Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.866
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2406928121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39178233

RESUMO

Autism spectrum disorders (ASD) can be caused by environmental factors. These factors act early in the development of the nervous system and induce stereotyped repetitive behaviors and diminished social interactions, among other outcomes. Little is known about how these behaviors are produced. In pregnant women, delivery of valproic acid (VPA) (to control seizure activity or stabilize mood) or immune activation by a virus increases the incidence of ASD in offspring. We found that either VPA or Poly Inosine:Cytosine (which mimics a viral infection), administered at mouse embryonic day 12.5, induced a neurotransmitter switch from GABA to glutamate in PV- and CCK-expressing interneurons in the medial prefrontal cortex by postnatal day 10. The switch was present for only a brief period during early postnatal development, observed in male and female mice at postnatal day 21 and reversed in both males and females by postnatal day 30. At postnatal day 90, male mice exhibited stereotyped repetitive behaviors and diminished social interaction while female mice exhibited only stereotyped repetitive behavior. Transfecting GAD1 in PV- and CCK-expressing interneurons at postnatal day 10, to reintroduce GABA expression, overrode the switch and prevented expression of autistic-like behavior. These findings point to an important role of neurotransmitter switching in mediating the environmental causes of autism.


Assuntos
Ácido Valproico , Ácido gama-Aminobutírico , Animais , Feminino , Camundongos , Masculino , Gravidez , Ácido Valproico/toxicidade , Ácido gama-Aminobutírico/metabolismo , Interneurônios/metabolismo , Animais Recém-Nascidos , Comportamento Animal , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/genética , Transtorno Autístico/etiologia , Transtorno Autístico/metabolismo , Ácido Glutâmico/metabolismo , Neurotransmissores/metabolismo , Poli I-C , Córtex Pré-Frontal/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/patologia , Colecistocinina/metabolismo , Parvalbuminas/metabolismo , Camundongos Endogâmicos C57BL , Comportamento Estereotipado/efeitos dos fármacos
2.
Brain ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657115

RESUMO

Valproate is the most effective treatment for idiopathic generalised epilepsy. Current guidance precludes its use in women of childbearing potential, unless other treatments are ineffective or not tolerated, because of high teratogenicity. This risk was recently extended to men. New guidance will limit use both in men and women aged <55 years, resulting in withdrawal of valproate from men already taking it, as occurs for women. Whether there are risks of personal harm (including injury or death) associated with valproate withdrawal has not yet been quantified for men or women on valproate, meaning clinicians cannot reliably counsel either sex when discussing valproate withdrawal with them, despite that this concern may be at the forefront of patients' and clinicians' minds. We assessed whether there are any morbidity or mortality risks associated with valproate withdrawal in young men and women. We performed a retrospective cohort study of internationally derived electronic health data within the TriNetX Global Collaborative Network. Included were men and women aged 16-54 years with ≥1 epilepsy disease or symptom code between 01/12/2017-01/12/2018 and ≥2 valproate prescriptions over the preceding two years (01/01/2015-30/11/2017). 5-year propensity-matched risks of mortality and a range of morbidity outcomes were compared between those remaining on vs. withdrawn from valproate during the 01/12/2017-01/12/2018 recruitment period, regardless of whether switched to another antiseizure medication. Survival analysis was undertaken using Cox-proportional hazard models, generating hazard ratios (HRs) with 95% confidence intervals (CIs). 8,991 men and 5,243 women taking valproate were recruited. 28% of men and 36% of women were subsequently withdrawn from valproate. Valproate withdrawal was associated with significantly increased risks of emergency department attendance (HRs overall: 1.236 (CI 1.159-1.319), men: 1.181 (CI 1.083-1.288), women: 1.242 (CI 1.125-1.371)), hospital admission (HRs overall: 1.160 (CI 1.081-1.246), men: 1.132 (CI 1.027-1.249), women: 1.147 (CI 1.033-1.274)), falls (HRs overall: 1.179 (CI 1.041-1.336), men: 1.298 (CI 1.090-1.546)), injuries (HRs overall: 1.095 (CI 1.021-1.174), men: 1.129 (CI 1.029-1.239)), burns (HRs overall: 1.592 (CI 1.084-2.337)), and new-onset depression (HRs overall 1.323 (CI 1.119-1.565), women: 1.359 (CI 1.074-1.720)). The risk of these outcomes occurring was 1-7% higher in those withdrawn from valproate than in those remaining on valproate. Overall, valproate withdrawal was not associated with increased mortality. These results may help patients and clinicians have a more informed discussion about personal safety when considering valproate withdrawal.

3.
Cereb Cortex ; 34(13): 146-160, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696608

RESUMO

Autism spectrum disorder is a neurodevelopmental disability that includes sensory disturbances. Hearing is frequently affected and ranges from deafness to hypersensitivity. In utero exposure to the antiepileptic valproic acid is associated with increased risk of autism spectrum disorder in humans and timed valproic acid exposure is a biologically relevant and validated animal model of autism spectrum disorder. Valproic acid-exposed rats have fewer neurons in their auditory brainstem and thalamus, fewer calbindin-positive neurons, reduced ascending projections to the midbrain and thalamus, elevated thresholds, and delayed auditory brainstem responses. Additionally, in the auditory cortex, valproic acid exposure results in abnormal responses, decreased phase-locking, elevated thresholds, and abnormal tonotopic maps. We therefore hypothesized that in utero, valproic acid exposure would result in fewer neurons in auditory cortex, neuronal dysmorphology, fewer calbindin-positive neurons, and reduced connectivity. We approached this hypothesis using morphometric analyses, immunohistochemistry, and retrograde tract tracing. We found thinner cortical layers but no changes in the density of neurons, smaller pyramidal and non-pyramidal neurons in several regions, fewer neurons immunoreactive for calbindin-positive, and fewer cortical neurons projecting to the inferior colliculus. These results support the widespread impact of the auditory system in autism spectrum disorder and valproic acid-exposed animals and emphasize the utility of simple, noninvasive auditory screening for autism spectrum disorder.


Assuntos
Córtex Auditivo , Transtorno do Espectro Autista , Calbindinas , Modelos Animais de Doenças , Ácido Valproico , Animais , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/induzido quimicamente , Ácido Valproico/toxicidade , Feminino , Calbindinas/metabolismo , Córtex Auditivo/patologia , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/metabolismo , Gravidez , Neurônios/patologia , Neurônios/metabolismo , Ratos , Masculino , Vias Auditivas/patologia , Vias Auditivas/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos Sprague-Dawley , Anticonvulsivantes
4.
J Neurophysiol ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319784

RESUMO

Receptive language deficits and aberrant auditory processing are often observed in individuals with autism spectrum disorders (ASD). Symptoms associated with ASD are observed in rodents prenatally exposed to valproic acid (VPA), including deficits in speech sound discrimination ability. These perceptual difficulties are accompanied by changes in neural activity patterns. In both cortical and subcortical levels of the auditory pathway, VPA-exposed rats have impaired responses to speech sounds. Developing a method to improve these neural deficits throughout the auditory pathway is necessary. The purpose of this study was to investigate the ability of vagus nerve stimulation (VNS) paired with sounds to restore degraded inferior colliculus responses in VPA-exposed rats. VNS paired with the speech sound "dad" was presented to a group of VPA-exposed rats 300 times per day for 20 days. Another group of VPA-exposed rats were presented with VNS paired with multiple tone frequencies for 20 days. The inferior colliculus responses were recorded from 19 saline-exposed control rats, 18 VPA-exposed with no VNS, 8 VNS-speech paired VPA-exposed, and 7 VNS-tone paired VPA-exposed female and male rats. Pairing VNS with tones increased the IC response strength to speech sounds by 44% when compared to VPA-exposed rats alone. Contrarily, VNS-speech pairing significantly decreased the IC response to speech compared with VPA-exposed rats by 5%. The current research indicates that pairing VNS with tones improved sound processing in rats exposed to VPA and suggests that auditory processing can be improved through targeted plasticity.

5.
J Neurochem ; 168(6): 1045-1059, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38291613

RESUMO

Glial cells play relevant roles in neuroinflammation caused by epilepsy. Elevated hemichannel (HC) activity formed by connexins (Cxs) or pannexin1 (Panx1) largely explains brain dysfunctions commonly caused by neuroinflammation. Glia express HCs formed by Cxs 43, 30, or 26, while glia and neurons both express HCs formed by Panx1. Cx43 HCs allow for the influx of Ca2+, which promotes glial reactivity, enabling the release of the gliotransmitters that contribute to neuronal over-stimulation. Valproate (VPA), an antiseizure medication, has pleiotropic actions on neuronal molecular targets, and their action on glial cell HCs remains elusive. We used HeLa cells transfected with Cx43, Cx30, Cx26, or Panx1 to determine the effect of VPA on HC activity in the brain. VPA slightly increased HC activity under basal conditions, but significantly enhanced it in cells pre-exposed to conditions that promoted HC activity. Furthermore, VPA increased ATP release through Cx43 HCs. The increased HC activity caused by VPA was resistant to washout, being consistent with in silico studies, which predicted the binding site for VPA and Cx43, as well as for Panx1 HCs on the intracellular side, suggesting that VPA first enters through HCs, after which their activity increases.


Assuntos
Anticonvulsivantes , Conexinas , Ácido Valproico , Ácido Valproico/farmacologia , Humanos , Anticonvulsivantes/farmacologia , Conexinas/metabolismo , Células HeLa , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Conexina 43/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Trifosfato de Adenosina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Animais , Epilepsia/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/induzido quimicamente
6.
Biochem Biophys Res Commun ; 735: 150485, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098273

RESUMO

Long-term stress is a significant risk factor for cardiovascular diseases, including atherosclerosis and endothelial dysfunction. Moreover, prolonged stress has shown to negatively regulate central BDNF expression. The role of central BDNF in CNS disorders is well studied until recently the peripheral BDNF was also found to be involved in endothelial function regulation and atherosclerosis. The peripheral BDNF and its role in chronic stress-induced atherosclerosis and endothelial dysfunction remain unclear. Therefore, we aimed to elucidate the role of BDNF and its modulation by the HDAC inhibitor valproic acid (VA) in chronic unpredictable stress (CUS)-induced atherosclerosis and endothelial dysfunction. We demonstrated that a 10-week CUS mouse model substantially decreases central and peripheral BDNF expression, resulting in enhanced serum lipid indices, plaque deposition, fibrosis, and CD68 expression in thoracic aortas. Further, parameters associated with endothelial dysfunction such as increased levels of endothelin-1 (ET-1), adhesion molecules like VCAM-1, M1 macrophage markers, and decreased M2 macrophage markers, eNOS expression, and nitrite levels in aortas, were also observed. VA (50 mg/kg, 14 days, i. p.) was administered to mice following 8 weeks of CUS exposure until the end of the experimental procedure. VA significantly prevented the decrease in BDNF, eNOS and nitrite levels, reduced lesion formation and fibrosis in thoracic aortas and increased ET-1, and VCAM-1 followed by M2 polarization in VA-treated mice. The study highlights the potential of epigenetic modulation of BDNF as a therapeutic target, in stress-induced cardiovascular pathologies and suggests that VA could be a promising agent for mitigating CUS-induced endothelial dysfunction and atherosclerosis by BDNF modulation.

7.
Dev Neurosci ; : 1-12, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679020

RESUMO

INTRODUCTION: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits, cognitive dysfunction, and stereotyped repetitive behaviors. Regional volume changes are commonly observed in individuals with ASD. To examine volumetric dysregulation across adolescence, the valproic acid (VPA) model was used to induce ASD-like phenotypes in rats. METHOD: Regional volumes were obtained via magnetic resonance imaging at either postnatal day 28 or postnatal day 40 (P40), which correspond to early and late adolescence, respectively. RESULTS: Consistent with prior research, VPA animals had reduced total brain volume compared to control animals. A novel outcome was that VPA animals had overgrown right hippocampi at P40. Differences in the pattern of development of the anterior cingulate cortex were also observed in VPA animals. Differences for the posterior cingulate were only observed in males, but not females. CONCLUSION: These results demonstrate differences in region-specific developmental trajectories between control and VPA animals and suggest that the VPA model may capture regional volume changes consistent with human ASD.

8.
Mol Carcinog ; 63(2): 275-285, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37877748

RESUMO

The TP53 tumor suppressor is the most frequently mutated gene in human cancers. For p53-targeted therapy, one of the strategies was targeting mutant p53 for degradation. In EGFR-mutated lung cancer patients, concurrent TP53 mutation was associated with faster resistance to EGFR-TKIs. In this study, we discovered that valproic acid (VPA), a widely prescribed antiseizure medication, had a synergic effect on sensitive as well as acquired resistant lung cancers with EGFR/TP53 co-mutation in combination with EGFR-TKIs. In both in vitro and in vivo models, VPA greatly improved the efficacy of EGFR-TKIs, including forestalling the occurrence of acquired resistance and increasing the sensitivity to EGFR-TKIs. Mechanistically, VPA dramatically promoted degradation of mutant p53 in both sensitive and acquired resistant cells while inhibited mutant TP53 mRNA transcription only in sensitive cells. Together, this study suggested that VPA combination treatment could have beneficial effects on EGFR-mutant lung cancers with concurrent p53 mutation in both early and late stages, expanding the potential clinical applications for VPA.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Proteína Supressora de Tumor p53/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética
9.
Stem Cells ; 41(8): 775-791, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37228023

RESUMO

Cytochrome P450 3A4 (CYP3A4) is involved in first-pass metabolism in the small intestine and is heavily implicated in oral drug bioavailability and pharmacokinetics. We previously reported that vitamin D3 (VD3), a known CYP enzyme inducer, induces functional maturation of iPSC-derived enterocyte-like cells (iPSC-ent). Here, we identified a Notch activator and CYP modulator valproic acid (VPA), as a promotor for the maturation of iPSC-ent. We performed bulk RNA sequencing to investigate the changes in gene expression during the differentiation and maturation periods of these cells. VPA potentiated gene expression of key enterocyte markers ALPI, FABP2, and transporters such as SULT1B1. RNA-sequencing analysis further elucidated several function-related pathways involved in fatty acid metabolism, significantly upregulated by VPA when combined with VD3. Particularly, VPA treatment in tandem with VD3 significantly upregulated key regulators of enterohepatic circulation, such as FGF19, apical bile acid transporter SLCO1A2 and basolateral bile acid transporters SLC51A and SLC51B. To sum up, we could ascertain the genetic profile of our iPSC-ent cells to be specialized toward fatty acid absorption and metabolism instead of transporting other nutrients, such as amino acids, with the addition of VD3 and VPA in tandem. Together, these results suggest the possible application of VPA-treated iPSC-ent for modelling enterohepatic circulation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Ácido Valproico , Humanos , Ácido Valproico/farmacologia , Ácido Valproico/metabolismo , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Enterócitos/metabolismo , Células Cultivadas
10.
Arch Biochem Biophys ; 755: 109985, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579957

RESUMO

OBJECTIVE: To determine whether WJ-MSCs pretreated with VPA would enhance their migration to improve functional recovery of renal IRI in rats. METHODS: 150 Sprague-Dawley rats were distributed into 5 groups; Sham, IRI, WJ-MSC, VPA, and WJ-MSCs + VPA. 10 rats were sacrificed after 3, 5, and 7 days. Role of WJ-MSCs pretreated with VPA was evaluated by assessment of renal function, antioxidant enzymes together with renal histopathological and immunohistopathological analyses and finally by molecular studies. RESULTS: WJ-MSCs and VPA significantly improved renal function and increased antioxidants compared to IRI group. Regarding gene expression, WJ-MSCs and VPA decreased BAX and TGF-ß1, up-regulated Akt, PI3K, BCL2, SDF1α, and CXCR4 related to IRI. Additionally, WJ-MSCs pretreated with VPA improved the measured parameters more than either treatment alone. CONCLUSION: WJ-MSCs isolated from the umbilical cord and pretreated with VPA defended the kidney against IRI by more easily homing to the site of injury.

11.
BMC Cancer ; 24(1): 1167, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300376

RESUMO

BACKGROUND: Metastatic pancreatic ductal adenocarcinoma (mPDAC) patients have very poor prognosis highlighting the urgent need of novel treatments. In this regard, repurposing non-oncology already-approved drugs might be an attractive strategy to offer more-effective treatment easily tested in clinical trials. Accumulating evidence suggests that epigenetic deregulation is a hallmark of cancer contributing to treatment resistance in several solid tumors, including PDAC. Histone deacetylase inhibitors (HDACi) are epigenetic drugs we have investigated preclinically and clinically as anticancer agents. Valproic acid (VPA) is a generic low-cost anticonvulsant and mood stabilizer with HDAC inhibitory activity, and anticancer properties also demonstrated in PDAC models. Statins use was reported to be associated with lower mortality risk in patients with pancreatic cancer and statins have been shown to have a direct antitumor effect when used alone or in combination therapy. We recently showed capability of VPA/Simvastatin (SIM) combination to potentiate the antitumor activity of gemcitabine/nab-paclitaxel in vitro and in vivo PDAC preclinical models. METHODS/DESIGN: VESPA is a patient-centric open label randomized multicenter phase-II investigator-initiated trial, evaluating the feasibility, safety, and efficacy of VPA/SIM plus first line gemcitabine/nab-paclitaxel-based regimens (AG or PAXG) (experimental arm) versus chemotherapy alone (standard arm) in mPDAC patients. The study involves Italian and Spanish oncology centers and includes an initial 6-patients safety run-in-phase. A sample size of 240 patients (120 for each arm) was calculated under the hypothesis that the addition of VPA/SIM to gemcitabine and nab-paclitaxel-based regimens may extend progression free survival from 6 to 9 months in the experimental arm. Secondary endpoints are overall survival, response rate, disease control rate, duration of response, CA 19.9 reduction, toxicity, and quality of life. The study includes a patient engagement plan and complementary biomarkers studies on tumor and blood samples. CONCLUSIONS: VESPA is the first trial evaluating efficacy and safety of two repurposed drugs in oncology such as VPA and SIM, in combination with standard chemotherapy, with the aim of improving mPDAC survival. The study is ongoing. Enrollment started in June 2023 and a total of 63 patients have been enrolled as of June 2024. TRIAL REGISTRATION: EudraCT number: 2022-004154-63; ClinicalTrials.gov identifier NCT05821556, posted 2023/04/20.


Assuntos
Albuminas , Protocolos de Quimioterapia Combinada Antineoplásica , Desoxicitidina , Gencitabina , Paclitaxel , Neoplasias Pancreáticas , Sinvastatina , Ácido Valproico , Humanos , Ácido Valproico/uso terapêutico , Ácido Valproico/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Sinvastatina/administração & dosagem , Sinvastatina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Albuminas/administração & dosagem , Albuminas/uso terapêutico , Feminino , Masculino , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Pessoa de Meia-Idade , Idoso , Reposicionamento de Medicamentos/métodos , Adulto
12.
Epilepsia ; 65(6): e73-e78, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606683

RESUMO

We investigated the effect of comedication with ethosuximide (ESM) on lamotrigine (LTG) blood levels. Based on observations from clinical practice, we hypothesized that ESM reduces the LTG serum concentration. We additionally evaluated this effect in the presence of concomitant valproic acid (VPA). We retrospectively analyzed samples of inpatients from our department who had been treated with a combination of ESM and LTG between 2017 and 2021. We additionally used data on LTG serum concentrations from a previously published cohort from our center. Generalized estimation equations (GEEs) were used for statistical analyses. We included 523 samples from 209 patients. GEE analyses showed that LTG trough serum concentrations were significantly lower in samples with ESM comedication and significantly higher in samples with concomitant VPA. The effect of ESM was moderated by patients' age; in children and adolescents, LTG serum concentrations were 37% lower than in samples without ESM, whereas in adults, LTG serum concentrations were 14% lower. The effect we found in our data is relevant to daily clinical practice, if patients are not seizure-free despite typical daily LTG dosage, or if they develop side effects during ESM withdrawal. It should be considered especially in children and adolescents.


Assuntos
Anticonvulsivantes , Interações Medicamentosas , Etossuximida , Lamotrigina , Humanos , Lamotrigina/uso terapêutico , Lamotrigina/sangue , Etossuximida/uso terapêutico , Etossuximida/sangue , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/sangue , Feminino , Criança , Masculino , Adolescente , Adulto , Estudos Retrospectivos , Adulto Jovem , Pré-Escolar , Pessoa de Meia-Idade , Ácido Valproico/uso terapêutico , Ácido Valproico/sangue , Epilepsia/tratamento farmacológico , Epilepsia/sangue , Quimioterapia Combinada , Idoso
13.
Neurochem Res ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120794

RESUMO

Autism spectrum disorder (ASD) is known as a group of neurodevelopmental conditions including stereotyped and repetitive behaviors, besides social and sensorimotor deficits. Anatomical and functional evidence indicates atypical maturation of the striatum. Astrocytes regulate the maturation and plasticity of synaptic circuits, and impaired calcium signaling is associated with repetitive behaviors and atypical social interaction. Spontaneous calcium transients (SCT) recorded in the striatal astrocytes of the rat were investigated in the preclinical model of ASD by prenatal exposure to valproic acid (VPA). Our results showed sensorimotor delay, augmented glial fibrillary acidic protein -a typical intermediate filament protein expressed by astrocytes- and diminished expression of GABAA-ρ3 through development, and increased frequency of SCT with a reduced latency that resulted in a diminished amplitude in the VPA model. The convulsant picrotoxin, a GABAA (γ-aminobutyric acid type A) receptor antagonist, reduced the frequency of SCT in both experimental groups but rescued this parameter to control levels in the preclinical ASD model. The amplitude and latency of SCT were decreased by picrotoxin in both experimental groups. Nipecotic acid, a GABA uptake inhibitor, reduced the mean amplitude only for the control group. Nevertheless, nipecotic acid increased the frequency but diminished the latency in both experimental groups. Thus, we conclude that striatal astrocytes exhibit SCT modulated by GABAA-mediated signaling, and prenatal exposure to VPA disturbs this tuning.

14.
Nitric Oxide ; 145: 21-32, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382865

RESUMO

Neuronal differentiation of adipose tissue-derived stem cells (ASCs) is greatly promoted by valproic acid (VPA) with cAMP elevating agents thorough NO signaling pathways, but its mechanism is not fully understood. In the present study, we investigate the involvement of protein S-nitrosylation in the VPA-promoted neuronal differentiation of ASCs. The whole amount of S-nitrosylated protein was increased by the treatment with VPA alone for three days in ASCs. An inhibitor of thioredoxin reductase (TrxR), auranofin, further increased the amount of S-nitrosylated protein and enhances the VPA-promoted neuronal differentiation in ASCs. On the contrary, another inhibitor of TrxR, dinitrochlorobenzene, inhibited the VPA-promoted neuronal differentiation in ASCs even with cAMP elevating agents, which was accompanied by unexpectedly decreased S-nitrosylated protein. It was considered from these results that increased protein S-nitrosylation is involved in VPA-promoted neuronal differentiation of ASCs. By the proteomic analysis of S-nitrosylated protein in VPA-treated ASCs, no identified proteins could be specifically related to VPA-promoted neuronal differentiation. The identified proteins, however, included those involved in the metabolism of substances regulating neuronal differentiation, such as aspartate and glutamate.


Assuntos
Neurônios , Ácido Valproico , Ácido Valproico/farmacologia , Neurônios/metabolismo , Proteômica , Células-Tronco/metabolismo , Tecido Adiposo
15.
Pharmacol Res ; 208: 107410, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39276955

RESUMO

Histone deacetylases (HDACs) are zinc-dependent deacetylases that remove acetyl groups from lysine residues of histones or form protein complexes with other proteins for transcriptional repression, changing chromatin structure tightness, and inhibiting gene expression. Recent in vivo and in vitro studies have amply demonstrated the critical role of HDACs in the cell biology of the nervous system during both physiological and pathological processes and have provided new insights into the conduct of research on neurological disease targets. In addition, in vitro and in vivo studies on HDAC inhibitors show promise for the treatment of various diseases. This review summarizes the regulatory mechanisms of HDAC and the important role of its downstream targets in nervous system diseases, and summarizes the therapeutic mechanisms and efficacy of HDAC inhibitors in various nervous system diseases. Additionally, the current pharmacological situation, problems, and developmental prospects of HDAC inhibitors are described. A better understanding of the pathogenic mechanisms of HDACs in the nervous system may reveal new targets for therapeutic interventions in diseases and help to relieve healthcare pressure through preventive measures.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Doenças do Sistema Nervoso , Humanos , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Animais , Histona Desacetilases/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/enzimologia
16.
Br J Clin Pharmacol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261302

RESUMO

AIMS: Review the effectiveness and dosing of L-carnitine for valproic-acid induced toxicity. METHODS: A literature review of the pharmacokinetics and clinical use of L-carnitine was performed. RESULTS: Valproic acid is a fatty acid used for numerous therapeutic indications ranging from epilepsy to bipolar disorder. The metabolism of valproic acid produces both therapeutic and toxic metabolites. Whilst it has a good safety profile, adverse effects of valproic acid in chronic use include hepatotoxicity ranging from transient elevation of liver enzymes to fulminant liver failure and hyperammonaemia with resultant encephalopathy. L-carnitine is an essential cofactor for mitochondrial fatty acid metabolism, which is an important source of energy in cardiac and skeletal muscle. Physiological concentrations of L-carnitine are maintained in man by exogenous dietary intake and endogenous synthesis. Following exogenous oral administration of L-carnitine, the bioavailability ranges from 14% to 18%. After bolus intravenous administration of L-carnitine in doses ranging from 20 to 100 mg/kg, the volume of distribution is 0.2-0.3 L/kg, and the fraction excreted unchanged in urine is 0.73-0.95, suggesting that renal clearance of L-carnitine is dose dependent due to saturable renal reabsorption at supraphysiological concentrations. CONCLUSIONS: There is evidence supporting the use of L-carnitine in treating hyperammonaemia and hepatotoxicity following chronic therapeutic use and after acute overdose of valproic acid, but the optimal dose and route of administration is unknown. Based on the pharmacokinetics of L-carnitine, we advocate the administration of L-carnitine for valproic-acid induced hyperammonaemia or hepatotoxicity as an intravenous loading dose of 5 mg/kg followed by a continuous intravenous infusion instead of the oral or intravenous boluses that are currently advocated.

17.
Exp Brain Res ; 242(10): 2295-2308, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39085433

RESUMO

Exposure to valproic acid (VPA), a common anti-seizure medication, in utero is a risk factor for autism spectrum disorder (ASD). People with ASD often display changes in the cerebellum, including volume changes, altered circuitry, and changes in Purkinje cell populations. ASD is also characterized by changes in the medial prefrontal cortex (mPFC), where excitatory/inhibitory balance is often altered. This study exposed rats to a high dose of VPA during gestation and assessed cognition and anxiety-like behaviors during young adulthood using a set-shifting task and the elevated plus maze. Inhibitory parvalbumin-expressing (PV +) neuron counts were assessed in the mPFC and cerebellar lobules VI and VII (Purkinje cell layers), which are known to modulate cognition. VPA males had increased PV + counts in crus I and II of lobule VII. VPA males also had decreased parvalbumin-expressing neuron counts in the mPFC. It was also found that VPA-exposed rats, regardless of sex, had increased parvalbumin-expressing Purkinje cell counts in lobule VI. In males, this was associated with impaired intra-dimensional shifting on a set-shifting task. Purkinje cell over proliferation may be contributing to the previously observed increase in volume of Lobule VI. These findings suggest that altered inhibitory signaling in cerebellar-frontal circuits may contribute to the cognitive deficits that occur within ASD.


Assuntos
Cerebelo , Neurônios , Parvalbuminas , Córtex Pré-Frontal , Animais , Parvalbuminas/metabolismo , Masculino , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/efeitos dos fármacos , Cerebelo/patologia , Cerebelo/efeitos dos fármacos , Ratos , Neurônios/fisiologia , Neurônios/patologia , Feminino , Gravidez , Ácido Valproico/farmacologia , Contagem de Células , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos Sprague-Dawley
18.
Mol Biol Rep ; 51(1): 353, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401030

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, a limited range of activities, and deficiencies in social communications. Bone marrow mesenchymal stem cells (BM-MSCs), which secrete factors that stimulate surrounding microenvironment, and BM-MSCs conditioned medium (BM-MSCs-CM), which contains cell-secreted products, have been speculated to hold potential as a therapy for ASD. This study aimed to compare the therapeutic effects of BM-MSCs and BM-MSCs-CM on behavioral and microglial changes in an animal model of autism induced by valproic acid (VPA). METHODS AND RESULTS: Pregnant Wistar rats were administered by VPA at a dose of 600 mg/kg at 12.5 days post-conception. After birth, male pups were included in the study. At 6 weeks of age, one group of rats received intranasal administration of BM-MSCs, while another group received BM-MSCs-CM. The rats were allowed to recover for 2 weeks. Behavioral tests, quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry were performed. Both BM-MSCs and BM-MSCs-CM administration significantly improved some behavioral deficits. Furthermore, these treatments notably reduced Iba-1 marker associated with microgliosis. Additionally, there was a significant reduction in the expression of pro-inflammatory cytokines IL-1ß and IL-6, and an increase in the levels of the anti-inflammatory cytokine IL-10 in rats administered by BM-MSCs and BM-MSCs-CM. CONCLUSIONS: Post-developmental administration of BM-MSCs and BM-MSCs-CM can ameliorate prenatal neurodevelopmental deficits, restore cognitive and social behaviors, and modulate microglial and inflammatory markers. Results indicated that the improvement rate was higher in the BM-MSCs group than BM-MSCs-CM group.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Gravidez , Feminino , Ratos , Masculino , Animais , Ácido Valproico/farmacologia , Ácido Valproico/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/terapia , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Ratos Wistar , Células-Tronco Mesenquimais/metabolismo , Citocinas/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células da Medula Óssea/metabolismo
19.
Mol Biol Rep ; 51(1): 427, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498238

RESUMO

BACKGROUND: Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS: The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS: Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS: Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ácido Valproico/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Supressora de Tumor p53 , Resistência a Múltiplos Medicamentos/genética , Apoptose , Linhagem Celular Tumoral , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/farmacologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/farmacologia , Proteínas de Transporte Vesicular/uso terapêutico
20.
Epilepsy Behav ; 155: 109802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657483

RESUMO

OBJECTIVE: Epilepsy is a chronic disease that requires long-term monitoring and treatment. It is suspected that there is a interaction between the use of anti-seizure medications and the risk of cardiovascular disease. The aim of the study is to investigate the association between the intake of phenobarbital, carbamazepine and valproic acid and their serum drug concentrations (SDC) with various cardiovascular risk parameters (homocysteine, folic acid, vitamin B12, total cholesterol (TC), triglycerides, high- and low-density lipoprotein (LDL)). METHODS: This is a cross-sectional study. Data (demographic characteristics and laboratory results) of patients treated for epilepsy in a tertiary care hospital between January 2020 and February 2022 were analyzed retrospectively (n = 2014). Kruskal Wallis, Mann-Whitney U, correlation analysis was used, p < 0.05 was considered statistically significant. RESULTS: The median age of patients was 15 years (IQR:8-31) and 48.3 % were women. The highest homocysteine level was found in patients receiving valproic acid, but it was not statistically significant. Patients receiving phenobarbital had the highest levels of folic acid and B12 and the lowest levels of total cholesterol and low-density lipoprotein cholesterol, which was statistically significant. In patients receiving carbamazepine, a moderately negative significant association was found between serum drug concentration and folic acid levels and a moderately positive significant association was found between TC and LDL levels. CONCLUSION: In our study, the majority of patients were children and adolescents. Regular monitoring of drug serum concentrations and metabolic parameters may be useful to select the safest drug in terms of cardiovascular disease risk. Randomized controlled trials on the long-term effects of anti-seizure treatment are needed.


Assuntos
Anticonvulsivantes , Carbamazepina , Doenças Cardiovasculares , Epilepsia , Ácido Valproico , Humanos , Feminino , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/sangue , Anticonvulsivantes/efeitos adversos , Estudos Transversais , Masculino , Adulto , Epilepsia/tratamento farmacológico , Epilepsia/sangue , Adolescente , Adulto Jovem , Ácido Valproico/uso terapêutico , Ácido Valproico/efeitos adversos , Ácido Valproico/sangue , Doenças Cardiovasculares/sangue , Criança , Carbamazepina/uso terapêutico , Carbamazepina/sangue , Carbamazepina/efeitos adversos , Homocisteína/sangue , Fenobarbital/uso terapêutico , Fenobarbital/sangue , Estudos Retrospectivos , Vitamina B 12/sangue , Fatores de Risco de Doenças Cardíacas , Ácido Fólico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA