Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Audiol ; 54(3): 199-209, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25529974

RESUMO

OBJECTIVE: To investigate potential susceptibility of active cochlear mechanisms to low-level styrene exposure by comparing TEOAEs in workers and controls. DESIGN: Two advanced analysis techniques were applied to detect sub-clinical changes in linear and nonlinear cochlear mechanisms of OAE generation: the wavelet transform to decompose TEOAEs into time-frequency components and extract signal-to-noise ratio and latency of each component, and the bispectrum to detect and extract nonlinear TEOAE contributions as quadratic frequency couplings (QFCs). STUDY SAMPLE: Two cohorts of workers were examined: subjects exposed exclusively to styrene (N = 9), and subjects exposed to styrene and noise (N = 6). The control group was perfectly matched by age and sex to the exposed group. RESULTS: Exposed subjects showed significantly lowered SNR in TEOAE components at mid-to-high frequencies (above 1.6 kHz) and a shift of QFC distribution towards lower frequencies than controls. No systematic differences were observed in latency. CONCLUSION: Low-level styrene exposure may have induced a modification of cochlear functionality as concerns linear and nonlinear OAE generation mechanisms. The lack of change in latency seems to suggest that the OAE components, where generation region and latency are tightly coupled, may not have been affected by styrene and noise exposure levels considered here.


Assuntos
Indústria Manufatureira , Ruído Ocupacional/efeitos adversos , Exposição Ocupacional/efeitos adversos , Emissões Otoacústicas Espontâneas/efeitos dos fármacos , Estireno/toxicidade , Adulto , Cóclea/efeitos dos fármacos , Cóclea/fisiologia , Feminino , Humanos , Masculino , Análise por Pareamento , Pessoa de Meia-Idade , Emissões Otoacústicas Espontâneas/fisiologia , Razão Sinal-Ruído
2.
Toxics ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535915

RESUMO

Due to its chemical properties, styrene is largely employed in the manufacturing of several products including rubber, polymers and resins, and it is particularly suitable for shipbuilding industry purposes. In this context, the main exposure to styrene occurs in occupational settings. Despite its widespread use, its long-term effects on human health at the occupational level are still unclear. The aim of this pilot study was to evaluate changes in styrene exposure biomarkers related to the metabolic and oxidative stress profiles in the urine of seventeen shipyard workers and seventeen non-exposed subjects. Urinary metabolites were assessed by means of NMR spectroscopy, including mandelic and phenylglyoxylic acids; four oxidative stress biomarkers, namely 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydroguanosine, and 8-oxo-7,8-dihydro-2'-deoxyguanosine and 3-nitrotyrosine, were evaluated via HPLC-MS/MS. The metabolic profiles of exposed workers showed both long- and short-term metabolic responses to styrene exposure compared to non-exposed subjects. From the comparison between non-exposed and before-shift workers, only 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine levels were significantly different (long term exposure response). At the same time, comparing the non-exposed group with after-shift workers, we observed lower levels of pseudouridine and 1-methylnicotinamide and higher glutamine levels in after-shift workers. The comparison between before-shift and after-shift workers showed that 8-oxo-7,8-dihydroguanine significantly increased after the shift, suggesting its involvement in the exposure to styrene (short-term exposure response). The obtained results, although preliminary, allow us to lay the basis for further human studies aimed at establishing a global understanding of styrene metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA