Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(18): 3845-3861.e24, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37591240

RESUMO

Dopaminergic projections regulate various brain functions and are implicated in many neuropsychiatric disorders. There are two anatomically and functionally distinct dopaminergic projections connecting the midbrain to striatum: nigrostriatal, which controls movement, and mesolimbic, which regulates motivation. However, how these discrete dopaminergic synaptic connections are established is unknown. Through an unbiased search, we identify that two groups of antagonistic TGF-ß family members, bone morphogenetic protein (BMP)6/BMP2 and transforming growth factor (TGF)-ß2, regulate dopaminergic synapse development of nigrostriatal and mesolimbic neurons, respectively. Projection-preferential expression of their receptors contributes to specific synapse development. Downstream, Smad1 and Smad2 are specifically activated and required for dopaminergic synapse development and function in nigrostriatal vs. mesolimbic projections. Remarkably, Smad1 mutant mice show motor defects, whereas Smad2 mutant mice show lack of motivation. These results uncover the molecular logic underlying the proper establishment of functionally segregated dopaminergic synapses and may provide strategies to treat relevant, projection-specific disease symptoms by targeting specific BMPs/TGF-ß and/or Smads.


Assuntos
Corpo Estriado , Dopamina , Animais , Camundongos , Mesencéfalo , Motivação , Movimento , Sinapses
2.
Cell ; 180(1): 107-121.e17, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31866069

RESUMO

Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.


Assuntos
Células-Tronco Adultas/metabolismo , Fibrose Pulmonar Idiopática/etiologia , Alvéolos Pulmonares/metabolismo , Células-Tronco Adultas/patologia , Idoso , Células Epiteliais Alveolares/patologia , Animais , Fenômenos Biomecânicos/fisiologia , Feminino , Fibrose/patologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Alvéolos Pulmonares/patologia , Regeneração , Transdução de Sinais , Células-Tronco/patologia , Estresse Mecânico , Estresse Fisiológico/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
3.
Genes Dev ; 33(21-22): 1506-1524, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31582430

RESUMO

TGF-ß receptors phosphorylate SMAD2 and SMAD3 transcription factors, which then form heterotrimeric complexes with SMAD4 and cooperate with context-specific transcription factors to activate target genes. Here we provide biochemical and structural evidence showing that binding of SMAD2 to DNA depends on the conformation of the E3 insert, a structural element unique to SMAD2 and previously thought to render SMAD2 unable to bind DNA. Based on this finding, we further delineate TGF-ß signal transduction by defining distinct roles for SMAD2 and SMAD3 with the forkhead pioneer factor FOXH1 as a partner in the regulation of differentiation genes in mouse mesendoderm precursors. FOXH1 is prebound to target sites in these loci and recruits SMAD3 independently of TGF-ß signals, whereas SMAD2 remains predominantly cytoplasmic in the basal state and set to bind SMAD4 and join SMAD3:FOXH1 at target promoters in response to Nodal TGF-ß signals. The results support a model in which signal-independent binding of SMAD3 and FOXH1 prime mesendoderm differentiation gene promoters for activation, and signal-driven SMAD2:SMAD4 binds to promoters that are preloaded with SMAD3:FOXH1 to activate transcription.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Modelos Moleculares , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta/metabolismo , Animais , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Smad2/química , Proteína Smad2/metabolismo , Proteína Smad3/química , Proteína Smad3/metabolismo
4.
J Biol Chem ; 300(1): 105556, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097188

RESUMO

A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.


Assuntos
Macrófagos Alveolares , Células-Tronco Pluripotentes , Suínos , Animais , Endocitose , Hematopoese/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Mesoderma/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Transdução de Sinais/efeitos dos fármacos , Suínos/virologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Tempo
5.
FASEB J ; 38(5): e23502, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430223

RESUMO

Podocan, the fifth member of Small Leucine-Rich Proteoglycan (SLRP) family of extracellular matrix components, is poorly known in muscle development. Previous studies have shown that Podocan promotes C2C12 differentiation in mice. In this study, we elucidated the effect of Podocan on skeletal muscle post-injury regeneration and its underlying mechanism. Injection of Podocan protein promoted the process of mice skeletal muscle post-injury regeneration. This effect seemed to be from the acceleration of muscle satellite cell differentiation in vivo. Meanwhile, Podocan promoted myogenic differentiation in vitro by binding with TGF-ß1 to inhibit the activity of the TGF-ß signaling pathway. These results indicated that Podocan had the potential roles to enhance skeletal muscle post-injury regeneration. Its mechanism is likely the regulation of the expression of p-Smad2 and p-Smad4 related to the TGF-ß signaling pathway by interacting with TGF-ß1.


Assuntos
Músculo Esquelético , Proteínas , Regeneração , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Diferenciação Celular , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas/metabolismo
6.
Cell Mol Life Sci ; 81(1): 338, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120703

RESUMO

Alveolar bone loss is a main manifestation of periodontitis. Human periodontal ligament stem cells (PDLSCs) are considered as optimal seed cells for alveolar bone regeneration due to its mesenchymal stem cell like properties. Osteogenic potential is the premise for PDLSCs to repair alveolar bone loss. However, the mechanism regulating osteogenic differentiation of PDLSCs remain elusive. In this study, we identified Neuron-derived orphan receptor 1 (NOR1), was particularly expressed in PDL tissue in vivo and gradually increased during osteogenic differentiation of PDLSCs in vitro. Knockdown of NOR1 in hPDLSCs inhibited their osteogenic potential while NOR1 overexpression reversed this effect. In order to elucidate the downstream regulatory network of NOR1, RNA-sequencing was used. We found that downregulated genes were mainly enriched in TGF-ß, Hippo, Wnt signaling pathway. Further, by western blot analysis, we verified that the expression level of phosphorylated-SMAD2/3 and phosphorylated-SMAD4 were all decreased after NOR1 knockdown. Additionally, ChIP-qPCR and dual luciferase reporter assay indicated that NOR1 could bind to the promoter of TGFBR1 and regulate its activity. Moreover, overexpression of TGFBR1 in PDLSCs could rescue the damaged osteogenic potential after NOR1 knockdown. Taken together, our results demonstrated that NOR1 could activate TGF-ß/SMAD signaling pathway and positively regulates the commitment of osteoblast lineages of PDLSCs by targeting TGFBR1 directly.


Assuntos
Diferenciação Celular , Osteoblastos , Osteogênese , Ligamento Periodontal , Receptor do Fator de Crescimento Transformador beta Tipo I , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Diferenciação Celular/genética , Células Cultivadas , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteogênese/genética , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Fator de Crescimento Transformador beta/metabolismo
7.
Differentiation ; 135: 100744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38128465

RESUMO

Differentiation of human umbilical cord mesenchymal stem cells (Uc-MSCs) into islet-like clusters which are capable of synthesizing and secreting insulin can potentially serve as donors for islet transplantation in the patient deficiency in islet ß cell function both in type 1 or type 2 diabetic patients. Therefore, we developed an easy and higher efficacy approach by trypsinazing the Uc-MSCs and followed culture in differentiation medium to induce of Uc-MSCs differentiation into islet-like clusters, and the potential mechanism that in the early stage of differentiation was also investigated by using RNA-sequencing and bioinformatics. Results show that induction efficacy was reached to 98% and TGF-ß signaling pathway may play critical role in the early stage differentiation, it was further confirmed that the retardant effect of differentiation progress either in cell morphology or in islet specific genes expression can be observed upon blocking the activation of TGF-ß signaling pathway using specific inhibitor of LY2109761 (TßRI/II kinase inhibitor). Our current study, for the first time, development a protocol for differentiation of Uc-MSCs into islet-like clusters, and revealed the importance of TGF-ß signaling pathway in the early stage of differentiation of Uc-MSCs into islet-like clusters. Our study will provide alternative approach for clinical treatment of either type I or type II diabtes mellitus with dysfunctional pancreatic islets.


Assuntos
Células Secretoras de Insulina , Células-Tronco Mesenquimais , Humanos , Insulina , Tripsina/metabolismo , Diferenciação Celular/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Cordão Umbilical
8.
Cancer Sci ; 115(3): 974-988, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287200

RESUMO

Gastric cancer (GC) is a highly aggressive malignancy with limited treatment options for advanced-stage patients. Recent studies have highlighted the role of circular RNA (circRNA) as a novel regulator of cancer progression in various malignancies. However, the underlying mechanisms by which circRNA contributes to the development and progression of GC remain poorly understood. In this study, we utilized microarrays and real-time quantitative polymerase chain reaction (qRT-PCR) to identify and validate a downregulated circRNA, hsa_circ_0003251 (referred to as circWNK1), in paired GC and normal tissues. Through a series of in vitro and in vivo gain-of-function and loss-of-function assays, we demonstrated that circWNK1 exerts inhibitory effects on the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of GC cells. Additionally, we discovered that circWNK1 acts as a competitive endogenous RNA (ceRNA) for SMAD7 by sequestering miR-21-3p. Our findings were supported by comprehensive biological information analysis, as well as RNA pull-down, luciferase reporter gene, and western blot assays. Notably, the downregulation of circWNK1 in GC cells resulted in reduced SMAD7 expression, subsequently activating the TGF-ß signaling pathway. Collectively, our study reveals that circWNK1 functions as a tumor suppressor in GC by regulating the miR-21-3p/SMAD7-mediated TGF-ß signaling pathway. Furthermore, circWNK1 holds promise as a potential biomarker for the diagnosis and treatment of GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo , Neoplasias Gástricas/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
9.
Am J Hum Genet ; 108(6): 1126-1137, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34010604

RESUMO

Dysregulated transforming growth factor TGF-ß signaling underlies the pathogenesis of genetic disorders affecting the connective tissue such as Loeys-Dietz syndrome. Here, we report 12 individuals with bi-allelic loss-of-function variants in IPO8 who presented with a syndromic association characterized by cardio-vascular anomalies, joint hyperlaxity, and various degree of dysmorphic features and developmental delay as well as immune dysregulation; the individuals were from nine unrelated families. Importin 8 belongs to the karyopherin family of nuclear transport receptors and was previously shown to mediate TGF-ß-dependent SMADs trafficking to the nucleus in vitro. The important in vivo role of IPO8 in pSMAD nuclear translocation was demonstrated by CRISPR/Cas9-mediated inactivation in zebrafish. Consistent with IPO8's role in BMP/TGF-ß signaling, ipo8-/- zebrafish presented mild to severe dorso-ventral patterning defects during early embryonic development. Moreover, ipo8-/- zebrafish displayed severe cardiovascular and skeletal defects that mirrored the human phenotype. Our work thus provides evidence that IPO8 plays a critical and non-redundant role in TGF-ß signaling during development and reinforces the existing link between TGF-ß signaling and connective tissue defects.


Assuntos
Doenças Ósseas/etiologia , Doenças Cardiovasculares/etiologia , Doenças do Tecido Conjuntivo/etiologia , Imunidade Celular/imunologia , Mutação com Perda de Função , Perda de Heterozigosidade , beta Carioferinas/genética , Adolescente , Adulto , Animais , Doenças Ósseas/patologia , Doenças Cardiovasculares/patologia , Criança , Doenças do Tecido Conjuntivo/patologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem , Peixe-Zebra , beta Carioferinas/metabolismo
10.
J Neurosci Res ; 102(1): e25255, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814990

RESUMO

Spinal cord injury (SCI) is a highly disabling central nervous system injury with a complex pathological process, resulting in severe sensory and motor dysfunction. The current treatment modalities only alleviate its symptoms and cannot effectively intervene or treat its pathological process. Many studies have reported that the transforming growth factor (TGF)-ß signaling pathway plays an important role in neuronal differentiation, growth, survival, and axonal regeneration after central nervous system injury. Furthermore, the TGF-ß signaling pathway has a vital regulatory role in SCI pathophysiology and neural regeneration. Following SCI, regulation of the TGF-ß signaling pathway can suppress inflammation, reduce apoptosis, prevent glial scar formation, and promote neural regeneration. Due to its role in SCI, the TGF-ß signaling pathway could be a potential therapeutic target. This article reported the pathophysiology of SCI, the characteristics of the TGF-ß signaling pathway, the role of the TGF-ß signaling pathway in SCI, and the latest evidence for targeting the TGF-ß signaling pathway for treating SCI. In addition, the limitations and difficulties in TGF-ß signaling pathway research in SCI are discussed, and solutions are provided to address these potential challenges. We hope this will provide a reference for the TGF-ß signaling pathway and SCI research, offering a theoretical basis for targeted therapy of SCI.


Assuntos
Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/metabolismo , Apoptose , Gliose/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Medula Espinal/metabolismo
11.
Mol Cell Biochem ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564125

RESUMO

Osteosarcoma (OS) is a malignant bone sarcoma arising from mesenchymal stem cells. The biological role of Acyl-CoA synthetase long-chain family member 4 (ACSL4), recently identified as an oncogene in numerous tumor types, remains largely unclear in OS. In this study, we investigated the expression of ACSL4 in OS tissues using immunohistochemistry staining (IHC) staining of a human tissue microarray and in OS cells by qPCR assay. Our findings revealed a significant up-regulation of ACSL4 in both OS tissues and cells. To further understand its biological effects, we conducted a series of loss-of-function experiments using ACSL4-depleted MNNG/HOS and U-2OS cell lines, focusing on OS cell proliferation, migration, and apoptosis in vitro. Our results demonstrated that ACSL4 knockdown remarkably suppressed OS cell proliferation, arrested cells in the G2 phase, induced cell apoptosis, and inhibited cell migration. Additionally, a subcutaneous xenograft mice model was established to validate the in vivo impact of ACSL4, revealing ACSL4 silencing impaired tumor growth in the OS xenograft mice. Additionally, we discovered that ACSL4 could regulate the phosphorylation level of Smad2 through cooperative interactions, and treatment with a TGF-ß inhibitor weakened the promoting effects of ACSL4 overexpression. In short, ACSL4 regulated OS progression by modulating TGF-ß/Smad2 signaling pathway. These findings underscore ACSL4 as a promising therapeutic target for OS patients and contribute novel insights into the pathogenesis of OS.

12.
Mol Biol Rep ; 51(1): 831, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037563

RESUMO

BACKGROUND: While many genes linked to colorectal cancer (CRC) contribute to cancer development, a thorough investigation is needed to explore crucial hub genes yet to be fully studied. A pivotal pathway in CRC is transforming growth factor-beta (TGF-ß). This study aimed to assess SMAD2 and SMAD4 gene expression from this pathway. METHODS AND RESULTS: Counted data from the Cancer Genome Atlas (TCGA) were examined, comparing 483 tumor and 41 normal samples. Using clinical data, genes impacting overall survival (OS) were evaluated. GSE39582 was employed to confirmed the levels of genes in CRC compared to the normal samples. Additionally, employing unhealthy samples and the RT-qPCR means our outcomes was validated. Finally, PharmacoGx information were utilized to connect the levels of potential genes to drug tolerance and susceptibility. Our findings showed SMAD2 and SMAD4 levels in TGF-ß signaling were more significant than other pathway genes. Our findings indicated that the protein levels of these genes were lower in malignant tissues than in healthy tissues. Results revealed a significant correlation between low levels of SMAD2 and unfavorable OS in CRC individuals. RT-qPCR results demonstrated decreased expressions of both SMAD2 and SMAD4 in cancer tissues compared to elevated levels in adjacent normal samples. Our results showed significant association between selected genes and immune cell infiltration markers such as CD8+, and B-cells. Our results indicated a potential association among the levels of SMAD2 and SMAD4 genes and tolerance and susceptibility to Nilotinib and Panobinostat drugs. CONCLUSION: Reduced expression of SMAD2 and SMAD4 may be pivotal in CRC progression, impacting downstream genes unrelated to patient OS. These findings suggest a potential role for SMAD2 and SMAD4 as predictive markers for drug response in CRC patients.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Proteína Smad2 , Proteína Smad4 , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Transdução de Sinais/genética , Transdução de Sinais/efeitos dos fármacos , Masculino , Regulação para Baixo/genética , Regulação para Baixo/efeitos dos fármacos , Feminino
13.
Bioorg Chem ; 150: 107611, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964148

RESUMO

Transforming growth factor ß (TGF-ß) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-ß is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-ß1, TGF-ß2, and TGF-ß3 isoforms of this cytokine with a dominating expression of TGF-ß1. Virtually, all normal cells contain TGF-ß and its specific receptors. Considering the exceptional role of fine balance played by the TGF-ß in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-ß signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-ß1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.


Assuntos
Fator de Crescimento Transformador beta , Humanos , Animais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Estrutura Molecular
14.
Int J Med Sci ; 21(7): 1307-1320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818471

RESUMO

Transforming growth factor-ß (TGF-ß) is strongly associated with the cell adhesion signaling pathway in cell differentiation, migration, etc. Mechanistically, TGF-ß is secreted in an inactive form and localizes to the extracellular matrix (ECM) via the latent TGF-ß binding protein (LTBP). However, it is the release of mature TGF-ß that is essential for the activation of the TGF-ß signaling pathway. This progress requires specific integrins (one of the main groups of cell adhesion molecules (CAMs)) to recognize and activate the dormant TGF-ß. In addition, TGF-ß regulates cell adhesion ability through modulating CAMs expression. The aberrant activation of the TGF-ß signaling pathway, caused by abnormal expression of key regulatory molecules (such as Smad proteins, certain transcription factors, and non-coding RNAs), promotes tumor invasive and metastasis ability via epithelial-mesenchymal transition (EMT) during the late stages of tumorigenesis. In this paper, we summarize the crosstalk between TGF-ß and cell adhesion signaling pathway in cancer and its underlying molecular mechanisms.


Assuntos
Adesão Celular , Transição Epitelial-Mesenquimal , Neoplasias , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Transição Epitelial-Mesenquimal/genética , Integrinas/metabolismo , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica
15.
Int J Med Sci ; 21(9): 1681-1688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006850

RESUMO

Hypertension affects a large number of individuals globally and is a common cause of nephropathy, stroke, ischaemic heart disease and other vascular diseases. While many anti-hypertensive medications are used safely and effectively in clinic practice, controlling hypertensive complications solely by reducing blood pressure (BP) can be challenging. α-Mangostin, a xanthone molecule extracted from the pericarp of Garcinia mangostana L., has shown various beneficial effects such as anti-tumor, anti-hyperuricemia, and anti-inflammatory properties. However, the effects of α-Mangostin on hypertension remain unknown. In this study, we observed that α-Mangostin significantly decreased systolic and diastolic blood pressure in spontaneously hypertensive rats (SHR), possibly through the down-regulation of angiotensin II (Ang II). We also identified early markers of hypertensive nephropathy, including urinary N-acetyl-ß-D-glucosaminidase (NAG) and ß2-microglobulin (ß2-MG), which were reduced by α-Mangostin treatment. Mechanistic studies suggested that α-Mangostin may inhibit renal tubular epithelial-to-mesenchymal transformation (EMT) by down-regulating the TGF-ß signaling pathway, thus potentially offering a new therapeutic approach for hypertension and hypertensive nephropathy.


Assuntos
Angiotensina II , Pressão Sanguínea , Transição Epitelial-Mesenquimal , Hipertensão , Xantonas , Animais , Humanos , Masculino , Ratos , Angiotensina II/metabolismo , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Linhagem Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose/tratamento farmacológico , Garcinia mangostana/química , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Hipertensão Renal/tratamento farmacológico , Hipertensão Renal/patologia , Nefrite , Ratos Endogâmicos SHR , Transdução de Sinais/efeitos dos fármacos , Xantonas/farmacologia , Xantonas/uso terapêutico
16.
Pharmacology ; 109(1): 43-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38016432

RESUMO

INTRODUCTION: There is still no effective treatment for heart failure with preserved left ventricular ejection fraction (HFpEF), and therapies to improve prognosis are urgently needed. Clinical studies in patients with HFpEF have shown that statins and HMG-CoA reductase inhibitors may reduce their mortality rate. However, the mechanisms underlying the effects of statins on HFpEF remain unknown. In the present study, we examined whether simvastatin administration inhibits the development of cardiac fibrosis in HFpEF model mice. We further examined the contribution of the Smad and mitogen-activated protein (MAP) kinase pathways to the transforming growth factor-ß (TGF-ß) signaling pathway in the development of HFpEF. METHODS: HFpEF animals were prepared by feeding C57BL/6 N mice a high-fat diet and providing water containing N[w]-nitro-l-arginine methyl ester hydrochloride (l-NAME) for 15 weeks. Simvastatin (30 mg/kg/day) or vehicle was administered orally daily during the experimental period. Cardiac function was measured by echocardiography, and cardiac fibrosis was evaluated by Masson's trichrome staining. Changes in the TGF-ß signaling proteins in myocardial tissue were examined by Western blotting. RESULTS: A high-fat diet and l-NAME solution load induced cardiac diastolic dysfunction with cardiac fibrosis. Simvastatin treatment markedly attenuated cardiac fibrosis and reduced cardiac diastolic dysfunction. In addition, simvastatin prevented the increase in phosphorylation levels of Smad (Smad2 and Smad3) and MAPK (c-Raf, Erk1/2) pathway proteins downstream of the TGF-ß receptor in cardiac tissue. CONCLUSIONS: Our present study demonstrated that simvastatin attenuated diastolic dysfunction by reducing cardiac fibrosis in HFpEF hearts. Furthermore, our findings suggest that the mechanisms by which simvastatin attenuates HFpEF development involve, at least in part, inhibition of the TGF-ß signaling pathway, which is activated in the HFpEF heart.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Camundongos , Animais , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Volume Sistólico , Fator de Crescimento Transformador beta/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Função Ventricular Esquerda , Camundongos Endogâmicos C57BL , Cardiopatias/tratamento farmacológico , Transdução de Sinais , Fibrose
17.
Adv Exp Med Biol ; 1450: 93-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37452258

RESUMO

Hepatocellular carcinoma (HCC) is a primary liver malignancy that accounts for the majority of liver cancer cases, with multiple risk factors including chronic hepatitis B and C infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD). Despite advancements in diagnosis and treatment, the survival rate of patients with advanced HCC remains low, creating an urgent need for new therapeutic targets and strategies.One biological process crucial to HCC progression is the epithelial-mesenchymal transition (EMT). EMT is a process that enables epithelial cells to acquire mesenchymal properties, including motility and invasiveness, by losing their cell-cell adhesion. Various signaling pathways, including TGF-ß, Wnt/ß-catenin, and Notch, have been implicated in regulating EMT in HCC.To inhibit EMT, targeted therapeutic approaches have been developed, and preclinical studies suggest that the inhibition of the TGF-ß, Wnt/ß-catenin, and Notch signaling pathways is promising. TGF-ß receptor inhibitors, Wnt/ß-catenin pathway inhibitors, and gamma-secretase inhibitors have shown efficacy in preclinical studies by inhibiting EMT and reducing tumor growth in HCC models. However, further clinical studies are necessary to determine their effectiveness in human patients.In addition to these approaches, further research is needed to identify other novel therapeutic targets and develop new treatment strategies for HCC. This review emphasizes the critical role of EMT in HCC progression and highlights the potential of targeting the TGF-ß, Wnt/ß-catenin, and Notch signaling pathways to inhibit EMT and reduce tumor growth in HCC. Future studies and clinical trials are necessary to validate these therapeutic strategies and develop effective treatments for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , beta Catenina/metabolismo , Linhagem Celular Tumoral , Via de Sinalização Wnt/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Movimento Celular
18.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674135

RESUMO

Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-ß (TGF-ß) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , RNA não Traduzido , Transdução de Sinais , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais
19.
Am J Respir Cell Mol Biol ; 69(4): 441-455, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37459644

RESUMO

The neutral amino acid glutamine plays a central role in TGF-ß (transforming growth factor-ß)-induced myofibroblast activation and differentiation. Cells take up glutamine mainly through a transporter expressed on the cell surface known as solute carrier SLC1A5 (solute carrier transporter 1A5). In the present work, we demonstrated that profibrotic actions of TGF-ß are mediated, at least in part, through a metabolic maladaptation of SLC1A5 and that targeting SLC1A5 abrogates multiple facets of fibroblast activation. This approach could thus represent a novel therapeutic strategy to treat patients with fibroproliferative diseases. We found that SLC1A5 was highly expressed in fibrotic lung fibroblasts and fibroblasts isolated from idiopathic pulmonary fibrosis lungs. The expression of profibrotic targets, cell migration, and anchorage-independent growth by TGF-ß required the activity of SLC1A5. Loss or inhibition of SLC1A5 function enhanced fibroblast susceptibility to autophagy; suppressed mTOR, HIF (hypoxia-inducible factor), and Myc signaling; and impaired mitochondrial function, ATP production, and glycolysis. Pharmacological inhibition of SLC1A5 by the small-molecule inhibitor V-9302 shifted fibroblast transcriptional profiles from profibrotic to fibrosis resolving and attenuated fibrosis in a bleomycin-treated mouse model of lung fibrosis. This is the first study, to our knowledge, to demonstrate the utility of a pharmacological inhibitor of glutamine transport in fibrosis, providing a framework for new paradigm-shifting therapies targeting cellular metabolism for this devastating disease.


Assuntos
Glutamina , Fibrose Pulmonar Idiopática , Pulmão , Animais , Humanos , Camundongos , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Bleomicina/efeitos adversos , Bleomicina/uso terapêutico , Fibroblastos/metabolismo , Fibrose , Glutamina/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Antígenos de Histocompatibilidade Menor/efeitos adversos , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Proto-Oncogênicas c-myc/efeitos adversos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
20.
J Cell Physiol ; 238(3): 566-581, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715607

RESUMO

Nuclear protein 1 (NUPR1) is a stress-induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11-week-old mice. Analysis of differentially expressed genes between wild-type (WT) and Nupr1-knockout (Nupr1-KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor-ß signaling was markedly downregulated in Nupr1-KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro-cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age-related diseases, we analyzed aging-related bone loss in Nupr1-KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6-19 months of age, whereas aging-related trabecular bone loss was attenuated, especially in Nupr1-KO male mice. Moreover, cellular senescence-related markers were upregulated in the osteocytes of 6-19-month-old WT male mice but markedly downregulated in the osteocytes of 19-month-old Nupr1-KO male mice. Oxidative stress-induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro-cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1-mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age-related bone loss.


Assuntos
Osso e Ossos , Regulação para Baixo , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Osteoporose , Transdução de Sinais , Proteína Smad1 , Animais , Feminino , Masculino , Camundongos , Osso e Ossos/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Camundongos Knockout , Osteoblastos/metabolismo , Osteócitos/metabolismo , Osteogênese , Osteoporose/metabolismo , Osteoporose/prevenção & controle , Proteína Smad1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA