Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 109(4): 576-587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356241

RESUMO

Spasticity attributable to exaggerated stretch reflex pathways, particularly affecting the ankle plantar flexors, often impairs overground walking in persons with incomplete spinal cord injury. Compelling evidence from rodent models underscores how exposure to acute intermittent hypoxia (AIH) can provide a unique medium to induce spinal plasticity in key inhibitory pathways mediating stretch reflex excitability and potentially affect spasticity. In this study, we quantify the effects of a single exposure to AIH on the stretch reflex in able-bodied individuals. We hypothesized that a single sequence of AIH will increase the stretch reflex excitability of the soleus muscle during ramp-and-hold angular perturbations applied to the ankle joint while participants perform passive and volitionally matched contractions. Our results revealed that a single AIH exposure did not significantly change the stretch reflex excitability during both passive and active matching conditions. Furthermore, we found that able-bodied individuals increased their stretch reflex response from passive to active matching conditions after both sham and AIH exposures. Together, these findings suggest that a single AIH exposure might not engage inhibitory pathways sufficiently to alter stretch reflex responses in able-bodied persons. However, the generalizability of our present findings requires further examination during repetitive exposures to AIH along with potential reflex modulation during functional movements, such as overground walking.


Assuntos
Músculo Esquelético , Reflexo de Estiramento , Humanos , Reflexo de Estiramento/fisiologia , Músculo Esquelético/fisiologia , Tornozelo , Articulação do Tornozelo , Hipóxia , Eletromiografia
2.
Arch Phys Med Rehabil ; 105(10): 1930-1937, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38969255

RESUMO

OBJECTIVES: To evaluate if acute intermittent hypoxia (AIH) coupled with transcutaneous spinal cord stimulation (tSCS) enhances task-specific training and leads to superior and more sustained gait improvements as compared with each of these strategies used in isolation in persons with chronic, incomplete spinal cord injury. DESIGN: Proof of concept, randomized crossover trial. SETTING: Outpatient, rehabilitation hospital. INTERVENTIONS: Ten participants completed 3 intervention arms: (1) AIH, tSCS, and gait training (AIH + tSCS); (2) tSCS plus gait training (SHAM AIH + tSCS); and (3) gait training alone (SHAM + SHAM). Each arm consisted of 5 consecutive days of intervention with a minimum of a 4-week washout between arms. The order of arms was randomized. The study took place from December 3, 2020, to January 4, 2023. MAIN OUTCOME MEASURES: 10-meter walk test at self-selected velocity (SSV) and fast velocity, 6-minute walk test, timed Up and Go (TUG) and secondary outcome measures included isometric ankle plantarflexion and dorsiflexion torque RESULTS: TUG improvements were 3.44 seconds (95% CI: 1.24-5.65) significantly greater in the AIH + tSCS arm than the SHAM AIH + tSCS arm at post-intervention (POST), and 3.31 seconds (95% CI: 1.03-5.58) greater than the SHAM + SHAM arm at 1-week follow up (1WK). SSV was 0.08 m/s (95% CI: 0.02-0.14) significantly greater following the AIH + tSCS arm than the SHAM AIH + tSCS at POST. Although not significant, the AIH + tSCS arm also demonstrated the greatest average improvements compared with the other 2 arms at POST and 1WK for the 6-minute walk test, fast velocity, and ankle plantarflexion torque. CONCLUSIONS: This pilot study is the first to demonstrate that combining these 3 neuromodulation strategies leads to superior improvements in the TUG and SSV for individuals with chronic incomplete spinal cord injury and warrants further investigation.


Assuntos
Estudos Cross-Over , Transtornos Neurológicos da Marcha , Estudo de Prova de Conceito , Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Humanos , Traumatismos da Medula Espinal/reabilitação , Masculino , Feminino , Pessoa de Meia-Idade , Estimulação da Medula Espinal/métodos , Adulto , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/fisiopatologia , Hipóxia/reabilitação , Teste de Caminhada , Estimulação Elétrica Nervosa Transcutânea/métodos , Terapia Combinada
3.
J Physiol ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37983629

RESUMO

Breathing mild bouts of low oxygen air (i.e. acute intermittent hypoxia, AIH) has been shown to improve locomotor function in humans after a spinal cord injury. How AIH-induced gains in motor performance are achieved remains unclear. We examined the hypothesis that AIH augments motor learning and motor retention during a locomotor adaptation task. We further hypothesized that gains in motor learning and retention will be associated with reductions in net metabolic power, consistent with the acquisition of energetically favourable mechanics. Thirty healthy individuals were randomly allocated into either a control group or an AIH group. We utilized a split-belt treadmill to characterize adaptations to an unexpected belt speed perturbation of equal magnitude during an initial exposure and a second exposure. Adaptation was characterized by changes in spatiotemporal step asymmetry, anterior-posterior force asymmetry, and net metabolic power. While both groups adapted by reducing spatial asymmetry, only the AIH group achieved significant reductions in double support time asymmetry and propulsive force asymmetry during both the initial and the second exposures to the belt speed perturbation. Net metabolic power was also significantly lower in the AIH group, with significant reductions from the initial perturbation exposure to the second. These results provide the first evidence that AIH mediates improvements in both motor learning and retention. Further, our results suggest that reductions in net metabolic power continue to be optimized upon subsequent learning and are driven by more energetically favourable temporal coordination strategies. Our observation that AIH facilitates motor learning and retention can be leveraged to design rehabilitation interventions that promote functional recovery. KEY POINTS: Brief exposures to low oxygen air, known as acute intermittent hypoxia (AIH), improves locomotor function in humans after a spinal cord injury, but it remains unclear how gains in motor performance are achieved. In this study, we tested the hypothesis that AIH induces enhancements in motor learning and retention by quantifying changes in interlimb coordination, anterior-posterior force symmetry and metabolic cost during a locomotor adaptation task. We show the first evidence that AIH improves both motor learning and savings of newly learned temporal interlimb coordination strategies and force asymmetry compared to untreated individuals. We further demonstrate that AIH elicits greater reductions in metabolic cost during motor learning that continues to be optimized upon subsequent learning. Our findings suggest that AIH-induced gains in locomotor performance are facilitated by enhancements in motor learning and retention of more energetically favourable coordination strategies.

4.
J Neurophysiol ; 129(4): 799-806, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883762

RESUMO

Inflammation undermines neuroplasticity, including serotonin-dependent phrenic long-term facilitation (pLTF) following moderate acute intermittent hypoxia (mAIH: 3, 5-min episodes, arterial Po2: 40-50 mmHg; 5-min intervals). Mild inflammation elicited by a low dose of the TLR-4 receptor agonist, lipopolysaccharide (LPS; 100 µg/kg, ip), abolishes mAIH-induced pLTF by unknown mechanisms. In the central nervous system, neuroinflammation primes glia, triggering ATP release and extracellular adenosine accumulation. As spinal adenosine 2 A (A2A) receptor activation impairs mAIH-induced pLTF, we hypothesized that spinal adenosine accumulation and A2A receptor activation are necessary in the mechanism whereby LPS impairs pLTF. We report that 24 h after LPS injection in adult male Sprague Dawley rats: 1) adenosine levels increase in ventral spinal segments containing the phrenic motor nucleus (C3-C5; P = 0.010; n = 7/group) and 2) cervical spinal A2A receptor inhibition (MSX-3, 10 µM, 12 µL intrathecal) rescues mAIH-induced pLTF. In LPS vehicle-treated rats (saline, ip), MSX-3 enhanced pLTF versus controls (LPS: 110 ± 16% baseline; controls: 53 ± 6%; P = 0.002; n = 6/group). In LPS-treated rats, pLTF was abolished as expected (4 ± 6% baseline; n = 6), but intrathecal MSX-3 restored pLTF to levels equivalent to MSX-3-treated control rats (120 ± 14% baseline; P < 0.001; n = 6; vs. LPS controls with MSX-3: P = 0.539). Thus, inflammation abolishes mAIH-induced pLTF by a mechanism that requires increased spinal adenosine levels and A2A receptor activation. As repetitive mAIH is emerging as a treatment to improve breathing and nonrespiratory movements in people with spinal cord injury or ALS, A2A inhibition may offset undermining effects of neuroinflammation associated with these neuromuscular disorders.NEW & NOTEWORTHY Mild inflammation undermines motor plasticity elicited by mAIH. In a model of mAIH-induced respiratory motor plasticity (phrenic long-term facilitation; pLTF), we report that inflammation induced by low-dose lipopolysaccharide undermines mAIH-induced pLTF by a mechanism requiring increased cervical spinal adenosine and adenosine 2 A receptor activation. This finding advances the understanding of mechanisms impairing neuroplasticity, potentially undermining the ability to compensate for the onset of lung/neural injury or to harness mAIH as a therapeutic modality.


Assuntos
Lipopolissacarídeos , Potenciação de Longa Duração , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Lipopolissacarídeos/farmacologia , Adenosina/farmacologia , Doenças Neuroinflamatórias , Hipóxia , Inflamação , Nervo Frênico/fisiologia , Medula Espinal
5.
J Sleep Res ; : e14014, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592825

RESUMO

In a prospective, randomized, controlled crossover study, we explored the effects of acute intermittent hypoxia and acute continuous hypoxia on patients with mild-moderate obstructive sleep apnea. Over three single-night sessions, subjects were alternately exposed to normoxia, acute continuous hypoxia and acute intermittent hypoxia before sleep. The apnea-hypopnea index and oxygen desaturation index were used to diagnose obstructive sleep apnea and evaluate efficacy. A responder was defined as a participant with a ≥ 50% reduction in apnea-hypopnea index between normoxia and hypoxia exposure. Sixteen participants with mild-moderate obstructive sleep apnea completed the study. Compared with normoxia, the mean apnea-hypopnea index decreased by 8.9 events per hr (95% confidence interval, 4.2-13.6, p = 0.001) with acute intermittent hypoxia and by 4.1 events per hr (95% confidence interval, 0.5-8.8, p = 0.082) with acute continuous hypoxia, equating to a mean decrease in apnea-hypopnea index of 4.8 events per hr (95% confidence interval, 0.1-9.5, p = 0.046) with acute intermittent hypoxia compared with acute continuous hypoxia. Compared with normoxia, the mean oxygen desaturation index decreased by 9.8 events per hr (95% confidence interval, 4.4-15.1, p = 0.001) with acute intermittent hypoxia but did not significantly decrease with acute continuous hypoxia; the mean oxygen desaturation index decreased by 7.2 events per hr (95% confidence interval, 1.8-12.6, p = 0.010) with acute intermittent hypoxia compared with acute continuous hypoxia. Of the 16 participants, 11 responded to acute intermittent hypoxia and four responded to acute continuous hypoxia (p = 0.032), of whom eight of 11 cases and all four cases had oxygen desaturation indexes <5 events per hr, respectively (p = 0.273). All participants tolerated acute intermittent hypoxia and there were no obvious adverse events during acute intermittent hypoxia exposure. In conclusion, acute intermittent hypoxia exposure improved apnea-hypopnea index and oxygen desaturation index in patients with mild-moderate obstructive sleep apnea, suggesting that further prospective validation of intermittent hypoxia exposure in patients with obstructive sleep apnea is needed to establish its clinical feasibility as a therapeutic modality.

6.
Adv Exp Med Biol ; 1427: 83-88, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322338

RESUMO

Exposure to acute intermittent hypoxia (AIH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). Interest has grown in developing AIH interventions to treat ventilatory insufficiency, with promising results in spinal cord injury and amyotrophic lateral sclerosis. Therapeutic AIH may have application in neuromuscular disorders including muscular dystrophies. We sought to establish hypoxic ventilatory responsiveness and the expression of ventilatory LTF in X-linked muscular dystrophy (mdx) mice.Experiments were performed in 15 male wild-type (BL10) and 15 male mdx mice at 4 months of age. Ventilation was assessed using whole-body plethysmography. Baseline measures of ventilation and metabolism were established. Mice were exposed to 10 successive bouts of hypoxia, each lasting 5 min, interspersed with 5-min bouts of normoxia. Measurements were taken for 60 min following termination of AIH.In mdx mice, ventilation was significantly increased 60 min post-AIH compared to baseline. However, metabolic CO2 production was also increased. Therefore, ventilatory equivalent was unaffected by AIH exposure, i.e., no ventilatory LTF manifestation. In wild-type mice, ventilation and metabolism were not affected by AIH.Eliciting ventilatory LTF is dependent on many factors and may require concomitant isocapnia or hypercapnia during AIH exposures and/or repeated daily AIH exposures, which is worthy of further pursuit.


Assuntos
Hipóxia , Respiração , Camundongos , Masculino , Animais , Camundongos Endogâmicos mdx , Hipercapnia
7.
J Physiol ; 600(10): 2515-2533, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35348218

RESUMO

Acute intermittent hypoxia (AIH) elicits long-term facilitation (LTF) of respiration. Although LTF is observed when CO2 is elevated during AIH in awake humans, the influence of CO2 on corticospinal respiratory motor plasticity is unknown. Thus, we tested the hypotheses that acute intermittent hypercapnic-hypoxia (AIHH): (1) enhances cortico-phrenic neurotransmission (reflecting volitional respiratory control); and (2) elicits ventilatory LTF (reflecting automatic respiratory control). Eighteen healthy adults completed four study visits. Day 1 consisted of anthropometry and pulmonary function testing. On Days 2, 3 and 4, in a balanced alternating sequence, participants received: AIHH, poikilocapnic AIH, and normocapnic-normoxia (Sham). Protocols consisted of 15, 60 s exposures with 90 s normoxic intervals. Transcranial (TMS) and cervical (CMS) magnetic stimulation were used to induce diaphragmatic motor-evoked potentials and compound muscle action potentials, respectively. Respiratory drive was assessed via mouth occlusion pressure (P0.1 ), and minute ventilation measured at rest. Dependent variables were assessed at baseline and 30-60 min after exposures. Increases in TMS-evoked diaphragm potential amplitudes were observed following AIHH vs. Sham (+28 ± 41%, P = 0.003), but not after AIH. No changes were observed in CMS-evoked diaphragm potential amplitudes. Mouth occlusion pressure also increased after AIHH (+21 ± 34%, P = 0.033), but not after AIH. Ventilatory LTF was not observed after any treatment. We demonstrate that AIHH elicits central neural mechanisms of respiratory motor plasticity and increases resting respiratory drive in awake humans. These findings may have important implications for neurorehabilitation after spinal cord injury and other neuromuscular disorders compromising breathing. KEY POINTS: The occurrence of respiratory long-term facilitation following acute exposure to intermittent hypoxia is believed to be dependent upon CO2 regulation - mechanisms governing the critical role of CO2 have seldom been explored. We tested the hypothesis that acute intermittent hypercapnic-hypoxia (AIHH) enhances cortico-phrenic neurotransmission in awake healthy humans. The amplitude of diaphragmatic motor-evoked potentials induced by transcranial magnetic stimulation was increased after AIHH, but not the amplitude of compound muscle action potentials evoked by cervical magnetic stimulation. Mouth occlusion pressure (P0.1 , an indicator of neural respiratory drive) was also increased after AIHH, but not tidal volume or minute ventilation. Thus, moderate AIHH elicits central neural mechanisms of respiratory motor plasticity, without measurable ventilatory long-term facilitation in awake humans.


Assuntos
Dióxido de Carbono , Hipercapnia , Adulto , Animais , Diafragma/fisiologia , Humanos , Hipóxia , Plasticidade Neuronal , Nervo Frênico/fisiologia , Ratos , Ratos Sprague-Dawley
8.
Exp Physiol ; 107(6): 615-630, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35338753

RESUMO

NEW FINDINGS: What is the central question of this study? Does a single session of repeated bouts of acute intermittent hypoxic breathing enhance the motoneuronal output of the limb muscles of healthy able-bodied participants? What is the main finding and its importance? Compared to breathing room air, there were some increases in motoneuronal output following acute intermittent hypoxia, but the increases were variable across participants and in time after the intervention and depended on which neurophysiological measure was checked. ABSTRACT: Acute intermittent hypoxia (AIH) induces persistent increases in output from rat phrenic motoneurones. Studies in people with spinal cord injury (SCI) suggest that AIH improves limb performance, perhaps via postsynaptic changes at cortico-motoneuronal synapses. We assessed whether limb motoneurone output in response to reflex and descending synaptic activation is facilitated after one session of AIH in healthy able-bodied volunteers. Fourteen participants completed two experimental days, with either AIH or a sham intervention (randomised crossover design). We measured H-reflex recruitment curves and homosynaptic post-activation depression (HPAD) of the H-reflex in soleus, and motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS) and their recruitment curves in first dorsal interosseous. All measurements were performed at rest and occurred at baseline, 0, 20, 40 and 60 min post-intervention. The intervention was 30 min of either normoxia (sham, F i O 2 ${F_{{\rm{i}}{{\rm{O}}_{\rm{2}}}}}$  ≈ 0.21) or AIH (alternate 1-min hypoxia [ F i O 2 ${F_{{\rm{i}}{{\rm{O}}_{\rm{2}}}}}$  ≈ 0.09], 1-min normoxia). After AIH, the H-reflex recruitment curve shifted leftward. Lower stimulation intensities were needed to evoke 5%, 50% and 99% of the maximal H-reflex at 40 and 60 min after AIH (P < 0.04). The maximal H-reflex, recruitment slope and HPAD were unchanged after AIH. MEPs evoked by constant intensity TMS were larger 40 min after AIH (P = 0.027). There was no change in MEP recruitment or the maximal MEP. In conclusion, some measures of the evoked responses from limb motoneurones increased after a single AIH session, but only at discrete time points. It is unclear to what extent these changes alter functional performance.


Assuntos
Neurônios Motores , Traumatismos da Medula Espinal , Animais , Potencial Evocado Motor , Humanos , Hipóxia , Neurônios Motores/fisiologia , Ratos , Estimulação Magnética Transcraniana
9.
Eur J Appl Physiol ; 122(9): 2111-2123, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35752660

RESUMO

PURPOSE: Acute intermittent hypoxia (AIH) is a safe and non-invasive treatment approach that uses brief, repetitive periods of breathing reduced oxygen air alternated with normoxia. While AIH is known to affect spinal circuit excitability, the effects of AIH on cortical excitability remain largely unknown. We investigated the effects of AIH on cortical excitability within the primary motor cortex. METHODS: Eleven healthy, right-handed participants completed two testing sessions: (1) AIH (comprising 3 min in hypoxia [fraction of inspired oxygen ~ 10%] and 2 min in normoxia repeated over five cycles) and (2) normoxia (NOR) (equivalent duration to AIH). Single- and paired-pulse transcranial magnetic stimulations were delivered to the primary motor cortex, before and 0, 25, and 50 min after AIH and normoxia. RESULTS: The mean nadir in arterial oxygen saturation was lower (p < 0.001) during the cycles of AIH (82.5 ± 4.9%) than NOR (97.8 ± 0.6%). There was no significant difference in corticospinal excitability, intracortical facilitation, or intracortical inhibition between AIH and normoxia conditions at any time point (all p > 0.05). There was no association between arterial oxygen saturation and changes in corticospinal excitability after AIH (r = 0.05, p = 0.87). CONCLUSION: Overall, AIH did not modify either corticospinal excitability or excitability of intracortical facilitatory and inhibitory circuits within the primary motor cortex. Future research should explore whether a more severe or individualised AIH dose would induce consistent, measurable changes in corticospinal excitability.


Assuntos
Potencial Evocado Motor , Córtex Motor , Potencial Evocado Motor/fisiologia , Humanos , Hipóxia , Córtex Motor/fisiologia , Oxigênio , Tratos Piramidais/fisiologia , Estimulação Magnética Transcraniana
10.
J Neurophysiol ; 126(3): 777-790, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260289

RESUMO

Plasticity is a hallmark of the respiratory neural control system. Phrenic long-term facilitation (pLTF) is one form of respiratory plasticity characterized by persistent increases in phrenic nerve activity following acute intermittent hypoxia (AIH). Although there is evidence that key steps in the cellular pathway giving rise to pLTF are localized within phrenic motor neurons (PMNs), the impact of AIH on the strength of breathing-related synaptic inputs to PMNs remains unclear. Furthermore, the functional impact of AIH is enhanced by repeated/daily exposure to AIH (dAIH). Here, we explored the effects of AIH versus 2 wk of dAIH preconditioning on spontaneous and evoked phrenic responses in anesthetized, paralyzed, and mechanically ventilated rats. Evoked phrenic potentials were elicited by respiratory cycle-triggered lateral funiculus stimulation at the C2 spinal level delivered before and 60 min post-AIH (or the equivalent in time controls). Charge-balanced biphasic pulses (100 µs/phase) of progressively increasing intensity (100-700 µA) were delivered during the inspiratory and expiratory phases of the respiratory cycle. Although robust pLTF (∼60% from baseline) was observed after a single exposure to moderate AIH (3 × 5 min; 5-min intervals), there was no effect on evoked phrenic responses, contrary to our initial hypothesis. However, in rats preconditioned with dAIH, baseline phrenic nerve activity and evoked responses were increased, suggesting that repeated exposure to AIH enhances functional synaptic strength when assessed using this technique. The impact of daily AIH preconditioning on synaptic inputs to PMNs raises interesting questions that require further exploration.NEW & NOTEWORTHY Two weeks of daily acute intermittent hypoxia (dAIH) preconditioning enhanced stimulus-evoked phrenic responses to lateral funiculus stimulation (targeting respiratory bulbospinal projection to phrenic motor neurons). Furthermore, dAIH preconditioning enhanced baseline phrenic motor output responses to maximal chemoreflex activation in intact rats.


Assuntos
Hipóxia/fisiopatologia , Neurônios Motores/fisiologia , Plasticidade Neuronal , Nervo Frênico/fisiologia , Animais , Potenciais Evocados , Masculino , Nervo Frênico/citologia , Nervo Frênico/fisiopatologia , Ratos , Ratos Sprague-Dawley
13.
J Neurophysiol ; 117(2): 836-845, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27927784

RESUMO

Phrenic motor facilitation (pMF), a form of respiratory plasticity, can be elicited by acute intermittent hypoxia (i.e., phrenic long-term facilitation, pLTF) or direct application of drugs to the cervical spinal cord. Moderate acute intermittent hypoxia (mAIH; 3 × 5-min episodes of 35-50 mmHg arterial Po2, 5-min normoxic intervals) induces pLTF by a serotonin-dependent mechanism; mAIH-induced pLTF is abolished by mild systemic inflammation induced by a low dose of lipopolysaccharide (LPS; 100 µg/kg ip). In contrast, severe acute intermittent hypoxia (sAIH; 3 × 5-min episodes of 25-30 mmHg arterial Po2, 5-min normoxic intervals) elicits pLTF by a distinct, adenosine-dependent mechanism. Since it is not known if systemic LPS blocks the mechanism giving rise to sAIH-induced pLTF, we tested the hypothesis that sAIH-induced pLTF and adenosine 2A (A2A) receptor-induced pMF are insensitive to mild systemic inflammation elicited by the same low dose of LPS. In agreement with our hypothesis, neither sAIH-induced pLTF nor cervical intrathecal A2A receptor agonist (CGS-21680; 200 µM, 10 µl × 3)-induced pMF were affected 24 h post-LPS. Pretreatment with intrathecal A2A receptor antagonist injections (MSX-3; 10 µM, 12 µl) blocked sAIH-induced pLTF 24 h post LPS, confirming that pLTF was adenosine dependent. Our results give insights concerning the differential impact of systemic inflammation and the functional significance of multiple cascades capable of giving rise to phrenic motor plasticity. The relative resistance of adenosine-dependent pMF to inflammation suggests that it provides a "backup" system in animals lacking serotonin-dependent pMF due to ongoing inflammation associated with systemic infections and/or neural injury.NEW & NOTEWORTHY This study gives novel insights concerning how a mild systemic inflammation impacts phrenic motor plasticity (pMF), particularly adenosine-dependent pMF. We suggest that since this adenosine-dependent pathway is insensitive to systemic inflammation, it represents an alternative or "backup" mechanism of pMF when other mechanisms are suppressed.


Assuntos
Adenosina/metabolismo , Potenciação de Longa Duração/fisiologia , Nervo Frênico/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Análise de Variância , Animais , Glicemia/efeitos dos fármacos , Glicemia/fisiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipóxia/complicações , Lipopolissacarídeos/toxicidade , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Fenetilaminas/farmacologia , Purinérgicos/farmacologia , Ratos , Ratos Sprague-Dawley , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Fatores de Tempo , Xantinas/farmacologia
14.
Respir Physiol Neurobiol ; 331: 104358, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39349270

RESUMO

PURPOSE: Examine the cardiovascular, muscular function, cognitive, and neural plastic responses to determine the safety and effectiveness of acute Intermittent hypoxia (AIH) at a low, high, and control fractional inspired oxygen (FiO2) dosage METHODS: Thirteen human participants performed 30-min of AIH in 60-s intervals at FiO2's of 0.21 (AIH21), 0.15 (AIH15), and 0.09 (AIH9). Heart rate variability (root mean squared of successive differences; RMSSD), heart rate, oxygen saturation (SpO2), blood pressure, muscular strength, neuromuscular activation, cerebral hemodynamic responses, cognition, symptomology, and brain-derived neurotrophic factor (BDNF) responses were measured before (Pre-AIH), after (post-AIH), and at 20-min of recovery (Recovery-AIH) RESULTS: There were no differences between AIH protocols for heart rate, RMSSD, blood pressure, or SpO2. Muscular strength improved Post-AIH for AIH15 (10 %) and AIH9 (14 %) and remained elevated (6 %) at Recovery-AIH. Neuromuscular activation increased Pre-AIH to Post-AIH for AIH15 (10 %) and AIH9 (11 %). Cerebral hemodynamic responses were not impacted between conditions. Both AIH15 and AIH9 increased BDNF Post-AIH (62 %) and Recovery-AIH (63 %) CONCLUSION: Acute intermittent hypoxia is generally safe and effective at producing neural plastic responses, but further examination of co-occurring cardiovascular diseases is needed. This study provides safety focused findings which will widen the adoption and refinement of AIH protocols.

15.
Biomedicines ; 12(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672264

RESUMO

Coordinated activation of sympathetic and respiratory nervous systems is crucial in responses to noxious stimuli such as intermittent hypoxia. Acute intermittent hypoxia (AIH) is a valuable model for studying obstructive sleep apnea (OSA) pathophysiology, and stimulation of breathing during AIH is known to elicit long-term changes in respiratory and sympathetic functions. The aim of this study was to record the renal sympathetic nerve activity (RSNA) and phrenic nerve activity (PNA) during the AIH protocol in rats exposed to monoanesthesia with sevoflurane or isoflurane. Adult male Sprague-Dawley rats (n = 24; weight: 280-360 g) were selected and randomly divided into three groups: two experimental groups (sevoflurane group, n = 6; isoflurane group, n = 6) and a control group (urethane group, n = 12). The AIH protocol was identical in all studied groups and consisted in delivering five 3 min-long hypoxic episodes (fraction of inspired oxygen, FiO2 = 0.09), separated by 3 min recovery intervals at FiO2 = 0.5. Volatile anesthetics, isoflurane and sevoflurane, blunted the RSNA response to AIH in comparison to urethane anesthesia. Additionally, the PNA response to acute intermittent hypoxia was preserved, indicating that the respiratory system might be more robust than the sympathetic system response during exposure to acute intermittent hypoxia.

16.
Exp Neurol ; 368: 114478, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451584

RESUMO

HYPOTHESES: Moderate acute intermittent hypoxia (mAIH) elicits plasticity in both respiratory (phrenic long-term facilitation; pLTF) and sympathetic nerve activity (sympLTF) in rats. Although mAIH produces pLTF in normal rats, inconsistent results are reported after cervical spinal cord injury (cSCI), possibly due to greater spinal tissue hypoxia below the injury site. There are no reports concerning cSCI effects on sympLTF. Since mAIH is being explored as a therapeutic modality to restore respiratory and non-respiratory movements in humans with chronic SCI, both effects are important. To understand cSCI effects on mAIH-induced pLTF and sympLTF, partial or complete C2 spinal hemisections (C2Hx) were performed and, 2 weeks later, we assessed: 1) ipsilateral cervical spinal tissue oxygen tension; 2) ipsilateral & contralateral pLTF; and 3) ipsilateral sympLTF in splanchnic and renal sympathetic nerves. METHODS: Male Sprague-Dawley rats were studied intact, or after partial (single slice) or complete C2Hx (slice with ∼1 mm aspiration). Two weeks post-C2Hx, rats were anesthetized and prepared for recordings of bilateral phrenic nerve activity and spinal tissue oxygen pressure (PtO2). Splanchnic and renal sympathetic nerve activity was recorded in intact and complete C2Hx rats. RESULTS: Spinal PtO2 near phrenic motor neurons was decreased after C2Hx, an effect most prominent with complete vs. partial injuries; baseline PtO2 was positively correlated with mean arterial pressure. Complete C2Hx impaired ipsilateral but not contralateral pLTF; with partial C2Hx, ipsilateral pLTF was unaffected. In intact rats, mAIH elicited splanchnic and renal sympLTF. Complete C2Hx had minimal impact on baseline ipsilateral splanchnic or renal sympathetic nerve activity and renal, but not splanchnic, sympLTF remained intact. CONCLUSION: Greater tissue hypoxia likely impairs pLTF and splanchnic sympLTF post-C2Hx, although renal sympLTF remains intact. Increased sympathetic nerve activity post-mAIH may have therapeutic benefits in individuals living with chronic SCI since anticipated elevations in systemic blood pressure may mitigate hypotension characteristic of people living with SCI.


Assuntos
Neurônios Motores , Traumatismos da Medula Espinal , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Neurônios Motores/fisiologia , Hipóxia , Oxigênio/farmacologia , Nervo Frênico/fisiologia
17.
Exp Neurol ; 367: 114452, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271217

RESUMO

Acute intermittent hypoxia (AIH) is an emerging technique for facilitating neural plasticity in individuals with chronic incomplete spinal cord injury (iSCI). A single sequence of AIH enhances hand grip strength and ankle plantarflexion torque, but underlying mechanisms are not yet clear. We sought to examine how AIH-induced changes in magnitude and spatial distribution of the electromyogram (EMG) of the biceps and triceps brachii contributes to improved strength. Seven individuals with iSCI visited the laboratory on two occasions, and received either AIH or Sham AIH intervention in a randomized order. AIH consisted of 15 brief (∼60s) periods of low oxygen (fraction of inspired O2 = 0.09) alternating with 60s of normoxia, whereas Sham AIH consisted of repeated exposures to normoxic air. High-density surface EMG of biceps and triceps brachii was recorded during maximal elbow flexion and extension. We then generated spatial maps which distinguished active muscle regions prior to and 60 min after AIH or Sham AIH. After an AIH sequence, elbow flexion and extension forces increased by 91.7 ± 88.4% and 51.7 ± 57.8% from baseline, respectively, whereas there was no difference after Sham AIH. Changes in strength were associated with an altered spatial distribution of EMG and increased root mean squared EMG amplitude in both biceps and triceps brachii muscles. These data suggest that altered motor unit activation profiles may underlie improved volitional strength after a single dose of AIH and warrant further investigation using single motor unit analysis techniques to further elucidate mechanisms of AIH-induced plasticity.


Assuntos
Força da Mão , Traumatismos da Medula Espinal , Humanos , Eletromiografia , Hipóxia , Músculos , Oxigênio
18.
Exp Neurol ; 359: 114242, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240880

RESUMO

Spinal cord injury (SCI) above the level of the lumbosacral spinal cord produces lower urinary tract (LUT) dysfunction, resulting in impairment of urine storage and elimination (voiding). While spontaneous functional recovery occurs due to remodeling of spinal reflex micturition pathways, it is incomplete, indicating that additional strategies to further augment neural plasticity following SCI are essential. To this end, acute intermittent hypoxia (AIH) exposure has been proposed as a therapeutic strategy for improving recovery of respiratory and other somatic motor function following SCI; however, the impact of AIH as a therapeutic intervention to improve LUT dysfunction remains to be determined. Therefore, we examined the effects of daily AIH (dAIH) on both spontaneous micturition patterns and reflex micturition event (rME) behaviors in adult female Sprague-Dawley rats with mid-thoracic moderate contusion SCI. For these experiments, dAIH gas exposures (five alternating 3 min 12% O2 and 21% O2 episodes) were delivered for 7 consecutive days beginning at 1-week after SCI, with awake micturition patterns being evaluated weekly for 2-3 sessions before and for 4 weeks after SCI and rME behaviors elicited by continuous infusion of saline into the bladder being evaluated under urethane anesthesia at 4-weeks after SCI; daily normoxia (dNx; 21% O2 episodes) served as a control. At 1-week post-SCI, both an areflexic phenotype (i.e., no effective voiding events) and a functional voiding phenotype (i.e., infrequent voiding events with large volumes) were observed in spontaneous micturition patterns (as expected), and subsequent dAIH, but not dNx, treatment led to recovery of spontaneous void frequency pattern to pre-SCI levels; both dAIH- and dNx-treated rats exhibited slightly increased void volumes. At 4-weeks post-SCI, rME behaviors showed increased effectiveness in voiding in dAIH-treated (compared to dNx-treated) rats that included an increase in both bladder contraction pressure (delta BP; P = 0.014) and dynamic voiding efficiency (P = 0.018). Based on the voiding and non-voiding bladder contraction behaviors (VC and NVC, respectively) observed in the BP records, bladder dysfunction severity was classified into mild, moderate, and severe phenotypes, and while rats in both treatment groups included each severity phenotype, the primary phenotype observed in dAIH-treated rats was mild and that in dNx-treated rats was moderate (P = 0.044). Taken together, these findings suggest that 7-day dAIH treatment produces beneficial improvements in LUT function that include recovery of micturition pattern, more efficient voiding, and decreased NVCs, and extend support to the use of dAIH therapy to treat SCI-induced LUT dysfunction.


Assuntos
Contusões , Traumatismos da Medula Espinal , Ratos , Feminino , Animais , Bexiga Urinária , Ratos Sprague-Dawley , Micção , Contusões/complicações , Hipóxia/complicações
19.
Physiol Rep ; 10(17): e15455, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36065854

RESUMO

People with cervical spinal cord injury (SCI) are likely to experience chronic intermittent hypoxia while sleeping. The physiological effects of intermittent hypoxia on the respiratory system during spontaneous sleep in individuals with chronic cervical SCI are unknown. We hypothesized that individuals with cervical SCI would demonstrate higher short- and long-term ventilatory responses to acute intermittent hypoxia (AIH) exposure than individuals with thoracic SCI during sleep. Twenty participants (10 with cervical SCI [9 male] and 10 with thoracic SCI [6 male]) underwent an AIH and sham protocol during sleep. During the AIH protocol, each participant experienced 15 episodes of isocapnic hypoxia using mixed gases of 100% nitrogen (N2 ) and 40% carbon dioxide (CO2 ) to achieve an oxygen saturation of less than 90%. This was followed by two breaths of 100% oxygen (O2 ). Measurements were collected before, during, and 40 min after the AIH protocol to obtain ventilatory data. During the sham protocol, participants breathed room air for the same amount of time that elapsed during the AIH protocol and at approximately the same time of night. Hypoxic ventilatory response (HVR) during the AIH protocol was significantly higher in participants with cervical SCI than those with thoracic SCI. There was no significant difference in minute ventilation (V.E. ), tidal volume (V.T. ), or respiratory frequency (f) during the recovery period after AIH in cervical SCI compared to thoracic SCI groups. Individuals with cervical SCI demonstrated a significant short-term increase in HVR compared to thoracic SCI. However, there was no evidence of ventilatory long-term facilitation following AIH in either group.


Assuntos
Movimentos Oculares , Traumatismos da Medula Espinal , Humanos , Hipóxia , Masculino , Quadriplegia , Sono/fisiologia , Traumatismos da Medula Espinal/complicações
20.
Respir Physiol Neurobiol ; 304: 103922, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35680039

RESUMO

Patients living with Amyotrophic Lateral Sclerosis (ALS) experience respiratory weakness and, eventually, failure due to inspiratory motor neuron degeneration. Routine pulmonary function tests (e.g., maximum inspiratory pressure (MIP)) are used to assess disease progression and ventilatory compromise. However, these tests are poor discriminators between respiratory drive and voluntary respiratory function at rest. To better understand ALS disease progression, we can look into compensatory strategies and how patients consciously react to the occlusion and the effort produced to meet the ventilatory challenge of the occlusion. This ventilatory challenge, especially beyond the P0.1 (200 ms and 300 ms), provides information regarding the patient's ability to recruit additional respiratory muscles as a compensatory strategy. Utilizing a standard P0.1 protocol to assess respiratory drive, we extend the occlusion time analysis to 200 ms and 300 ms (Detected Occlusion Response (DOR)) in order to capture compensatory respiratory mechanics. Furthermore, we followed an Acute Intermittent Hypoxia (AIH) protocol known to increase phrenic nerve discharge to evaluate the compensatory strategies. Inspiratory pressure, the rate of change in pressure, and pressure generation normalized to MIP were measured at 100 ms, 200 ms, and 300 ms after an occlusion. Airway occlusions were performed three times during the experiment (i.e., baseline, 30 and 60 minutes post-AIH). Results indicated that while AIH did not elicit change in the P0.1 or MIP, the DOR increased for ALS patients. These results support the expected therapeutic role of AIH and indicate the potential of the DOR as a metric to detect compensatory changes.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/complicações , Progressão da Doença , Humanos , Hipóxia , Nervo Frênico , Músculos Respiratórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA