Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 105055, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454738

RESUMO

Post-translational modifications including protein ubiquitination regulate a plethora of cellular processes in distinct manners. RNA N6-methyladenosine is the most abundant post-transcriptional modification on mammalian mRNAs and plays important roles in various physiological and pathological conditions including hematologic malignancies. We previously determined that the RNA N6-methyladenosine eraser ALKBH5 is necessary for the maintenance of acute myeloid leukemia (AML) stem cell function, but the post-translational modifications involved in ALKBH5 regulation remain elusive. Here, we show that deubiquitinase ubiquitin-specific peptidase 9X (USP9X) stabilizes ALKBH5 and promotes AML cell survival. Through the use of mass spectrometry as an unbiased approach, we identify USP9X and confirm that it directly binds to ALKBH5. USP9X stabilizes ALKBH5 by removing the K48-linked polyubiquitin chain at K57. Using human myeloid leukemia cells and a murine AML model, we find that genetic knockdown or pharmaceutical inhibition of USP9X inhibits leukemia cell proliferation, induces apoptosis, and delays AML development. Ectopic expression of ALKBH5 partially mediates the function of USP9X in AML. Overall, this study uncovers deubiquitinase USP9X as a key for stabilizing ALKBH5 expression and reveals the important role of USP9X in AML, which provides a promising therapeutic strategy for AML treatment in the clinic.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Leucemia Mieloide Aguda , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Homólogo AlkB 5 da RNA Desmetilase/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Leucemia Mieloide Aguda/genética , RNA , Ubiquitina Tiolesterase/genética , Ubiquitinação
2.
J Virol ; 97(3): e0176322, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995092

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy and one of the most common childhood cancers. Immunosuppressed patients, including HIV-infected patients, are more prone to KSHV-associated disease. KSHV encodes a viral protein kinase (vPK) that is expressed from ORF36. KSHV vPK contributes to the optimal production of infectious viral progeny and upregulation of protein synthesis. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used a bottom-up proteomics approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Subsequently, we validated this interaction using a co-immunoprecipitation assay. We report that both the ubiquitin-like and the catalytic domains of USP9X are important for association with vPK. To uncover the biological relevance of the USP9X/vPK interaction, we investigated whether the knockdown of USP9X would modulate viral reactivation. Our data suggest that depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Understanding how USP9X influences the reactivation of KSHV will provide insights into how cellular deubiquitinases regulate viral kinase activity and how viruses co-opt cellular deubiquitinases to propagate infection. Hence, characterizing the roles of USP9X and vPK during KSHV infection constitutes a first step toward identifying a potentially critical interaction that could be targeted by future therapeutics. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy. KSHV encodes a viral protein kinase (vPK) that aids viral replication. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used an affinity purification approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Overall, our data suggest a proviral role for USP9X.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Ubiquitina Tiolesterase , Criança , Humanos , Enzimas Desubiquitinantes , Herpesvirus Humano 8/fisiologia , Infecções por HIV/complicações , Linfoma de Efusão Primária , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Ubiquitina Tiolesterase/genética , Proteínas Virais/genética
3.
J Biomed Sci ; 31(1): 55, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802791

RESUMO

BACKGROUND: Radioresistance is a key clinical constraint on the efficacy of radiotherapy in lung cancer patients. REV1 DNA directed polymerase (REV1) plays an important role in repairing DNA damage and maintaining genomic stability. However, its role in the resistance to radiotherapy in lung cancer is not clear. This study aims to clarify the role of REV1 in lung cancer radioresistance, identify the intrinsic mechanisms involved, and provide a theoretical basis for the clinical translation of this new target for lung cancer treatment. METHODS: The effect of targeting REV1 on the radiosensitivity was verified by in vivo and in vitro experiments. RNA sequencing (RNA-seq) combined with nontargeted metabolomics analysis was used to explore the downstream targets of REV1. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify the content of specific amino acids. The coimmunoprecipitation (co-IP) and GST pull-down assays were used to validate the interaction between proteins. A ubiquitination library screening system was constructed to investigate the regulatory proteins upstream of REV1. RESULTS: Targeting REV1 could enhance the radiosensitivity in vivo, while this effect was not obvious in vitro. RNA sequencing combined with nontargeted metabolomics revealed that the difference result was related to metabolism, and that the expression of glycine, serine, and threonine (Gly/Ser/Thr) metabolism signaling pathways was downregulated following REV1 knockdown. LC-MS/MS demonstrated that REV1 knockdown results in reduced levels of these three amino acids and that cystathionine γ-lyase (CTH) was the key to its function. REV1 enhances the interaction of CTH with the E3 ubiquitin ligase Rad18 and promotes ubiquitination degradation of CTH by Rad18. Screening of the ubiquitination compound library revealed that the ubiquitin-specific peptidase 9 X-linked (USP9X) is the upstream regulatory protein of REV1 by the ubiquitin-proteasome system, which remodels the intracellular Gly/Ser/Thr metabolism. CONCLUSION: USP9X mediates the deubiquitination of REV1, and aberrantly expressed REV1 acts as a scaffolding protein to assist Rad18 in interacting with CTH, promoting the ubiquitination and degradation of CTH and inducing remodeling of the Gly/Ser/Thr metabolism, which leads to radioresistance. A novel inhibitor of REV1, JH-RE-06, was shown to enhance lung cancer cell radiosensitivity, with good prospects for clinical translation.


Assuntos
Neoplasias Pulmonares , Nucleotidiltransferases , Tolerância a Radiação , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Linhagem Celular Tumoral , Camundongos , Animais , DNA Polimerase Dirigida por DNA
4.
Cell Commun Signal ; 22(1): 516, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449082

RESUMO

BACKGROUND: Tauopathies, including Alzheimer's disease, are characterized by the pathological aggregation of tau protein, which is strongly linked to dysregulation of the autophagy-lysosomal degradation pathway. However, therapeutic strategies targeting this pathway remain limited. METHODS: We used both in vitro and in vivo models to investigate the role of Raptor in tau pathology. Knockdown of Raptor was performed to assess its impact on mTORC1 activation, autophagy, and tau accumulation. The relationship between USP9X and Raptor was also examined. Pharmacological inhibition of USP9X with WP1130 was employed to further confirm the involvement of the USP9X-Raptor-mTORC1 axis in tau degradation. RESULTS: Elevated Raptor levels in the hippocampus of P301S mice led to hyperactivation of mTORC1, impairing autophagy flux. Knockdown of Raptor effectively suppressed mTORC1 activation, promoted autophagy, and mitigated the accumulation of tau and its phosphorylated isoforms. This reduction in tau pathology was accompanied by decreased neuronal loss in the hippocampus, amelioration of synaptic damage, and improvement in cognitive function. The increased Raptor protein observed in the hippocampus of P301S mice was likely attributable to elevated USP9X content, which enhanced Raptor deubiquitination and protected it from proteasomal degradation. Pharmacological inhibition of USP9X with WP1130 in vitro effectively suppressed Raptor, promoted autophagy, and accelerated the degradation of tau and phosphorylated tau. CONCLUSIONS: Our findings highlight Raptor and USP9X as promising molecular targets for therapeutic intervention in tauopathies. Targeting the USP9X-Raptor-mTORC1 axis may provide a novel strategy for promoting autophagy and mitigating tau pathology in Alzheimer's disease and other tauopathies.


Assuntos
Autofagia , Alvo Mecanístico do Complexo 1 de Rapamicina , Transtornos da Memória , Proteína Regulatória Associada a mTOR , Ubiquitina Tiolesterase , Ubiquitinação , Proteínas tau , Animais , Proteína Regulatória Associada a mTOR/metabolismo , Proteína Regulatória Associada a mTOR/genética , Camundongos , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Transgênicos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos
5.
Pharmacol Res ; 209: 107471, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39427871

RESUMO

Pathological angiogenesis of liver sinusoidal endothelial cells (LSEC) plays a crucial role in the progression of metabolic dysfunction-associated steatohepatitis (MASH)-induced liver fibrosis. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) have shown promising therapeutic potential against MASH. This study aimed to investigate the impact of MSC-sEV on LSEC angiogenesis and elucidate the underlying molecular mechanisms. The effects of MSC-sEV on LSEC angiogenesis were evaluated in Tumor Necrosis Factor- alpha (TNF-α)-treated LSECs in vitro and in Methionine and Choline Deficient Diet (MCD)-induced MASH mice in vivo. Herein, we found that MSC-sEV effectively suppressed LSEC angiogenesis by targeting the angiogenesis marker Angiogenin 2 (Ang-2) in both TNF-α-treated LSECs and MASH mice. Gene manipulation experiments revealed that the primary mechanism by which MSC-sEV inhibited LSEC angiogenesis was through the modulation of nuclear factor kappa B inhibitor alpha (IκBα) / nuclear factor kappa B (NF-κB) / Ang-2 pathway. Additionally, mass spectrometry and co-immunoprecipitation (Co-IP) data suggested that MSC-sEV delivered the ubiquitin specific peptidase 9 X-linked (USP9X) protein to LSECs, leading to enhanced IκBα deubiquitination and NF-κB in activation, ultimately resulting in the inhibition of Ang-2-mediated LSEC angiogenesis. Knockdown of USP9X attenuated the regulatory effects of MSC-sEV on Ang-2 expression, LSEC angiogenesis, and the progression of MASH. In conclusion, our findings indicate that USP9X delivered via MSC-sEV can suppress LSEC angiogenesis and alleviate MASH-induced liver fibrosis through the IκBα/NF-κB/Ang-2 signaling pathway.

6.
BMC Gastroenterol ; 24(1): 239, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075342

RESUMO

BACKGROUND: MutT homolog 1 (MTH1) sanitizes oxidized dNTP pools to promote the survival of cancer cells and its expression is frequently upregulated in cancers. Polyubiquitination stabilizes MTH1 to facilitate the proliferation of melanoma cells, suggesting the ubiquitin system controls the stability and function of MTH1. However, whether ubiquitination regulates MTH1 in gastric cancers has not been well defined. This study aims to investigate the interaction between MTH1 and a deubiquitinase, USP9X, in regulating the proliferation, survival, migration, and invasion of gastric cancer cells. METHODS: The interaction between USP9X and MTH1 was evaluated by co-immunoprecipitation (co-IP) in HGC-27 gastric cancer cells. siRNAs were used to interfere with USP9X expression in gastric cancer cell lines HGC-27 and MKN-45. MTT assays were carried out to examine the proliferation, propidium iodide (PI) and 7-AAD staining assays were performed to assess the cell cycle, Annexin V/PI staining assays were conducted to examine the apoptosis, and transwell assays were used to determine the migration and invasion of control, USP9X-deficient, and USP9X-deficient plus MTH1-overexpressing HGC-27 and MKN-45 gastric cancer cells. RESULTS: Co-IP data show that USP9X interacts with and deubiquitinates MTH1. Overexpression of USP9X elevates MTH1 protein level by downregulating its ubiquitination, while knockdown of USP9X has the opposite effect on MTH1. USP9X deficiency in HGC-27 and MKN-45 cells causes decreased proliferation, cell cycle arrest, extra apoptosis, and defective migration and invasion, which could be rescued by excessive MTH1. CONCLUSION: USP9X interacts with and stabilizes MTH1 to promote the proliferation, survival, migration and invasion of gastric cancer cells.


Assuntos
Movimento Celular , Proliferação de Células , Enzimas Reparadoras do DNA , Invasividade Neoplásica , Monoéster Fosfórico Hidrolases , Neoplasias Gástricas , Ubiquitina Tiolesterase , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , RNA Interferente Pequeno , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitinação , Nudix Hidrolases/genética , Nudix Hidrolases/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518219

RESUMO

Triple-negative breast cancer (TNBC) is a breast cancer subtype that lacks targeted treatment options. The activation of the Notch developmental signaling pathway, which is a feature of TNBC, results in the secretion of proinflammatory cytokines and the recruitment of protumoral macrophages to the tumor microenvironment. While the Notch pathway is an obvious therapeutic target, its activity is ubiquitous, and predictably, anti-Notch therapies are burdened with significant on-target side effects. Previously, we discovered that, under conditions of cellular stress commonly found in the tumor microenvironment, the deubiquitinase USP9x forms a multiprotein complex with the pseudokinase tribbles homolog 3 (TRB3) that together activate the Notch pathway. Herein, we provide preclinical studies that support the potential of therapeutic USP9x inhibition to deactivate Notch. Using a murine TNBC model, we show that USP9x knockdown abrogates Notch activation, reducing the production of the proinflammatory cytokines, C-C motif chemokine ligand 2 (CCL2) and interleukin-1 beta (IL-1ß). Concomitant with these molecular changes, a reduction in tumor inflammation, the augmentation of antitumor immune response, and the suppression of tumor growth were observed. The pharmacological inhibition of USP9x using G9, a partially selective, small-molecule USP9x inhibitor, reduced Notch activity, remodeled the tumor immune landscape, and reduced tumor growth without associated toxicity. Proving the role of Notch, the ectopic expression of the activated Notch1 intracellular domain rescued G9-induced effects. This work supports the potential of USP9x inhibition to target Notch in metabolically vulnerable tissues like TNBC, while sparing normal Notch-dependent tissues.


Assuntos
Receptores Notch/genética , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/genética , Ubiquitina Tiolesterase/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Citocinas/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Interleucina-1beta/genética , Macrófagos/patologia , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética
8.
Ren Fail ; 46(2): 2361089, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38874156

RESUMO

As a pattern recognition receptor, Toll-like receptor 4 (TLR4) is crucial for the development and progression of acute kidney injury (AKI). This study aims to explore whether the deubiquitinase Usp9x influences the TLR4/NF-B pathway to cause sepsis-induced acute kidney injury (S-AKI). The model of AKI was established in Sprague-Dawley rats using the cecal ligation and puncture (CLP) method, while renal tubular epithelial cell NRK-52E was stimulated with lipopolysaccharide (LPS) in vitro. All plasmids were transfected into NRK-52E cells according to the indicated group. The deubiquitinase of TLR4 was predicted by the online prediction software Ubibrowser. Subsequently, Western blot and Pearson correlation analysis identified Usp9x protein as a potential candidate. Co-IP analysis verified the interaction between TLR4 and Usp9x. Further research revealed that overexpression of Usp9x inhibited degradation of TLR4 protein by downregulating its ubiquitination modification levels. Both in vivo and in vitro experiments observed that interference with Usp9x effectively alleviated the inflammatory response and apoptosis of renal tubular epithelial cells (RTECs) induced by CLP or LPS, whereas overexpression of TLR4 reversed this situation. Transfection with sh-Usp9x in NRK-52E cells suppressed the expression of proteins associated with the TLR4/NF-κB pathway induced by LPS. Moreover, the overexpression of TLR4 reversed the effect of sh-Usp9x transfection. Therefore, the deubiquitinase Usp9x interacts with TLR4, leading to the upregulation of its expression through deubiquitination modification, and the activation of the TLR4/NF-κB signaling pathway, thereby promoting inflammation and apoptosis in renal tubular epithelial cells and contributing to sepsis-induced acute kidney injury.


Assuntos
Injúria Renal Aguda , Apoptose , Células Epiteliais , Sepse , Transdução de Sinais , Ubiquitina Tiolesterase , Animais , Masculino , Ratos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Inflamação , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/citologia , Lipopolissacarídeos , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Sepse/complicações , Receptor 4 Toll-Like/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitinação
9.
Int J Cancer ; 153(6): 1300-1312, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37260183

RESUMO

Mammalian target of rapamycin (mTOR) is a central regulator of mammalian metabolism and physiology. Aberrant hyperactivation of the mTOR pathway promotes tumor growth and metastasis, and can also promote tumor resistance to chemotherapy and cancer drugs; this makes mTOR an attractive cancer therapeutic target. mTOR inhibitors have been approved to treat cancer; however, the mechanisms underlying drug sensitivity remain poorly understood. Here, whole exome sequencing of three chromophobe renal cell carcinoma (chRCC) patients with exceptional mTOR inhibitor sensitivity revealed that all three patients shared somatic mutations in the deubiquitinase gene USP9X. The clonal characteristics of the mutations, which were amassed by studying multiple patients' primary and metastatic samples from various years, together with the low USP9X mutation rate in unselected chRCC series, reinforced a causal link between USP9X and mTOR inhibitor sensitivity. Rapamycin treatment of USP9X-depleted HeLa and renal cancer 786-O cells, along with the pharmacological inhibition of USP9X, confirmed that this protein plays a role in patients' sensitivity to mTOR inhibitors. USP9X was not found to exert a direct effect on mTORC1, but subsequent ubiquitylome analyses identified p62 as a direct USP9X target. Increased p62 ubiquitination and the augmented rapamycin effect upon bortezomib treatment, together with the results of p62 and LC3 immunofluorescence assays, suggested that dysregulated autophagy in USP9X-depleted cells can have a synergistic effect with mTOR inhibitors. In summary, we show that USP9X constitutes a potential novel marker of sensitivity to mTOR inhibitors in chRCC patients, and represents a clinical strategy for increasing the sensitivity to these drugs.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Enzimas Desubiquitinantes , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Inibidores de MTOR , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina Tiolesterase/genética
10.
Mol Carcinog ; 62(10): 1487-1503, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37314216

RESUMO

Cell division cycle 123 (CDC123) has been implicated in a variety of human diseases. However, it remains unclear whether CDC123 plays a role in tumorigenesis and how its abundance is regulated. In this study, we found that CDC123 was highly expressed in breast cancer cells, and its high expression was positively correlated with a poor prognosis. Knowndown of CDC123 impaired the proliferation of breast cancer cells. Mechanistically, we identified a deubiquitinase, ubiquitin-specific peptidase 9, X-linked (USP9X), that could physically interact with and deubiquitinate K48-linked ubiquitinated CDC123 at the K308 site. Therefore, the expression of CDC123 was positively correlated with USP9X in breast cancer cells. In addition, we found that deletion of either USP9X or CDC123 led to altered expression of cell cycle-related genes and resulted in the accumulation of cells population in the G0/G1 phase, thereby suppressing cell proliferation. Treatment with the deubiquitinase inhibitor of USP9X, WP1130 (Degrasyn, a small molecule compound that USP9X deubiquitinase inhibitor), also led to the accumulation of breast cancer cells in the G0/G1 phase, but this effect could be rescued by overexpression of CDC123. Furthermore, our study revealed that the USP9X/CDC123 axis promotes the occurrence and development of breast cancer through regulating the cell cycle, and suggests that it may be a potential target for breast cancer intervention. In conclusion, our study demonstrates that USP9X is a key regulator of CDC123, providing a novel pathway for the maintenance of CDC123 abundance in cells, and supports USP9X/CDC123 as a potential target for breast cancer intervention through regulating the cell cycle.


Assuntos
Neoplasias da Mama , Transformação Celular Neoplásica , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Enzimas Desubiquitinantes , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
11.
Am J Med Genet A ; 191(5): 1350-1354, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680497

RESUMO

The ubiquitin-specific protease USP9X has been found to play a role in multiple aspects of neural development including processes of neuronal migrations. In males, hemizygous partial loss of function variants in USP9X lead to a clinical phenotype primarily characterized by intellectual disability, hypotonia, speech and language impairment, behavioral disturbances accompanied by additional clinical features with variable expressivity. Structural brain abnormalities are reported in all cases where neuro-imaging was performed. The most common radiological features described include hypoplasia/agenesis of the corpus callosum, widened ventricles, white matter disturbances, and cerebellar hypoplasia. Here we report a child harboring a missense variant in USP9X presenting with the classical neurodevelopmental phenotype and a previously unreported radiological picture of periventricular heterotopia. This case expands the phenotypic landscape of this emergent condition and supports the critical role of USP9X in neuronal migration processes.


Assuntos
Deficiência Intelectual , Heterotopia Nodular Periventricular , Humanos , Criança , Masculino , Heterotopia Nodular Periventricular/diagnóstico por imagem , Heterotopia Nodular Periventricular/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Mutação de Sentido Incorreto , Deficiências do Desenvolvimento/genética , Radiografia , Ubiquitina Tiolesterase/genética
12.
Cell Biol Int ; 47(2): 394-405, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36525374

RESUMO

Alveolar epithelial cells (AECs) function as a vital defense barrier avoiding the invasion of exogenous agents and preserving the functional and structural integrity of lung tissues, while damage/breakdown of this airway epithelial barrier is frequently associated with the pathogenesis of acute lung injury (ALI). NOD-like receptor family, pyrindomain-containing 3 (NLRP3) inflammasome activation-associated pyroptosis is involved in the development of ALI. Yet, how the activity of NLRP3 inflammasome is regulated in the context of ALI remains unknown. Herein we hypothesized that USP9X, an important deubiquitinase, participates in modulating the activation of NLRP3 inflammasome, thereby affecting the phenotypes in a lipopolysaccharide (LPS)-stimulated AEC model. Human pulmonary AECs were subjected to LPS/adenosine triphosphate (ATP) treatment to induce NLRP3 inflammasome activation and cell pyroptosis. Knockdown and overexpression of USP9X were applied to validate the function of USP9X. Inhibitors of proteinase and protein synthesis, as well as approach of co-immunoprecipitation coupled with Western blot, were utilized to explore the molecular mechanism. LPS/ATP challenge resulted in pronouncedly increased pyroptosis of AECs, activation of NLRP3 inflammasome and release of interleukin (IL)-1ß and IL-18 cytokines, while downregulation of USP9X could reverse these alterations. USP9X was found to have marked impact on NLRP3 protein instead of mRNA level. Furthermore, increased ubiquitination of NLRP3 was observed upon downregulating USP9X. Additionally, the inhibitory effect of USP9X downregulation was reversed by NLRP3 overexpression, while the promoting impact of USP9X overexpression was dampened by NLRP3 inhibitor in terms of cell pyroptosis and cytokine secretion. USP9X modulated the activity of NLRP3 inflammasome and pyroptosis of AECs via its deubiquitination function.


Assuntos
Lesão Pulmonar Aguda , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Trifosfato de Adenosina , Ubiquitina Tiolesterase
13.
Clin Exp Hypertens ; 45(1): 2186319, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36890708

RESUMO

Endothelial pyroptosis is a pathological mechanism of atherosclerosis (AS). Circular RNAs (circRNAs) are vital in AS progression by regulating endothelial cell functions. The study aimed to explore whether circ-USP9× regulated pyroptosis of endothelial cell to involve in AS development and the molecular mechanism. Pyroptosis was determined using lactate dehydrogenase (LDH) assay, enzyme linked immunosorbent assay (ELISA), flow cytometry, propidium iodide (PI) staining assay, and western blot. The mechanism of circ-USP9× was determined using RNA pull-down and RNA binding protein immunoprecipitation (RIP) assays. Results showed that circ-USP9× was upregulated in AS and oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). Knockdown of circ-USP9× suppressed ox-LDL induced pyroptosis of HUVECs. Mechanically, circ-USP9× could bind to EIF4A3 in the cytoplasm. Moreover, EIF4A3 was bound to GSDMD and further affects GSDMD stability. Overexpression of EIF4A3 rescued cell pyroptosis induced by circ-USP9× depletion. In short, circ-USP9× interacted with EIF4A3 to enhance GSDMD stability, thus further promoting ox-LDL-induced pyroptosis of HUVECs. These findings suggested that circ-USP9× participates in AS progression and may be a potential therapeutic target for AS.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Apoptose , Aterosclerose/genética , Proliferação de Células , RNA Helicases DEAD-box , Ensaio de Imunoadsorção Enzimática , Fator de Iniciação 4A em Eucariotos , Células Endoteliais da Veia Umbilical Humana , L-Lactato Desidrogenase , Lipoproteínas LDL/farmacologia , Proteínas de Ligação a Fosfato/genética , Proteínas Citotóxicas Formadoras de Poros , Piroptose
14.
J Cell Physiol ; 237(7): 2969-2979, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35578792

RESUMO

The ubiquitin-specific peptidase 9 X-linked (USP9X) is one of the highly conserved members belonging to the ubiquitin-specific proteases (USPs) family, which has been reported to control substrates-mediated biological functions through deubiquitinating and stabilizing substrates. Here, we have found that TGFBR2, the type II receptor of the transforming growth factor beta (TGF-ß) signaling pathway, is a novel substrate and indirect transcription target of deubiquitylase USP9X in granulosa cells (GCs). Mechanically, USP9X positively influences the expression of TGFBR2 at different levels through two independent ways: (i) directly targets and deubiquitinates TGFBR2, which maintains the protein stability of TGFBR2 through avoiding degradation mediated by ubiquitin-proteasome system; (ii) indirectly maintains TGFBR2 messenger RNA (mRNA) expression via SMAD4/miR-143 axis. Specifically, SMAD4, another substrate of USP9X, acts as a transcription factor and suppresses miR-143 which inhibits the mRNA level of TGFBR2 by directly binding to its 3'-untranslated region. Functionally, the maintenance of TGFBR2 by USP9X activates the TGF-ß signaling pathway, which further represses GC apoptosis. Our study highlights a functional micro-regulatory network composed of deubiquitinase (USP9X), small noncoding RNA (miR-143) and the TGF-ß signaling pathway, which plays a crucial role in the regulation of GC apoptosis and female fertility.


Assuntos
Células da Granulosa/metabolismo , MicroRNAs , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Transdução de Sinais , Ubiquitina Tiolesterase/metabolismo , Regiões 3' não Traduzidas , Animais , Apoptose , Feminino , Células da Granulosa/citologia , MicroRNAs/genética , RNA Mensageiro/genética , Sus scrofa , Suínos
15.
J Cell Physiol ; 237(7): 2992-3000, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35506169

RESUMO

Breast cancer is one of the most common malignancies in women worldwide. Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic subtype that has the characteristics of easy recurrence, poor prognosis as well as lack of targeted therapeutics. Snail1, a key factor regulating epithelial-mesenchymal transition (EMT) process, contributing to metastasis and chemoresistance in human cancers. However, the molecular mechanism of Snail1 stabilization in cancers is not fully understood. Here, we demonstrate that the deubiquitinating enzyme USP9X deubiquitinates and stabilizes Snail1, thereby promoting metastasis and chemoresistance. The depletion and pharmacological inhibition of USP9X by WP1130, an inhibitor of USP9X, downregulate endogenous Snail1 protein, inhibit cell migration, invasion, metastasis, and increase cellular sensitivity to cisplatin and paclitaxel both in vitro and in vivo, whereas the reconstitution of Snail1 in cells with USP9X depletion at least partially reverses these phenotypes. Overall, our study establishes the USP9X-Snail1 axis as an important regulatory mechanism of breast cancer metastasis and chemoresistance and provides a rationale for potential therapeutic interventions in the treatment of TNBC.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Metástase Neoplásica , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ubiquitina Tiolesterase/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Enzimas Desubiquitinantes/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Humanos , Fatores de Transcrição da Família Snail/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
16.
J Cell Sci ; 133(3)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31964704

RESUMO

In order to prevent the deleterious effects of genotoxic agents, cells have developed complex surveillance mechanisms and DNA repair pathways that allow them to maintain genome integrity. The ubiquitin-specific protease 9X (USP9X) contributes to genome stability during DNA replication and chromosome segregation. Depletion of USP9X leads to DNA double-strand breaks, some of which are triggered by replication fork collapse. Here, we identify USP9X as a novel regulator of homologous recombination (HR) DNA repair in human cells. By performing cellular HR reporter, irradiation-induced focus formation and colony formation assays, we show that USP9X is required for efficient HR. Mechanistically, we show USP9X is important to sustain the expression levels of key HR factors, namely BRCA1 and RAD51 through a non-canonical regulation of their mRNA abundance. Intriguingly, we find that the contribution of USP9X to BRCA1 and RAD51 expression is independent of its known catalytic activity. Thus, this work identifies USP9X as a regulator of HR, demonstrates a novel mechanism by which USP9X can regulate protein levels, and provides insights in to the regulation of BRCA1 and RAD51 mRNA.This article has an associated First Person interview with the first author of the paper.


Assuntos
Rad51 Recombinase , Reparo de DNA por Recombinação , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Dano ao DNA , Reparo do DNA/genética , Replicação do DNA , Recombinação Homóloga/genética , Humanos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina/genética
17.
Am J Med Genet A ; 188(6): 1808-1814, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253988

RESUMO

Pathogenic variants in USP9X, on X chromosome, have been implicated in syndromic intellectual disability (ID) in both males and females with distinct craniofacial features. We report a truncating variant, c.885_889delAAAAG, p.(Lys296Serfs*4), in the USP9X gene with incomplete penetrance in two nontwin female siblings with phenotypic resemblance to female-specific syndromic ID (MIM 300969, also known as MRX99F). To investigate the possible genetic etiology of the reduced penetrance, X-inactivation, RNA-Seq, and full quad exome analyses were attempted, but failed to identify a promising candidate modifier. While the penetrance of pathogenic variants in USP9X in female appears to be high (95%) and the variants frequently occur de novo, incomplete penetrance should be considered.


Assuntos
Deficiência Intelectual , Ubiquitina Tiolesterase , Exoma , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Penetrância , RNA-Seq , Ubiquitina Tiolesterase/genética , Sequenciamento do Exoma
18.
Am J Med Genet A ; 188(10): 2958-2968, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904974

RESUMO

Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development.


Assuntos
Hérnias Diafragmáticas Congênitas , Animais , Variações do Número de Cópias de DNA , Diafragma , Hérnias Diafragmáticas Congênitas/genética , Camundongos
19.
Am J Med Genet A ; 188(6): 1836-1847, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35238482

RESUMO

Only a few patients with deletions or duplications at Xp11.4, bridging USP9X, DDX3X, and CASK genes, have been described so far. Here, we report on a female harboring a de novo Xp11.4p11.3 deletion and a male with an overlapping duplication inherited from an unaffected mother, presenting with syndromic intellectual disability. We discuss the role of USP9X, DDX3X, and CASK genes in human development and describe the effects of Xp11.4 deletion and duplications in female and male patients, respectively.


Assuntos
Deficiência Intelectual , Cromossomos Humanos X , RNA Helicases DEAD-box/genética , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Fenótipo , Ubiquitina Tiolesterase/genética
20.
Cereb Cortex ; 31(3): 1763-1775, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188399

RESUMO

Genetic association studies have identified many factors associated with neurodevelopmental disorders such as autism spectrum disorder (ASD). However, the way these genes shape neuroanatomical structure and connectivity is poorly understood. Recent research has focused on proteins that act as points of convergence for multiple factors, as these may provide greater insight into understanding the biology of neurodevelopmental disorders. USP9X, a deubiquitylating enzyme that regulates the stability of many ASD-related proteins, is one such point of convergence. Loss of function variants in human USP9X lead to brain malformations, which manifest as a neurodevelopmental syndrome that frequently includes ASD, but the underlying structural and connectomic abnormalities giving rise to patient symptoms is unknown. Here, we analyzed forebrain-specific Usp9x knockout mice (Usp9x-/y) to address this knowledge gap. Usp9x-/y mice displayed abnormal communication and social interaction behaviors. Moreover, the absence of Usp9x culminated in reductions to the size of multiple brain regions. Diffusion tensor magnetic resonance imaging revealed deficits in all three major forebrain commissures, as well as long-range hypoconnectivity between cortical and subcortical regions. These data identify USP9X as a key regulator of brain formation and function, and provide insights into the neurodevelopmental syndrome arising as a consequence of USP9X mutations in patients.


Assuntos
Córtex Cerebral/fisiopatologia , Vias Neurais/fisiopatologia , Neurogênese/fisiologia , Ubiquitina Tiolesterase/metabolismo , Animais , Comportamento Animal , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA