Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plant Cell Rep ; 42(6): 961-974, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079058

RESUMO

KEY MESSAGE: Extensive crosstalk exists among ABA and different phytohormones that modulate plant tolerance against different abiotic stress. Being sessile, plants are exposed to a wide range of abiotic stress (drought, heat, cold, salinity and metal toxicity) that exert unwarranted threat to plant life and drastically affect growth, development, metabolism, and yield of crops. To cope with such harsh conditions, plants have developed a wide range of protective phytohormones of which abscisic acid plays a pivotal role. It controls various physiological processes of plants such as leaf senescence, seed dormancy, stomatal closure, fruit ripening, and other stress-related functions. Under challenging situations, physiological responses of ABA manifested in the form of morphological, cytological, and anatomical alterations arise as a result of synergistic or antagonistic interaction with multiple phytohormones. This review provides new insight into ABA homeostasis and its perception and signaling crosstalk with other phytohormones at both molecular and physiological level under critical conditions including drought, salinity, heavy metal toxicity, and extreme temperature. The review also reveals the role of ABA in the regulation of various physiological processes via its positive or negative crosstalk with phytohormones, viz., gibberellin, melatonin, cytokinin, auxin, salicylic acid, jasmonic acid, ethylene, brassinosteroids, and strigolactone in response to alteration of environmental conditions. This review forms a basis for designing of plants that will have an enhanced tolerance capability against different abiotic stress.


Assuntos
Ácido Abscísico , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Estresse Fisiológico/fisiologia , Citocininas , Produtos Agrícolas/metabolismo
2.
J Pineal Res ; 65(4): e12526, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30256447

RESUMO

Melatonin (MEL) has been revealed as a phylogenetically conserved molecule with a ubiquitous distribution from primitive photosynthetic bacteria to higher plants, including algae and fungi. Since MEL is implicated in numerous plant developmental processes and stress responses, the exploration of its functions in plant has become a rapidly progressing field with the new paradigm of involvement in plants growth and development. The pleiotropic involvement of MEL in regulating the transcripts of numerous genes confirms its vital involvement as a multi-regulatory molecule that architects many aspects of plant development. However, the cumulative research in plants is still preliminary and fragmentary in terms of its established functions compared to what is known about MEL physiology in animals. This supports the need for a comprehensive review that summarizes the new aspects pertaining to its functional role in photosynthesis, phytohormonal interactions under stress, cellular redox signaling, along with other regulatory roles in plant immunity, phytoremediation, and plant microbial interactions. The present review covers the latest advances on the mechanistic roles of phytomelatonin. While phytomelatonin is a sovereign plant growth regulator that can interact with the functions of other plant growth regulators or hormones, its qualifications as a complete phytohormone are still to be established. This review also showcases the yet to be identified potentials of phytomelatonin that will surely encourage the plant scientists to uncover new functional aspects of phytomelatonin in plant growth and development, subsequently improving its status as a potential new phytohormone.


Assuntos
Melatonina/metabolismo , Plantas/metabolismo , Animais , Biodegradação Ambiental , Humanos , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal/fisiologia , Plantas/imunologia
3.
Physiol Mol Biol Plants ; 23(4): 731-744, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29158624

RESUMO

Plants are confronted with a variety of environmenmtal stresses resulting in enhanced production of ROS. Plants require a threshold level of ROS for vital functions and any change in their concentration alters the entire physiology of plant. Delicate balance of ROS is maintained by an efficient functioning of intriguing indigenous defence system called antioxidant system comprising enzymatic and non enzymatic components. Down regulation of antioxidant system leads to ROS induced oxidative stress causing damage to important cellular structures and hence anomalies in metabolism. Proper mineral nutrition, in addition to other agricultural practices, forms an important part for growth and hence the yield. Potassium (K) is a key macro-element regulating growth and development through alterations in physiological and biochemical attributes. K has been reported to result into accumulation of osmolytes and augmentation of antioxidant components in the plants exposed to water and salt stress. In the present review an effort has been made to revisit the old findings and the current advances in research regarding the role of optimal, suboptimal and deficient K soil status on growth under normal and stressful conditions. Effect of K deficiency and sufficiency is discussed and the information about the K mediated antioxidant regulation and plant response is highlighted.

4.
Plants (Basel) ; 13(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38498577

RESUMO

Salinity is one of the most common abiotic stress factors affecting different biochemical and physiological processes in plants, inhibiting plant growth, and greatly reducing productivity. During the last decade, silicon (Si) supplementation was intensively studied and now is proposed as one of the most convincing methods to improve plant tolerance to salt stress. In this review, we discuss recent papers investigating the role of Si in modulating molecular, biochemical, and physiological processes that are negatively affected by high salinity. Although multiple reports have demonstrated the beneficial effects of Si application in mitigating salt stress, the exact molecular mechanism underlying these effects is not yet well understood. In this review, we focus on the localisation of Si transporters and the mechanism of Si uptake, accumulation, and deposition to understand the role of Si in various relevant physiological processes. Further, we discuss the role of Si supplementation in antioxidant response, maintenance of photosynthesis efficiency, and production of osmoprotectants. Additionally, we highlight crosstalk of Si with other ions, lignin, and phytohormones. Finally, we suggest some directions for future work, which could improve our understanding of the role of Si in plants under salt stress.

5.
Mar Environ Res ; 173: 105536, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34864513

RESUMO

Intertidal rocky shores are considered among the most thermally stressful marine ecosystems, where many species live close to their upper thermal limit and depend on access to cool microclimates to persist through heat events. In such environments, the provision of cool microclimates by habitat-forming species enables persistence of associated species during high temperature events. We assessed whether, by maintaining cool microclimates through heat events, habitat formed by rock oysters (Saccostrea cucullata) provides temporal stability to associated invertebrate communities over periods of extreme temperatures. On three tropical rocky shores of Hong Kong, which experiences a monsoonal climate, we compared changes in microclimates and invertebrate communities associated with oyster and bare rock habitats between the cool and hot seasons. Oyster habitats were, across both seasons, consistently characterised by lower maximum temperatures and greater thermal stability than bare rock habitats. Invertebrate communities in the bare rock habitat were less diverse and abundant in the hot than the cool season, but communities in the cooler habitats provided by oysters did not display temporal change. These results demonstrate that microclimates formed by oysters provide temporal stability to associated communities across periods of temperature change and are key determinants of species distributions in thermally stressful environments. The conservation and restoration of oyster habitats may, therefore, build resilience in associated ecological communities subject to ongoing environmental change.


Assuntos
Ecossistema , Ostreidae , Animais , Temperatura Alta , Invertebrados , Temperatura
6.
Microorganisms ; 11(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36677342

RESUMO

The genus Artemisia includes several keystone shrub species that dominate the North American sagebrush steppe. Their growth, survival, and establishment are negatively affected by exotic invasive grasses such as Taeniatherum caput-medusae. While the outcomes of symbiotic relationships between Artemisia spp. and arbuscular mycorrhizal fungi (AMF) are ambiguous, the benefits of ameliorated nutrient and drought stress may be cryptic and better revealed under competition. We evaluated the effects of a commercial AMF inoculum on ameliorating biotic (competition with T. caput-medusae) and abiotic (drought) stress of Artemisia tridentata ssp. wyomingensis, Artemisia arbuscula, and Artemisia nova when grown in sterile and microbially active field soil. Stress amelioration was measured as an increase in biomass production and nutrient acquisition. Mycorrhizal colonization of roots was lower in Artemisia plants grown in competition, while T. caput-medusae colonization was higher in plants with greater moisture. Both types of stress negatively affected plant biomass. Commercial AMF inoculation did not increase biomass. Colonization from field soil increased average phosphorous concentration under drought for A. tridentata ssp. wyomingensis by 36% and A. nova by 125%. While commercial inoculum and live soil led to AMF colonization of T. caput-medusae, only the commercial inoculum increased average phosphorus uptake by 71%.

7.
J Hazard Mater ; 390: 122122, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006842

RESUMO

Arsenic (As), a chronic poison and non-threshold carcinogen, is a food chain contaminant in rice, posing yield losses as well as serious health risks. Selenium (Se), a trace element, is a known antagonist of As toxicity. In present study, RNA seq. and proteome profiling, along with morphological analyses were performed to explore molecular cross-talk involved in Se mediated As stress amelioration. The repair of As induced structural deformities involving disintegration of cell wall and membranes were observed upon Se supplementation. The expression of As transporter genes viz., NIP1;1, NIP2;1, ABCG5, NRAMP1, NRAMP5, TIP2;2 as well as sulfate transporters, SULTR3;1 and SULTR3;6, were higher in As + Se compared to As alone exposure, which resulted in reduced As accumulation and toxicity. The higher expression of regulatory elements like AUX/IAA, WRKY and MYB TFs during As + Se exposure was also observed. The up-regulation of GST, PRX and GRX during As + Se exposure confirmed the amelioration of As induced oxidative stress. The abundance of proteins involved in photosynthesis, energy metabolism, transport, signaling and ROS homeostasis were found higher in As + Se than in As alone exposure. Overall, present study identified Se responsive pathways, genes and proteins involved to cope-up with As toxicity in rice.


Assuntos
Arsênio/toxicidade , Oryza/efeitos dos fármacos , Selênio/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/efeitos dos fármacos , RNA-Seq , Transcriptoma/efeitos dos fármacos
8.
Front Microbiol ; 11: 1216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733391

RESUMO

Salinity stress is one of the major abiotic stresses threatening sustainable crop production worldwide. The extent of salinity affected area is expected to cover about 50% of total agricultural land by 2050. Salinity stress produces various detrimental effects on plants' physiological, biochemical, and molecular features and reduces productivity. The poor plant growth under salinity stress is due to reduced nutrient mobilization, hormonal imbalance, and formation of reactive oxygen species (ROS), ionic toxicity, and osmotic stress. Additionally, salinity also modulates physicochemical properties and reduces the microbial diversity of soil and thus decreases soil health. On the other hand, the demand for crop production is expected to increase in coming decades owing to the increasing global population. Conventional agricultural practices and improved salt-tolerant crop varieties will not be sufficient to achieve the yields desired in the near future. Plants harbor diverse microbes in their rhizosphere, and these have the potential to cope with the salinity stress. These salinity-tolerant plant growth-promoting bacteria (PGPB) assist the plants in withstanding saline conditions. These plant-associated microbes produce different compounds such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), antioxidants, extracellular polymeric substance (EPS), and volatile organic compounds (VOC). Additionally, the naturally associated microbiome of plants has the potential to protect the host through stress avoidance, tolerance, and resistance strategies. Recent developments in microbiome research have shown ways in which novel microbe-assisted technologies can enhance plant salt tolerance and enable higher crop production under saline conditions. This focused review article presents the global scenario of salinity stress and discusses research highlights regarding PGPB and the microbiome as a biological tool for mitigation of salinity stress in plants.

9.
Plant Physiol Biochem ; 143: 351-363, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31541990

RESUMO

Nutrients are the finite natural resources that are essential for productivity and development of rice and its deficiency causes compromised yield along with reduced immunity against several biotic and abiotic stresses. In this study, the potential of Trichoderma reesei has been investigated as a biofertilizer (BF) to ameliorate nutrient stress in different rice cultivars at physiological, biochemical and molecular levels. The results indicated that cultivar Heena is much more compatible with BF as compared to cultivar Kiran at 50% nutrient limiting condition. Enhancement in physiological attributes and photosynthetic pigments were observed in BF treated Heena seedlings. The localization of biofertilizer in treated roots was further validated by scanning electron micrographs. This result correlated well with the higher levels of Indole acetic acid and Gibberellic acid in biofertilizer treated rice. Similarly, the uptake of micro-nutrients such as Fe, Co, Cu and Mo was found to be 1.4-1.9 fold higher respectively in BF treated Heena seedlings under 50% nutrient deficient condition. Furthermore, different stress ameliorating enzymes Guaiacol peroxidase, Super oxide dismutase, Total Phenolic Content, Phenol Peroxidase, Phenylalanine ammonia lyase and Ascorbate peroxidase in Heena seedlings were also increased by 1.8, 1.4, 1.2, 2.4, 1.2, and 8.3-fold respectively, at 50% nutrient deficient condition. The up-regulation of different micro and macro-nutrients allocation and accumulation; metal tolerance related; auxin synthesis genes in BF treated Heena as compared to 50% nutrient deficient condition was further supported by our findings that the application of biofertilizer efficiently ameliorated the deficiency of nutrients in rice.


Assuntos
Oryza/metabolismo , Oryza/microbiologia , Plântula/metabolismo , Plântula/microbiologia , Trichoderma/fisiologia , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
10.
Environ Sci Pollut Res Int ; 26(22): 23192-23197, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31187379

RESUMO

Soil alkalinity caused by salts, such as sodium bicarbonate (NaHCO3), and the frequently associated waterlogging problems are pervasive in agriculture and have a deleterious impact on crop production. However, various plant growth regulators, including brassinosteroids, are considered to be important against different abiotic stresses experienced by plants due to drought, salinity, and heavy metal stress. We investigated the putative role of 24-epibrassinolide (EBL), an active brassinosteroid, on red rice plants experiencing alkaline stress. Seedlings were pre-treated with 0.01 µM EBL for 30 min and later, exposed to NaHCO3 (25 mM) and were sampled, 5 days after treatments. Results showed that the pre-treatment of seedlings with EBL under non-stress conditions could promote rice plant growth. Growth parameters including dry weight (DW), root and coleoptile lengths were reduced under alkaline stress, whereas EBL application reduced the level of inhibition, as compared with NaHCO3 treatment. Enhanced levels of malondialdehyde content, hydrogen peroxide, and superoxide radicals were significantly diminished by EBL pre-treatment. Moreover, pre-treatment of EBL to alkaline-treated rice seedlings largely stimulated the enzymatic activities of ascorbate peroxidase, catalase, and superoxide dismutase. Thus, the results suggest that pre-application of EBL significantly ameliorates alkaline stress in rice.


Assuntos
Ascorbato Peroxidases/química , Brassinosteroides/farmacologia , Catalase/metabolismo , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Plântula/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Ascorbato Peroxidases/metabolismo , Peróxido de Hidrogênio/química , Malondialdeído/química , Plântula/efeitos dos fármacos , Esteroides Heterocíclicos , Superóxido Dismutase/química
11.
Front Microbiol ; 10: 3112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038554

RESUMO

Endophytes have the potential to enhance the ability of plants to resist salt stress, improving crop development and yield. Therefore, in this study, we isolated an endophyte that produced large amounts of exopolysaccharides (EPSs) from the roots of sea rice and examined its effects on the physiological responses of rice (Oryza sativa L. ssp. japonica "Nipponbare") seedlings to salt stress using hydroponic experiments. The endophyte was named Pantoea alhagi NX-11 based on its morphological characteristics and 16S ribosomal DNA (rDNA) sequence alignment. Rice seedlings that had been inoculated with P. alhagi NX-11 exhibited a 30.3% increase in fresh weight, a 28.6% increase in root length, a 51.6% increase in shoot length, and a 26.3% increase in chlorophyll content compared with control seedlings under normal conditions. In addition, inoculated rice seedlings had a 37.5% lower malondialdehyde content, a 133% higher K+/Na+ ratio, and a 52.8% higher proline content after 7 days under salt stress, as well as up-regulated expression of proline synthase, down-regulated expression of proline dehydrogenase, and enhanced antioxidant enzyme activities. Interestingly, rice seedlings that were inoculated with an EPS-deficient strain named NX-11eps- that was obtained by atmospheric and room temperature plasma (ARTP) mutagenesis were damaged by salt stress and had similar physiological and biochemical indicators to the control group. Therefore, we speculate that the ability of P. alhagi NX-11 to enhance the salt tolerance of rice seedlings is related to the EPSs it produces.

12.
Environ Sci Pollut Res Int ; 26(1): 456-463, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30406586

RESUMO

We examined the possible role of monoterpene ß-pinene in providing protection against Cr(VI) toxicity in maize (Zea mays). Treatment with ß-pinene (10 µM) significantly alleviated Cr(VI) accumulation and recuperated Cr(VI) caused decline in root and coleoptile growth in maize. ß-Pinene addition caused a decline in Cr(VI)-induced accumulation of superoxide anion, hydroxyl ion, hydrogen peroxide and confirmed by in-situ detection of ROS using histochemical localization. It suggested that the ß-pinene quenches/neutralizes enhanced ROS generated under Cr(VI) exposure. ß-Pinene also reduced Cr(VI)-induced electrolyte leakage, thereby suggesting its role in membrane stabilization. Further, ß-pinene regulated the activity of scavenging enzymes, thereby suggesting a role in modulating Cr(VI)-induced oxidative damage. In conclusion, our results suggest that the addition of ß-pinene has a protective role against Cr(VI) stress and provides resistance to maize against Cr(VI) toxicity.


Assuntos
Compostos Bicíclicos com Pontes/metabolismo , Cromo/toxicidade , Monoterpenos/metabolismo , Zea mays/fisiologia , Antioxidantes , Monoterpenos Bicíclicos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio , Superóxidos , Zea mays/efeitos dos fármacos
13.
Trends Ecol Evol ; 34(2): 167-180, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30527960

RESUMO

Evidence suggests that biodiversity supports ecosystem functioning. Yet, the mechanisms driving this relationship remain unclear. Complementarity is one common explanation for these positive biodiversity-ecosystem functioning relationships. Yet, complementarity is often indirectly quantified as overperformance in mixture relative to monoculture (e.g., 'complementarity effect'). This overperformance is then attributed to the intuitive idea of complementarity or, more specifically, to species resource partitioning. Locally, however, several unassociated causes may drive this overperformance. Here, we differentiate complementarity into three types of species differences that may cause enhanced ecosystem functioning in more diverse ecosystems: (i) resource partitioning, (ii) abiotic facilitation, and (iii) biotic feedbacks. We argue that disentangling these three causes is crucial for predicting the response of ecosystems to future biodiversity loss.


Assuntos
Biomassa , Ecossistema , Biodiversidade , Retroalimentação
14.
Front Plant Sci ; 8: 2151, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326745

RESUMO

Rice is an important staple crop as it feeds about a half of the earth's population. It is known to be sensitive to a range of abiotic stresses which result in significant decline in crop productivity. Recently, the use of phytohormones for abiotic stress amelioration has generated considerable interest. Plants adapt to various environmental stresses by undergoing series of changes at physiological and molecular levels which are cooperatively modulated by various phytohormones. Brassinosteroids (BRs) are a class of naturally occurring steroidal phytohormones, best known for their role in plant growth and development. For the past two decades, greater emphasis on studies related to BRs biosynthesis, distribution and signaling has resulted in better understanding of BRs function. Recent advances in the use of contemporary genetic, biochemical and proteomic tools, with a vast array of accessible biological resources has led to an extensive exploration of the key regulatory components in BR signaling networks, thus making it one of the most well-studied hormonal pathways in plants. The present review highlights the advancements of knowledge in BR research and links it with its growing potential in abiotic stress management for important crop like rice.

15.
Plant Physiol Biochem ; 80: 160-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24769617

RESUMO

Plant growth and productivity is negatively affected by soil salinity. However, it is predicted that plant growth-promoting bacterial (PGPB) endophytes that contain 1-aminocyclopropane-1-carboxylate (ACC) deaminase (E.C. 4.1.99.4) can facilitate plant growth and development in the presence of a number of different stresses. In present study, the ability of ACC deaminase containing PGPB endophytes Pseudomonas fluorescens YsS6, Pseudomonas migulae 8R6, and their ACC deaminase deficient mutants to promote tomato plant growth in the absence of salt and under two different levels of salt stress (165 mM and 185 mM) was assessed. It was evidence that wild-type bacterial endophytes (P. fluorescens YsS6 and P. migulae 8R6) promoted tomato plant growth significantly even in the absence of stress (salinity). Plants pretreated with wild-type ACC deaminase containing endophytic strains were healthier and grew to a much larger size under high salinity stress compared to plants pretreated with the ACC deaminase deficient mutants or no bacterial treatment (control). The plants pretreated with ACC deaminase containing bacterial endophytes exhibit higher fresh and dry biomass, higher chlorophyll contents, and a greater number of flowers and buds than the other treatments. Since the only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity, it is concluded that this enzyme is directly responsible for the different behavior of tomato plants in response to salt stress. The use of PGPB endophytes with ACC deaminase activity has the potential to facilitate plant growth on land that is not normally suitable for the majority of crops due to their high salt contents.


Assuntos
Bactérias/enzimologia , Biotecnologia/métodos , Carbono-Carbono Liases/metabolismo , Endófitos/genética , Carbono-Carbono Liases/genética , Etilenos/metabolismo , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA