , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA