Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 25(5): 1000-10, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27090425

RESUMO

A wide application of systemic pesticides and detection of their residues in bee-collected pollen and nectar at sublethal concentrations led to the emergence of concerns about bees' chronic exposure and possible sublethal effects on insect pollinators. Therefore, special attention was given to reducing unintentional intoxications under field conditions. The sensitivity of winter bees throughout their long lifespan to residual exposure of pesticides is not well known, since most previous studies only looked at the effects on summer bees. Here, we performed various laboratory bioassays to assess the effects of clothianidin on the survival and behavior of winter bees. Oral lethal and sublethal doses were administered throughout 12-day. The obtained LD50 values at 48, 72, 96 h and 10 days were 26.9, 18.0, 15.1 and 9.5 ng/bee, respectively. Concentrations <20 µg/kg were found to be sublethal. Oral exposure to sublethal doses was carried out for 12-day and, the behavioral functions were tested on the respective 13th day. Although slight reductions in the responses at the concentrations 10 and 15 µg/kg were observed, all tested sublethal concentrations had showed non-significant effects on the sucrose responsiveness, habitation of the proboscis extension reflex and olfactory learning performance. Nevertheless, chronic exposure to 15 µg/kg affected the specificity of the early long-term memory (24 h). Since the tested concentrations were in the range of field-relevant concentrations, our results strongly suggest that related-effects on winter and summer bees' sensitivity should also be studied under realistic conditions.


Assuntos
Abelhas/fisiologia , Guanidinas/toxicidade , Inseticidas/toxicidade , Tiazóis/toxicidade , Testes de Toxicidade Subcrônica , Animais , Comportamento Animal/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Neonicotinoides , Estações do Ano
2.
J Insect Physiol ; 146: 104504, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36935036

RESUMO

The anatomical, physiological, and behavioral characteristics of honey bees are affected by the season as well as division of labor. In this study, we examined the structure, ultrastructure, and gene expression of fat body cells in both long-lived winter and short-lived summer worker bees (the youngest stage of hive bees and forager bees). In contrast to hive bees, foragers and winter bees have a higher metabolism due to intensive muscle activity during their flight (foragers) or endothermic heat production (winter bees). These workers differ from hive bees in the biology of their mitochondria, peroxisomes, and lysosomes as well as in the expression of the genes involved in lipid, carbohydrate, amino acid metabolism, insulin, and TGF- ß signaling. Additionally, the expression of genes related to phospholipid metabolism was higher in the hive bees. However, we found no differences between workers in the expression of genes controlling cell organelles, such as the Golgi apparatus, endoplasmic reticulum, ribosomes, nucleus, and vacuoles, as well as genes for DNA replication, cell cycle control, and autophagy. Furthermore, lysosomes, autophagic processes and lipofuscin particles were more frequently observed in winter bees using electron microscopy.


Assuntos
Abelhas , Expressão Gênica , Animais , Abelhas/genética , Abelhas/ultraestrutura , Corpo Adiposo/metabolismo , Corpo Adiposo/ultraestrutura , Estações do Ano
3.
Insects ; 13(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35206766

RESUMO

In temperate climates, honey bee workers of the species Apis mellifera have different lifespans depending on the seasonal phenotype: summer bees (short lifespan) and winter bees (long lifespan). Many studies have revealed the biochemical parameters involved in the lifespan differentiation of summer and winter bees. However, comprehensive information regarding the metabolic changes occurring in their bodies between the two is limited. This study used proton nuclear magnetic resonance (1H NMR) spectroscopy to analyze the metabolic differences between summer and winter bees of the same age. The multivariate analysis showed that summer and winter bees could be distinguished based on their metabolic profiles. Among the 36 metabolites found, 28 metabolites have displayed significant changes from summer to winter bees. Compared to summer bees, trehalose in winter bees showed 1.9 times higher concentration, and all amino acids except for proline and alanine showed decreased patterns. We have also detected an unknown compound, with a CH3 singlet at 2.83 ppm, which is a potential biomarker that is about 13 times higher in summer bees. Our results show that the metabolites in summer and winter bees have distinctive characteristics; this information could provide new insights and support further studies on honey bee longevity and overwintering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA