Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2407961, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420700

RESUMO

Hydrogen evolution reactions that cause the alkalization of aqueous electrolytes generally frustrate the structural stability and cycling performance of NaTi2(PO4)3/C anode material for rechargeable aqueous sodium-ion batteries (ASIBs). Herein, a novel highly concentrated electrolyte with a large hydrogen-evolution overpotential and hydroxide-capture ability is rationally established by incorporating a bifunctional Mg(Ac)2 additive into a concentrated NaAc aqueous solution. The highly concentrated electrolyte salts (4m NaAc+3m Mg(Ac)2) favor regulation on hydrogen-bonding configurations and kinetically shift the hydrogen evolution potential to a lower value of -1.37 V (vs Ag/AgCl). The Mg(Ac)2 additive plays particular roles in spontaneously capturing hydroxide ions generated during hydrogen evolution reactions on anode surfaces and simultaneously forming a protective Mg(OH)2-like interphase. As a result, the unique electrolyte significantly improves the structural stability and cycling performance of NaTi2(PO4)3/C anode (94.8% capacity retention after 100 cycles at 100 mA·g-1). The effect of salt concentration on hydrogen bonding configurations of aqueous electrolytes is investigated with Raman spectroscopy and FTIR spectroscopy. The interphase is identified by coupling EDS mapping, X-ray photoelectron spectroscopy, and X-ray diffraction. This work provides a new strategy for improving the cycling stability of aqueous sodium-ion batteries.

2.
Small ; 20(27): e2402037, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38511536

RESUMO

Enhancing the low-potential capacity of anode materials is significant in boosting the operating voltage of full-cells and constructing high energy-density energy storage devices. Graphitic carbons exhibit outstanding low-potential potassium storage performance, but show a low K+ diffusion kinetics. Herein, in situ defect engineering in graphitic nanocarbon is achieved by an atomic self-activation strategy to boost the accessible low-voltage insertion. Graphitic carbon layers grow on nanoscale-nickel to form the graphitic nanosphere with short-range ordered microcrystalline due to nickel graphitization catalyst. Meanwhile, the widely distributed K+ in the precursor induces the activation of surrounding carbon atoms to in situ generate carbon vacancies as channels. The graphite microcrystals with defect channels realize reversible K+ intercalation at low-potential and accessible ion diffusion kinetics, contributing to high reversible capacity (209 mAh g-1 at 0.05 A g-1 under 0.8 V) and rate capacity (103.2 mAh g-1 at 1 A g-1). The full-cell with Prussian blue cathode and graphitic nanocarbon anode maintains an obvious working platform at ca. 3.0 V. This work provides a strategy for the in situ design of carbon anode materials and gives insights into the potassium storage mechanism at low-potential for high-performance full-cells.

3.
Small ; 20(6): e2304124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37749960

RESUMO

Sodium-ion batteries are a promising substitute for lithium batteries due to the abundant resources and low cost of sodium. Herein, honeycomb-shaped MoSe2 /reduced graphene oxide (rGO) composite materials are synthesized from graphene oxide (GO) and MoSe2 through a one-step solvothermal process. Experiments show that the 3D honeycomb structure provides excellent electrolyte penetration while alleviating the volume change during electrochemical cycling. An anode prepared with MoSe2 /rGO composites exhibits significantly improved sodium-ion storage properties, where a large reversible capacity of 215 mAh g-1 is obtained after 2700 cycles at the current density of 30.0 A g-1 or after 5900 cycles at 8.0 A g-1 . When such an anode is paired with Na3 V2 (PO4 )3 to form a full cell, a reversible specific capacity of 107.5 mAh g-1 can be retained after 1000 cycles at the current of 1.0 A g-1 . Transmission electron microscopy, X-ray photoelectron spectroscopy and in situ X-ray diffraction (XRD) characterization reveal the reversible storage reaction of Na ions in the MoSe2 /rGO composites. The significantly enhanced sodium storage capacity is attributed to the unique honeycomb microstructure and the use of ether-based electrolytes. This study illustrates that combining rGO with ether-based electrolytes has tremendous potential in constructing high-performance sodium-ion batteries.

4.
Small ; 20(3): e2304892, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691021

RESUMO

Layered indium selenide (InSe) is a new 2D semiconductor material with high carrier mobility, widely adjustable bandgap, and high ductility. However, its ion storage behavior and related electrochemical reaction mechanism are rarely reported. In this study, InSe nanoflakes encapsulated in conductive polypyrrole (InSe@PPy) are designed in consideration of restraining the severe volume change in the electrochemical reaction and increasing conductivity via in situ chemical oxidation polymerization. Density functional theory calculations demonstrate that the construction of heterostructure can generate an internal electric field to accelerate electron transfer via additional driving forces, offering synergistically enhanced structural stability, electrical conductivity, and Na+ diffusion process. The resulting InSe@PPy composite shows outstanding electrochemical performance in the sodium ion batteries system, achieving a high reversible capacity of 336.4 mA h g-1 after 500 cycles at 1 A g-1 and a long-term cyclic stability with capacity of 274.4 mA h g-1 after 2800 cycles at 5 A g-1 . In particular, the investigation of capacity fluctuation within the first cycling reveals the alternating significance of intercalation and conversion reactions and evanescent alloying reaction. The combined reaction mechanism of insertion, conversion, and alloying of InSe@PPy is revealed by in situ X-ray diffraction, ex situ electrochemical impedance spectroscopy, and transmission electron microscopy.

5.
Small ; 20(4): e2305021, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712116

RESUMO

The rapid evolution of smart grid system urges researchers on exploiting systems with properties of high-energy, low-cost, and eco-friendly beyond lithium-ion batteries. Under the circumstances, sodium- and potassium-ion batteries with the semblable work mechanism to commercial lithium-ion batteries, hold the merits of cost-effective and earth-abundant. As a result, it is deemed a promising candidate for large-scale energy storage devices. Exploiting appropriate active electrode materials is in the center of the spotlight for the development of batteries. Metal selenides with special structures and relatively high theoretical capacity have aroused broad interest and achieved great achievements. To push the smooth development of metal selenides and enhancement of the electrochemical performance of sodium- and potassium-ion batteries, it is vital to grasp the inherent properties and electrochemical mechanisms of these materials. Herein, the state-of-the-art development and challenges of metal selenides are summarized and discussed. Meanwhile, the corresponding electrochemical mechanism and future development directions are also highlighted.

6.
Small ; 20(38): e2400967, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38751056

RESUMO

Pure magnesium anode used in rechargeable magnesium batteries (RMB) exhibits high theoretical capacity but has been challenged by the passivation issue with conventional electrolytes. Alloy-type anodes have the potential to surpass this issue and have attracted increasing attention. However, the kinetic performance and stabilities of conventional alloy anodes are still constrained. In this study, the InSb-10%C anode is synthesized by a two-step high-energy ball milling process. The InSb-10%C anode exhibits a remarkably high capacity of up to 448 mA h g-1, significantly improved cycle performance (234 mA h g-1 at 100 cycles) and rate performance (168 mA h g-1 at 500 mA g-1). The above-mentioned superior performance of the InSb-10%C anode for RMBs is attributed to the cellular graphitized amorphous carbon composite structure (CGA) which effectively refines the particle size and restricts the volume expansion. Additionally, the reduced surface electron density of InSb combined with the high conductivity resulting from graphitization enhances the Mg2+ diffusion performance. Notably, the InSb-10%C anode demonstrates good compatibility with conventional halogen-free salt ether-based electrolytes in the full battery configuration.

7.
Small ; : e2406630, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375991

RESUMO

Owing to the low potential (vs K/K+), good cycling stability, and sustainability, carbon-based materials stand out as one of the optimal anode materials for potassium-ion batteries (PIBs). However, achieving high-rate performance and excellent capacity with the current carbon-based materials is challenging because of the sluggish reaction kinetics and the low capacity of carbon-based anodes. The doping of nitrogen proves to be an effective way to improve the rate performance and capacity of carbon-based materials as PIB anode. However, a review article is lacking in systematically summarizing the features and functions of nitrogen doping types. In this sense, it is necessary to provide a fundamental understanding of doped nitrogen types in nitrogen-doped(N-doped) carbon materials. The types, functions, and applications of nitrogen-doped carbon-based materials are overviewed in this review. Then, the recent advances in the synthesis, properties, and applications of N-doped carbon as both active and modification materials for PIBs anode are summarized. Finally, doped nitrogen's main features and functions are concluded, and critical perspectives for future research in this field are outlined.

8.
Small ; 20(22): e2305785, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38143289

RESUMO

The increasing demand for graphite and the higher lithium content than environment abundance make the recycling of anode in spent lithium-ion batteries (LIBs) also become an inevitable trend. This work proposes a simple pathway to convert the retired graphite to high-performance expanded graphite (EG) under mild conditions. After the oxidation and intercalation by FeCl3 for the retired graphite, H2O2 molecules are more likely to penetrate into the extended layers. And the gas phase diffusion caused by the produced O2 from the redox reaction between FeCl3 and H2O2 further promotes lattice expansion of interlayers (0.535 nm), which is beneficial to the stripping of graphene oxide (GO) with fewer layers. The EG exhibits excellent electrochemical performances in both LIBs and sodium-ion batteries (SIBs). It delivers 331.5 mAh g-1 at 3C (1C = 372 mA g-1) in LIBs, while it achieves 176.8 mAh g-1 at 3C (1C = 120 mA g-1) in SIBs. Then the capacity retains 753.6 (LIBs) and 201.6 (SIBs) mAh g-1 after a long-term cycling of 500 times at 1C, respectively. The full cells with the EG electrodes after prelithium/presodiation also show excellent cycle stability. Thus, this work offers another referable strategy for the recycling of waste graphite in spent LIBs.

9.
Small ; : e2405259, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058218

RESUMO

This study investigates mechanochemical synthesis and cation-disordering mechanism of wurtzite-type Li3VO4 (LVO), highlighting its promise as a high-performance anode material for lithium-ion batteries and hybrid supercapacitors. Mechanochemical treatment of pristine LVO using a high-energy ball mill results in a "pure cation-disordered" LVO phase, allowing for meticulous analysis of cation arrangement. The X-ray and neutron diffraction study demonstrates progressive loss of order in LVO crystal with increasing milling duration. High-resolution transmission electron microscopy reveals disrupted lattice fringes, indicating cationic misalignment. Pair-distribution function analysis confirms loss of cation arrangements and the presence of short-range order. Combination of these multiple analytical techniques achieves a comprehensive understanding of cation regularity and clearly demonstrates order/disorder dichotomy in cation-disordered materials, ranging from short (<8 Å) to middle-long range (8-30 Å), using an integrated superstructure model of the cation-disordered LVO crystals. Electrochemical testing reveals that mechanochemically treated LVO exhibits superior rate capability, with a 70% capacity retention at a high current density of 50C-rate. Lithium diffusion coefficient measurements demonstrate enhanced lithium-ion mobility in the mechanochemically treated LVO, attributed to cation-disordering effect. These findings provide valuable insights into mechanochemical cation-disordering in LVO, presenting its potential as an efficient anode material for lithium-ion-based electrochemical energy storage.

10.
Small ; : e2404059, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162125

RESUMO

Sodium-ion batteries (SIBs) are a promising substitute for lithium batteries due to their abundant resources and low cost. Metal sulfides are regarded as highly attractive anode materials due to their superior mechanical stability and high theoretical specific capacity. Guided by the density functional theory (DFT) calculations, 3D porous network shaped Sb2S3/FeS2 composite materials with reduced graphene oxide (rGO) through a simple solvothermal and calcination method, which is predicted to facilitate favorable Na+ ion diffusion, is synthesized. Benefiting from the well-designed structure, the resulting Sb2S3/FeS2 exhibit a remarkable reversible capacity of 536 mAh g-1 after 2000 cycles at a current density of 5 A g-1 and long high-rate cycle life of 3000 cycles at a current density of 30 A g-1 as SIBs anode. In situ and ex situ analyses are carried out to gain further insights into the storage mechanisms and processes of sodium ions in Sb2S3/FeS2@rGO composites. The significantly enhanced sodium storage capacity is attributed to the unique structure and the heterogeneous interface between Sb2S3 and FeS2. This study illustrates that combining rGO with heterogeneous engineering can provide an ideal strategy for the synthesis of new hetero-structured anode materials with outstanding battery performance for SIBs.

11.
Small ; 20(30): e2306541, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38409478

RESUMO

Bismuth (Bi) is regarded as a promising anode material for potassium ion batteries (PIBs) due to its high theoretical capacity, but the huge volume expansion during potassiation and intrinsic low conductivity cause poor cycle stability and rate capability. Herein, a unique Bi nanoparticles/reduced graphene oxide (rGO) composite is fabricated by anchoring the Bi nanoparticles over the rGO substrate through a ball-milling and thermal reduction process. As depicted by the in-depth XPS analysis, strong interfacial Bi-C bonding can be formed between Bi and rGO, which is beneficial for alleviating the huge volume expansion of Bi during potassiation, restraining the aggregation of Bi nanoparticles and promoting the interfacial charge transfer. Theoretical calculation reveals the positive effect of rGO to enhance the potassium adsorption capability and interfacial electron transfer as well as reduce the diffusion energy barrier in the Bi/rGO composite. Thereby, the Bi/rGO composite exhibits excellent potassium storage performances in terms of high capacity (384.8 mAh g-1 at 50 mA g-1), excellent cycling stability (197.7 mAh g-1 after 1000 cycles at 500 mA g-1 with no capacity decay) and superior rate capability (55.6 mAh g-1 at 2 A g-1), demonstrating its great potential as an anode material for PIBs.

12.
Small ; 20(27): e2310972, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282180

RESUMO

Recently, aqueous zinc-ion batteries with conversion mechanisms have received wide attention in energy storage systems on account of excellent specific capacity, high power density, and energy density. Unfortunately, some characteristics of cathode material, zinc anode, and electrolyte still limit the development of aqueous zinc-ion batteries possessing conversion mechanism. Consequently, this paper provides a detailed summary of the development for numerous aqueous zinc-based batteries: zinc-sulfur (Zn-S) batteries, zinc-selenium (Zn-Se) batteries, zinc-tellurium (Zn-Te) batteries, zinc-iodine (Zn-I2) batteries, and zinc-bromine (Zn-Br2) batteries. Meanwhile, the reaction conversion mechanism of zinc-based batteries with conversion mechanism and the research progress in the investigation of composite cathode, zinc anode materials, and selection of electrolytes are systematically introduced. Finally, this review comprehensively describes the prospects and outlook of aqueous zinc-ion batteries with conversion mechanism, aiming to promote the rapid development of aqueous zinc-based batteries.

13.
Chemistry ; 30(19): e202302865, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37833823

RESUMO

Recently, it has become imperative to develop high energy density as well as high safety lithium-ion batteries (LIBS) to meet the growing energy demand. Among the anode materials used in LIBs, the currently used commercial graphite has low capacity and is a safety hazard due to the formation of lithium dendrites during the reaction. Among the transition metal oxide (TMO) anode materials, TMO based on the intercalation reaction mechanism has a more stable structure and is less prone to volume expansion than TMO based on the conversion reaction mechanism, especially the niobium-based oxide in it has attracted much attention. Niobium-based oxides have a high operating potential to inhibit the formation of lithium dendrites and lithium deposits to ensure safety, and have stable and fast lithium ion transport channels with excellent multiplicative performance. This review summarizes the recent developments of niobium-based oxides as anode materials for lithium-ion batteries, discusses the special structure and electrochemical reaction mechanism of the materials, the synthesis methods and morphology of nanostructures, deficiencies and improvement strategies, and looks into the future developments and challenges of niobium-based oxide anode materials.

14.
Chemistry ; 30(6): e202302979, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-37950854

RESUMO

Sustainability is one of the hot topics of today's research, in particular when it comes to energy-storage systems such as batteries. Redox-active molecules implemented in organic batteries represent a promising alternative to lithium-ion batteries, which partially rely on non-sustainable heavy metal salts. As an alternative, we propose benzothiazole, -oxazole and -imidazole derivatives as redox-active moieties for polymers in organic (radical) batteries. The target molecules were identified by a combination of theoretical and experimental approaches for the investigation of new organic active materials. Herein, we present the synthesis, electrochemical characterization and theoretical investigation of the proposed molecules, which can later be introduced into a polymer backbone and used in organic polymer batteries.

15.
Chemistry ; 30(39): e202401257, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38709195

RESUMO

Aqueous proton batteries have received increasing attention due to their outstanding rate performance, stability and high capacity. However, the selection of anode materials in strongly acidic electrolytes poses a challenge in achieving high-performance aqueous proton batteries. This study optimized the proton reaction kinetics of layered metal oxide WO3 by introducing interlayer structural water and coating polyaniline (PANI) on its surface to prepare organic-inorganic hybrid material (WO3 ⋅ 2H2O@PANI). We constructed an aqueous proton battery with WO3 ⋅ 2H2O@PANI anode and MnO2@GF cathode. After 1500 cycles at a current density of 10 A g-1, the capacity retention rate can still reach 80.2 %. These results can inspire the development of new aqueous proton batteries.

16.
Nanotechnology ; 35(38)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38906124

RESUMO

A variety of strategies have been developed to enhance the cycling stability of Si-based anodes in lithium-ion batteries. Although significant progress has been made in enhancing the cycling stability of Si-based anodes, the low initial Coulombic efficiency (ICE) remains a significant challenge to their commercial application. Herein, pitch-based carbon (C) coated Si nanoparticles (NPs) were wrapped by graphene (G) to obtain Si@C/G composite with a small specific surface area of 11.3 m2g-1, resulting in a high ICE of 91.2% at 500 mA g-1. Moreover, the integrated utilization of graphene and soft carbon derived from the low-cost petroleum pitch strongly promotes the electrical conductivity, structure stability, and reaction kinetics of Si NPs. Consequently, the synthesized Si@C/G with a Si loading of 54.7% delivers large reversible capacity (1191 mAh g-1at 500 mA g-1), long cycle life over 200 cycles (a capacity retention of 87.1%), and superior rate capability (952 mAh g-1at 1500 mA g-1). When coupled with a homemade LiNi0.8Co0.1Mn0.1O2(NCM811) cathode in a full cell, it exhibits a promising cycling stability for 200 cycles. This work presents an innovative approach for the manufacture of Si-based anode materials with commercial application.

17.
J Environ Manage ; 363: 121314, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843731

RESUMO

Pretreatment, the initial step in recycling spent lithium-ion batteries (LIBs), efficiently separates cathode and anode materials to facilitate key element recovery. Despite brief introductions in existing research, a comprehensive evaluation and comparison of processing methods is lacking. This study reviews 346 references on LIBs recycling, analyzing pretreatment stages, treatment conditions, and method effects. Our analysis highlights insufficient attention to discharge voltage safety and environmental impact. Mechanical disassembly, while suitable for industrial production, overlooks electrolyte recovery and complicates LIBs separation. High temperature pyrolysis flotation offers efficient separation of mixed electrode materials, enhancing mineral recovery. We propose four primary pretreatment processes: discharge, electrolyte recovery, crushing and separation, and electrode material recovery, offering simplified, efficient, green, low-cost, and high-purity raw materials for subsequent recovery processes.


Assuntos
Fontes de Energia Elétrica , Lítio , Reciclagem , Lítio/química , Reciclagem/métodos , Eletrodos , Íons
18.
Molecules ; 29(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893407

RESUMO

CuO is recognized as a promising anode material for sodium-ion batteries because of its impressive theoretical capacity of 674 mAh g-1, derived from its multiple electron transfer capabilities. However, its practical application is hindered by slow reaction kinetics and rapid capacity loss caused by side reactions during discharge/charge cycles. In this work, we introduce an innovative approach to fabricating large-area CuO and CuO@Al2O3 flakes through a combination of magnetron sputtering, thermal oxidation, and atomic layer deposition techniques. The resultant 2D CuO flakes demonstrate excellent electrochemical properties with a high initial reversible specific capacity of 487 mAh g-1 and good cycling stability, which are attributable to their unique architectures and superior structural durability. Furthermore, when these CuO flakes are coated with an ultrathin Al2O3 layer, the integration of the 2D structures with outer nanocoating leads to significantly enhanced electrochemical properties. Notably, even after 70 rate testing cycles, the CuO@Al2O3 materials maintain a high capacity of 525 mAh g-1 at a current density of 50 mA g-1. Remarkably, at a higher current density of 2000 mA g-1, these materials still achieve a capacity of 220 mAh g-1. Moreover, after 200 cycles at a current density of 200 mA g-1, a high charge capacity of 319 mAh g-1 is sustained. In addition, a full cell consisting of a CuO@Al2O3 anode and a NaNi1/3Fe1/3Mn1/3O2 cathode is investigated, showcasing remarkable cycling performance. Our findings underscore the potential of these innovative flake-like architectures as electrode materials in high-performance sodium-ion batteries, paving the way for advancements in energy storage technologies.

19.
Small ; 19(14): e2206848, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36604991

RESUMO

Great changes have occurred in the energy storage area in recent years as a result of rapid economic expansion. People have conducted substantial research on sustainable energy conversion and storage systems in order to mitigate the looming energy crisis. As a result, developing energy storage materials is critical. Materials with an open frame structure are known as Prussian blue analogs (PBAs). Anode materials for oxides, sulfides, selenides, phosphides, borides, and carbides have been extensively explored as anode materials in the field of energy conversion and storage in recent years. The advantages and disadvantages of oxides, sulfides, selenides, phosphides, borides, carbides, and other elements, as well as experimental methodologies and electrochemical properties, are discussed in this work. The findings reveal that employing oxides, sulfides, selenides, phosphides, borides, and other electrode materials to overcome the problems of low conductivity, excessive material loss, and low specific volume is ineffective. Therefore, this review intends to address the issues of diverse energy storage materials by combining multiple technologies to manufacture battery materials with low cost, large capacity, and extended service life.

20.
Small ; 19(46): e2303985, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37442792

RESUMO

Potassium-ion batteries (PIBs) have broad application prospects in the field of electric energy storage systems because of its abundant K reserves, and similar "rocking chair" operating principle as lithium-ion batteries (LIBs). Aiming to the large volume expansion and sluggish dynamic behavior of anode materials for storing large sized K-ion, bismuth telluride (Bi2 Te3 ) nanoplates hierarchically encapsulated by reduced graphene oxide (rGO), and nitrogen-doped carbon (NC) are constructed as anodes for PIBs. The resultant Bi2 Te3 @rGO@NC architecture features robust chemical bond of Bi─O─C, tightly physicochemical confinement effect, typical conductor property, and enhanced K-ion adsorption ability, thereby producing superior electrochemical kinetics and outstanding morphological and structural stability. It is visually elucidated via high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) that conversion-alloying dual-mechanism plays a significant role in K-ion storage, allowing 12 K-ion transport per formular unit employing Bi as redox site. Thus, the high first reversible specific capacity of 322.70 mAh g-1 at 50 mA g-1 , great rate capability and cyclic stability can be achieved for Bi2 Te3 @rGO@NC. This work lays the foundation for an in-depth understanding of conversion-alloying mechanism in potassium-ion storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA