Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Bot ; 107(4): 562-576, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32227348

RESUMO

PREMISE: Unique among vascular plants, some species of Selaginella have single giant chloroplasts in their epidermal or upper mesophyll cells (monoplastidy, M), varying in structure between species. Structural variants include several forms of bizonoplast with unique dimorphic ultrastructure. Better understanding of these structural variants, their prevalence, environmental correlates and phylogenetic association, has the potential to shed new light on chloroplast biology unavailable from any other plant group. METHODS: The chloroplast ultrastructure of 76 Selaginella species was studied with various microscopic techniques. Environmental data for selected species and subgeneric relationships were compared against chloroplast traits. RESULTS: We delineated five chloroplast categories: ME (monoplastidy in a dorsal epidermal cell), MM (monoplastidy in a mesophyll cell), OL (oligoplastidy), Mu (multiplastidy, present in the most basal species), and RC (reduced or vestigial chloroplasts). Of 44 ME species, 11 have bizonoplasts, cup-shaped (concave upper zone) or bilobed (basal hinge, a new discovery), with upper zones of parallel thylakoid membranes varying subtly between species. Monoplastidy, found in 49 species, is strongly shade associated. Bizonoplasts are only known in deep-shade species (<2.1% full sunlight) of subgenus Stachygynandrum but in both the Old and New Worlds. CONCLUSIONS: Multiplastidic chloroplasts are most likely basal, implying that monoplastidy and bizonoplasts are derived traits, with monoplastidy evolving at least twice, potentially as an adaptation to low light. Although there is insufficient information to understand the adaptive significance of the numerous structural variants, they are unmatched in the vascular plants, suggesting unusual evolutionary flexibility in this ancient plant genus.


Assuntos
Selaginellaceae , Traqueófitas , Evolução Biológica , Cloroplastos , Filogenia , Folhas de Planta
2.
Mitochondrial DNA B Resour ; 6(12): 3369-3371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805514

RESUMO

The plastid genome of the deep-shade plant Selaginella erythropus, which has highly unusual chloroplasts, was characterized using Illumina pair-end sequencing. This plastome is 140,151 bp in length with a large single-copy region (LSC) of 56,133 bp, a small single-copy region (SSC) of 61,268 bp, and two direct repeats (DRs) of 11,375 bp. The overall GC content is 50.68%, while those of LSC, SSC, and DR are 48.96%, 50.3%, and 55.96%, respectively. The plastome contains 102 genes, including 76 protein-coding, 15 tRNA (12 tRNA species), and 8 rRNA genes (4 rRNA species). The phylogenetic analysis shows that S. erythropus is closely related to S. moellendorffii and S. doederleinii. This result is consistent with the previous phylogenetic relationship inferred from multiple plastid and nuclear loci. However, only S. erythropus has the two-zoned giant chloroplast, the bizonoplast. The plastome provides an excellent reference for understanding the unique chloroplast differentiation in Selaginellaceae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA