Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(24): 11936-11945, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31160440

RESUMO

Accumulating evidence suggests that subcutaneous and visceral adipose tissues are differentially associated with metabolic disorders. In obesity, subcutaneous adipose tissue is beneficial for metabolic homeostasis because of repressed inflammation. However, the underlying mechanism remains unclear. Here, we demonstrate that γ-aminobutyric acid (GABA) sensitivity is crucial in determining fat depot-selective adipose tissue macrophage (ATM) infiltration in obesity. In diet-induced obesity, GABA reduced monocyte migration in subcutaneous inguinal adipose tissue (IAT), but not in visceral epididymal adipose tissue (EAT). Pharmacological modulation of the GABAB receptor affected the levels of ATM infiltration and adipose tissue inflammation in IAT, but not in EAT, and GABA administration ameliorated systemic insulin resistance and enhanced insulin-dependent glucose uptake in IAT, accompanied by lower inflammatory responses. Intriguingly, compared with adipose-derived stem cells (ADSCs) from EAT, IAT-ADSCs played key roles in mediating GABA responses that repressed ATM infiltration in high-fat diet-fed mice. These data suggest that selective GABA responses in IAT contribute to fat depot-selective suppression of inflammatory responses and protection from insulin resistance in obesity.


Assuntos
Tecido Adiposo/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Células-Tronco/metabolismo , Tela Subcutânea/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adipócitos/metabolismo , Adiposidade/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054833

RESUMO

Currently, many different techniques exist for the surgical repair of peripheral nerves. The degree of injury dictates the repair and, depending on the defect or injury of the peripheral nerve, plastic surgeons can perform nerve repairs, grafts, and transfers. All the previously listed techniques are routinely performed in human patients, but a novel addition to these peripheral nerve surgeries involves concomitant fat grafting to the repair site at the time of surgery. Fat grafting provides adipose-derived stem cells to the injury site. Though fat grafting is performed as an adjunct to some peripheral nerve surgeries, there is no clear evidence as to which procedures have improved outcomes resultant from concomitant fat grafting. This review explores the evidence presented in various animal studies regarding outcomes of fat grafting at the time of various types of peripheral nerve surgery.


Assuntos
Tecido Adiposo/citologia , Traumatismos dos Nervos Periféricos/cirurgia , Transplante de Células-Tronco/métodos , Tecido Adiposo/transplante , Células-Tronco Adultas/citologia , Animais , Modelos Animais de Doenças , Humanos , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapia
3.
Front Endocrinol (Lausanne) ; 15: 1374715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220365

RESUMO

Adipose tissue (AT) serves as an energy-capacitive organ and performs functions involving paracrine- and endocrine-mediated regulation via extracellular vesicles (EVs) secretion. Exosomes, a subtype of EVs, contain various bioactive molecules with regulatory effects, such as nucleic acids, proteins, and lipids. AT-derived exosomes (AT-exos) include exosomes derived from various cells in AT, including adipocytes, adipose-derived stem cells (ADSCs), macrophages, and endothelial cells. This review aimed to comprehensively evaluate the impacts of different AT-exos on the regulation of physiological and pathological processes. The contents and functions of adipocyte-derived exosomes and ADSC-derived exosomes are compared simultaneously, highlighting their similarities and differences. The contents of AT-exos have been shown to exert complex regulatory effects on local inflammation, tumor dynamics, and insulin resistance. Significantly, differences in the cargoes of AT-exos have been observed among diabetes patients, obese individuals, and healthy individuals. These differences could be used to predict the development of diabetes mellitus and as therapeutic targets for improving insulin sensitivity and glucose tolerance. However, further research is needed to elucidate the underlying mechanisms and potential applications of AT-exos.


Assuntos
Tecido Adiposo , Diabetes Mellitus , Exossomos , Inflamação , Neoplasias , Humanos , Exossomos/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Diabetes Mellitus/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Adipócitos/metabolismo , Resistência à Insulina , Obesidade/metabolismo
4.
Front Bioeng Biotechnol ; 12: 1347995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628439

RESUMO

The tissues or organs derived decellularized extracellular matrix carry immunogenicity and the risk of pathogen transmission, resulting in limited therapeutic effects. The cell derived dECM cultured in vitro can address these potential risks, but its impact on wound remodeling is still unclear. This study aimed to explore the role of decellularized extracellular matrix (dECM) extracted from adipose derived stem cells (ADSCs) in skin regeneration. Methods: ADSCs were extracted from human adipose tissue. Then we cultivated adipose-derived stem cell cells and decellularized ADSC-dECM for freeze-drying. Western blot (WB), enzyme-linked immunosorbent assay (ELISA) and mass spectrometry (MS) were conducted to analyzed the main protein components in ADSC-dECM. The cell counting assay (CCK-8) and scratch assay were used to explore the effects of different concentrations of ADSC-dECM on the proliferation and migration of human keratinocytes cells (HaCaT), human umbilical vein endothelia cells (HUVEC) and human fibroblasts (HFB), respectively. Moreover, we designed a novel ADSC-dECM-CMC patch which used carboxymethylcellulose (CMC) to load with ADSC-dECM; and we further investigated its effect on a mouse full thickness skin wound model. Results: ADSC-dECM was obtained after decellularization of in vitro cultured human ADSCs. Western blot, ELISA and mass spectrometry results showed that ADSC-dECM contained various bioactive molecules, including collagen, elastin, laminin, and various growth factors. CCK-8 and scratch assay showed that ADSC-dECM treatment could significantly promote the proliferation and migration of HaCaT, human umbilical vein endothelia cells, and human fibroblasts, respectively. To evaluate the therapeutic effect on wound healing in vivo, we developed a novel ADSC-dECM-CMC patch and transplanted it into a mouse full-thickness skin wound model. And we found that ADSC-dECM-CMC patch treatment significantly accelerated the wound closure with time. Further histology and immunohistochemistry indicated that ADSC-dECM-CMC patch could promote tissue regeneration, as confirmed via enhanced angiogenesis and high cell proliferative activity. Conclusion: In this study, we developed a novel ADSC-dECM-CMC patch containing multiple bioactive molecules and exhibiting good biocompatibility for skin reconstruction and regeneration. This patch provides a new approach for the use of adipose stem cells in skin tissue engineering.

5.
Adipocyte ; 11(1): 643-652, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36397715

RESUMO

Soft tissue defects caused by adipose tissue loss can result in various conditions such as lipodystrophy in congenital diseases, trauma secondary to ageing, and mastectomy in breast cancer; fat grafting is commonly performed to restore these defects. Although various enrichment strategies have been studied, novel therapeutics that are cost-effective, safe, technologically easy to manufacture, and minimally invasive are required. In this study, we identified a novel peptide derived from plasminogen, named plasminogen-derived peptide-1 (PLP-1), which showed adipogenic differentiation potential and led to an increase in the expression levels of adiponectin, C1Q and collagen domain containing protein, fatty acid-binding protein 4, and CCAAT/enhancer-binding protein-alpha. In vivo experiments confirmed an increase in the rate of adipocyte differentiation and the expression levels of CD31 in the PLP-1-treated mice groups. These results suggested that PLP-1 plays an important role in promoting the differentiation of preadipocytes and may be useful for developing therapeutic approaches to treat adipose tissue defects.


Assuntos
Mastectomia , Plasminogênio , Animais , Camundongos , Adipogenia , Peptídeos/farmacologia , Proteína alfa Estimuladora de Ligação a CCAAT
6.
Stem Cell Res Ther ; 13(1): 272, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729638

RESUMO

BACKGROUND: Inflammatory bowel diseases, consisting of Crohn's disease and ulcerative colitis constitute chronic inflammatory conditions that may compromise the whole gastrointestinal tract as well as the colonic mucosa. Currently, there are no curative interventions for IBD, and all available treatments have side effects that limit their use. Adipose-derived stem cell (ADSC) treatment is a prospective treatment option for IBD. Previous findings indicated that ginsenoside (Rg1) dampened inflammatory diseases like colitis by inhibiting the binding of LPS to TLR4 on macrophages and restoring the Th17/Treg ratio. The purpose of this work was to investigate whether Rg1 can increase the influence of ADSC in a mouse model of colitis triggered by dextran sulfate sodium (DSS). METHODS: ADSC was intravenously inoculated into mice with DSS-triggered colitis, while Rg1 was delivered via oral gavage. Colon inflammation was assessed via body weight, colon length along with H&E staining. Serum cytokine levels were measured using ELISA. Besides, flow cytometry was adopted to determine the percentage, as well as FMI of immune cells in the spleen. The effects of simultaneous Rg1 and ADSC treatment on TLR4-MyD88 signaling were assessed via immunofluorescence. RESULTS: Rg1 and ADSC effectively alleviated the impacts of colon inflammation, weight loss, and colon length reduction along with histological score. Treatment with Rg1 and ADSC reduced serum levels of the proinflammatory cytokines, IL-1ß, TNF-α, IL-6, IL-4, and IL-17A and upregulated the level of immunosuppressive cytokine, IL-10. Compared with ADSC or Rg1 alone, combined treatment with Rg1 and ADSC significantly improved the structure of microbial community. Additionally, treatment with Rg1 plus ADSC selectively elevated the level of splenic regulatory T (Treg) cells and downregulated the proportion of T helper type 17 (Th17) cells, indicating restoration of intestinal homeostasis. Besides, we established that the combination of ADSC + Rg1 restored immunological balance more effectively than either ADSC or Rg1 alone, illustrating that Rg1's modulatory function on the gut microbiota may boost the impact of ADSCs in restoration of the immune balance. ADSC combined with Rg1 might downregulate the expression of TLR4 and MyD88, thereby suppressing TLR4-MyD8 signaling. The immunofluorescence results also suggested that co-therapy with Rg-1 and ADSC may optimize treatment strategies of IBD. CONCLUSIONS: Here, we find that the combination of Rg1 and ADSC alleviates DSS-induced colitis in a mouse model more efficiently than ADSC alone, indicating that Rg1 enhances the effect of ADSC against colitis.


Assuntos
Colite Ulcerativa , Colite , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/terapia , Colite Ulcerativa/patologia , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Estudos Prospectivos , Células-Tronco/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
7.
Asian J Androl ; 20(5): 442-447, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30004040

RESUMO

Stem cell therapy is a potentially promising option for erectile dysfunction; however, its risk of tumorigenicity is a clinical hurdle and the risk is positively related to the number of injected cells. Our previous study showed that nanotechnology improved adipose-derived stem cell (ADSC) therapy for erectile dysfunction of cavernous nerve injury (CNI) by attracting cells in the corpus cavernosum. These results indicated the possibility of using a reduced dosage of ADSCs for intracavernous injection. In this exploratory study, we used lower dosage (2 × 105 cells) of ADSCs for intracavernous injection (ICI) and the nanotechnology approach. Intracavernous pressure and mean arterial pressure were measured at day 28 to assess erectile function. The low-dose ADSC therapy group showed favorable treatment effects, and nanotechnology further improved these effects. In vivo imaging of ICI cells revealed that the fluorescein signals of NanoShuttle-bound ADSCs (NanoADSCs) were much stronger than those of ADSCs at days 0, 1, and 3. Both immunofluorescence and Western blot analysis showed a significant increase in smooth muscle, endothelium, and nerve tissue in the ADSC group compared to that in the CNI group; further improvement was achieved with assisted nanotechnology. These findings demonstrate that nanotechnology can be used to further improve the effect of small dosage of ADSCs to improve erectile function. Abundant NanoADSCs remain in the corpus cavernosum in vivo for at least 3 days. The mechanism of erectile function improvement may be related to the regeneration of the smooth muscle, endothelium, and nerve tissues.


Assuntos
Disfunção Erétil/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pênis/inervação , Traumatismos dos Nervos Periféricos/complicações , Animais , Rastreamento de Células , Modelos Animais de Doenças , Disfunção Erétil/etiologia , Masculino , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
8.
Methods Mol Biol ; 1683: 371-382, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29082503

RESUMO

Blood vessels are crucial components for normal tissue development and homeostasis, so it is not surprising that endothelial dysfunction and dysregulation results in a variety of different pathophysiological conditions. The large number of vascular-related disorders and the emergence of angiogenesis as a major hallmark of cancer has led to significant interest in the development of drugs that target the vasculature. While several in vivo models exist to study developmental and pathological states of blood vessels, few in vitro assays have been developed that capture the significant complexity of the vascular microenvironment. Here, we describe a high content endothelial colony forming cells (ECFC)/adipose-derived stem cell (ADSC) coculture assay that captures many elements of in vivo vascular biology and is ideal for in vitro screening of compounds for pro- or anti-angiogenic activities.


Assuntos
Bioensaio , Técnicas de Cocultura , Células Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Biomarcadores , Técnicas de Cultura de Células , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Células Endoteliais/metabolismo , Processamento de Imagem Assistida por Computador , Células-Tronco Mesenquimais/metabolismo , Microscopia , Neovascularização Fisiológica/efeitos dos fármacos , Fenótipo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Gland Surg ; 5(2): 227-41, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27047789

RESUMO

The evolution of breast reconstruction and management of breast cancer has evolved significantly since the earliest descriptions in the Edwin Smith Papyrus (3,000 BC). The development of surgical and scientific expertise has changed the way that women are managed, and plastic surgeons are now able to offer a wide range of reconstructive options to suit individual needs. Beyond the gold standard autologous flap based reconstructions, regenerative therapies promise the elimination of donor site morbidity whilst providing equivalent aesthetic and functional outcomes. Future research aims to address questions regarding ideal cell source, optimisation of scaffold composition and interaction of de novo adipose tissue in the microenvironment of breast cancer.

10.
J Zhejiang Univ Sci B ; 15(5): 482-90, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24793766

RESUMO

This study was designed to investigate the effects of local delivery of adipose-derived stem cells (ADSCs) transfected with transcription factor osterix (OSX) on bone formation during distraction osteogenesis. New Zealand white rabbits (n=54) were randomly divided into three groups (18 rabbits per group). A directed cloning technique was used for the construction of recombinant plasmid pEGFP-OSX, where EGFP is the enhanced green fluorescence protein. After osteodistraction of the right mandible of all experimental rabbits, rabbits in group A were treated with ADSCs transfected with pEGFP-OSX, group B with ADSCs transfected with pEGFP-N1, and group C with physiological saline. Radiographic and histological examinations were processed after half of the animals within each group were humanely killed by injection of sodium pentothal at Week 2 or 6 after surgery. The distraction bone density was measured as its projectional bone mineral density (BMD). Three parameters were measured, namely, the thickness of new trabeculae (TNT), and the volumes of the newly generated cortical bone (NBV1) and the cancellous bone (NBV2) of the distracted regions. Good bone generation in the distraction areas was found in group A, which had the highest BMD, TNT, and NBV in the distraction zones among the groups. There was no significant difference in bone generation in the distraction areas between groups B and C. The results indicate that the transplantation of ADSCs transfected with pEGFP-OSX can effectively promote bone generation during distraction in vivo.


Assuntos
Proteínas de Fluorescência Verde/genética , Mandíbula/crescimento & desenvolvimento , Osteogênese por Distração/métodos , Osteogênese/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Fatores de Transcrição/genética , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Terapia Combinada , Terapia Genética/métodos , Humanos , Masculino , Coelhos , Fator de Transcrição Sp7 , Células-Tronco/citologia , Transfecção/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA