Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(4): 791-801.e6, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262410

RESUMO

In S phase, duplicating and assembling the whole genome into chromatin requires upregulation of replicative histone gene expression. Here, we explored how histone chaperones control histone production in human cells to ensure a proper link with chromatin assembly. Depletion of the ASF1 chaperone specifically decreases the pool of replicative histones both at the protein and RNA levels. The decrease in their overall expression, revealed by total RNA sequencing (RNA-seq), contrasted with the increase in nascent/newly synthesized RNAs observed by 4sU-labeled RNA-seq. Further inspection of replicative histone RNAs showed a 3' end processing defect with an increase of pre-mRNAs/unprocessed transcripts likely targeted to degradation. Collectively, these data argue for a production defect of replicative histone RNAs in ASF1-depleted cells. We discuss how this regulation of replicative histone RNA metabolism by ASF1 as a "chaperone checkpoint" fine-tunes the histone dosage to avoid unbalanced situations deleterious for cell survival.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Humanos , Histonas/genética , Histonas/metabolismo , Chaperonas de Histonas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , RNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 81(13): 2693-2704.e12, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33964204

RESUMO

The assembly of nascent proteins into multi-subunit complexes is a tightly regulated process that must occur at high fidelity to maintain cellular homeostasis. The ER membrane protein complex (EMC) is an essential insertase that requires seven membrane-spanning and two soluble cytosolic subunits to function. Here, we show that the kinase with no lysine 1 (WNK1), known for its role in hypertension and neuropathy, functions as an assembly factor for the human EMC. WNK1 uses a conserved amphipathic helix to stabilize the soluble subunit, EMC2, by binding to the EMC2-8 interface. Shielding this hydrophobic surface prevents promiscuous interactions of unassembled EMC2 and directly competes for binding of E3 ubiquitin ligases, permitting assembly. Depletion of WNK1 thus destabilizes both the EMC and its membrane protein clients. This work describes an unexpected role for WNK1 in protein biogenesis and defines the general requirements of an assembly factor that will apply across the proteome.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Complexos Multiproteicos/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Retículo Endoplasmático/genética , Células HeLa , Humanos , Complexos Multiproteicos/genética , Proteína Quinase 1 Deficiente de Lisina WNK/genética
3.
J Biol Chem ; 299(6): 104736, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086784

RESUMO

Mitotic spindles are composed of microtubules (MTs) that must nucleate at the right place and time. Ran regulates this process by directly controlling the release of spindle assembly factors (SAFs) from nucleocytoplasmic shuttle proteins importin-αß and subsequently forms a biochemical gradient of SAFs localized around chromosomes. The majority of spindle MTs are generated by branching MT nucleation, which has been shown to require an eight-subunit protein complex known as augmin. In Xenopus laevis, Ran can control branching through a canonical SAF, TPX2, which is nonessential in Drosophila melanogaster embryos and HeLa cells. Thus, how Ran regulates branching MT nucleation when TPX2 is not required remains unknown. Here, we use in vitro pulldowns and total internal reflection fluorescence microscopy to show that augmin is a Ran-regulated SAF. We demonstrate that augmin directly interacts with both importin-α and importin-ß through two nuclear localization sequences on the Haus8 subunit, which overlap with the MT-binding site. Moreover, we show that Ran controls localization of augmin to MTs in both Xenopus egg extract and in vitro. Our results demonstrate that RanGTP directly regulates augmin, which establishes a new way by which Ran controls branching MT nucleation and spindle assembly both in the absence and presence of TPX2.


Assuntos
Proteínas Associadas aos Microtúbulos , Complexos Multiproteicos , Proteínas de Xenopus , Proteína ran de Ligação ao GTP , Animais , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila melanogaster , Células HeLa , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Fuso Acromático/metabolismo , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , alfa Carioferinas , beta Carioferinas
4.
Plant J ; 114(2): 310-324, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752655

RESUMO

Chloroplast pre-ribosomal RNA (rRNA) undergoes maturation, which is critical for ribosome assembly. While the central and auxiliary factors in rRNA maturation have been elucidated in bacteria, their mode of action remains largely unexplored in chloroplasts. We now reveal chloroplast-specific factors involved in 16S rRNA maturation, Arabidopsis thaliana orthologs of bacterial RsmD methyltransferase (AtRsmD) and ribosome maturation factor RimM (AtRimM). A forward genetic screen aimed to find suppressors of the Arabidopsis yellow variegated 2 (var2) mutant defective in photosystem II quality control found a causal nonsense mutation in AtRsmD. The substantially impaired 16S rRNA maturation and translation due to the mutation rescued the leaf variegation phenotype by lowering the levels of chloroplast-encoded proteins, including photosystem II core proteins, in var2. The subsequent co-immunoprecipitation coupled with mass spectrometry analyses and bimolecular fluorescence complementation assay found that AtRsmD interacts with AtRimM. Consistent with their interaction, loss of AtRimM also considerably impairs 16S rRNA maturation with decelerated m2 G915 modification in 16S rRNA catalyzed by AtRsmD. The atrimM mutation also rescued var2 mutant phenotypes, corroborating the functional interplay between AtRsmD and AtRimM towards modification and maturation of 16S rRNA and chloroplast proteostasis. The maturation and post-transcriptional modifications of rRNA are critical to assembling ribosomes responsible for protein translation. Here, we revealed that the cooperative regulation of 16S rRNA m2 G915 modifications by AtRsmD methyltransferase and ribosome assembly factor AtRimM contributes to 16S rRNA maturation, ribosome assembly, and proteostasis in chloroplasts.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas de Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plastídeos/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Mutação , Metiltransferases/genética , Metiltransferases/metabolismo
5.
J Biol Chem ; 298(9): 102261, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35843310

RESUMO

Regulation of protein synthesis is critical for control of gene expression in all cells. Ribosomes are ribonucleoprotein machines responsible for translating cellular proteins. Defects in ribosome production, function, or regulation are detrimental to the cell and cause human diseases, such as progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome. PEHO syndrome is a devastating neurodevelopmental disorder caused by mutations in the ZNHIT3 gene, which encodes an evolutionarily conserved nuclear protein. The precise mechanisms by which ZNHIT3 mutations lead to PEHO syndrome are currently unclear. Studies of the human zinc finger HIT-type containing protein 3 homolog in budding yeast (Hit1) revealed that this protein is critical for formation of small nucleolar ribonucleoprotein complexes that are required for rRNA processing and 2'-O-methylation. Here, we use budding yeast as a model system to reveal the basis for the molecular pathogenesis of PEHO syndrome. We show that missense mutations modeling those found in PEHO syndrome patients cause a decrease in steady-state Hit1 protein levels, a significant reduction of box C/D snoRNA levels, and subsequent defects in rRNA processing and altered cellular translation. Using RiboMethSeq analysis of rRNAs isolated from actively translating ribosomes, we reveal site-specific changes in the rRNA modification pattern of PEHO syndrome mutant yeast cells. Our data suggest that PEHO syndrome is a ribosomopathy and reveal potential new aspects of the molecular basis of this disease in translation dysregulation.


Assuntos
Edema Encefálico , Doenças Neurodegenerativas , Proteínas Nucleares , Atrofia Óptica , Ribonucleoproteínas Nucleolares Pequenas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Espasmos Infantis , Fatores de Transcrição , Edema Encefálico/genética , Humanos , Recém-Nascido , Mutação , Doenças Neurodegenerativas/genética , Proteínas Nucleares/genética , Atrofia Óptica/genética , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espasmos Infantis/genética , Fatores de Transcrição/genética
6.
Photosynth Res ; 155(3): 219-245, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36542271

RESUMO

Quantifying cellular components is a basic and important step for understanding how a cell works, how it responds to environmental changes, and for re-engineering cells to produce valuable metabolites and increased biomass. We quantified proteins in the model cyanobacterium Synechocystis sp. PCC 6803 given the general importance of cyanobacteria for global photosynthesis, for synthetic biology and biotechnology research, and their ancestral relationship to the chloroplasts of plants. Four mass spectrometry methods were used to quantify cellular components involved in the biosynthesis of chlorophyll, carotenoid and bilin pigments, membrane assembly, the light reactions of photosynthesis, fixation of carbon dioxide and nitrogen, and hydrogen and sulfur metabolism. Components of biosynthetic pathways, such as those for chlorophyll or for photosystem II assembly, range between 1000 and 10,000 copies per cell, but can be tenfold higher for CO2 fixation enzymes. The most abundant subunits are those for photosystem I, with around 100,000 copies per cell, approximately 2 to fivefold higher than for photosystem II and ATP synthase, and 5-20 fold more than for the cytochrome b6f complex. Disparities between numbers of pathway enzymes, between components of electron transfer chains, and between subunits within complexes indicate possible control points for biosynthetic processes, bioenergetic reactions and for the assembly of multisubunit complexes.


Assuntos
Synechocystis , Synechocystis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo Citocromos b6f/metabolismo , Fotossíntese , Clorofila/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Transporte de Elétrons
7.
FASEB J ; 36(11): e22585, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36190433

RESUMO

RNA polymerase II (RNAPII) is an essential machinery for catalyzing mRNA synthesis and controlling cell fate in eukaryotes. Although the structure and function of RNAPII have been relatively defined, the molecular mechanism of its assembly process is not clear. The identification and functional analysis of assembly factors will provide new understanding to transcription regulation. In this study, we identify that RTR1, a known transcription regulator, is a new multicopy genetic suppressor of mutants of assembly factors Gpn3, Gpn2, and Rba50. We demonstrate that Rtr1 is directly required to assemble the two largest subunits of RNAPII by coordinating with Gpn3 and Npa3. Deletion of RTR1 leads to cytoplasmic clumping of RNAPII subunit and multiple copies of RTR1 can inhibit the formation of cytoplasmic clump of RNAPII subunit in gpn3-9 mutant, indicating a new layer function of Rtr1 in checking proper assembly of RNAPII. In addition, we find that disrupted activity of Rtr1 phosphatase does not trigger the formation of cytoplasmic clump of RNAPII subunit in a catalytically inactive mutant of RTR1. Based on these results, we conclude that Rtr1 cooperates with Gpn3 and Npa3 to assemble RNAPII core.


Assuntos
RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , Monoéster Fosfórico Hidrolases/genética , RNA Polimerase II/genética , RNA Mensageiro , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica
8.
BMC Pediatr ; 23(1): 616, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053031

RESUMO

BACKGROUND: The study describes the clinical manifestations and variant screening of two Chinese siblings with primary ciliary dyskinesia (PCD). They carry the same DNAAF2 genotype, which is an extremely rare PCD genotype in the Chinese population. In addition, the study illustrated an overview of published variants on DNAAF2 to date. METHODS: A two-child family was recruited for the study. Clinical manifestations, laboratory tests, bronchoscopic and otoscopic images, and radiographic data were collected. Whole blood was collected from siblings and their parents for whole-exome sequencing (WES) and Sanger sequencing to screen variants. RESULTS: The two siblings exhibited typical clinical manifestations of PCD. Two compound heterozygous variants in DNAAF2 were detected in both by WES. Nonsense variant c.156 C>A and frameshift variant c.177_178insA, which was a novel variant. CONCLUSION: The study identified a novel variant of DNAAF2 in Chinese children with a typical phenotype of PCD, which may enrich our knowledge of the clinical, diagnostic and genetic information of DNAAF2-induced PCD in children.


Assuntos
Transtornos da Motilidade Ciliar , Mutação da Fase de Leitura , Humanos , Transtornos da Motilidade Ciliar/diagnóstico , Transtornos da Motilidade Ciliar/genética , Genótipo , Mutação , Fenótipo
9.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240131

RESUMO

Mitochondrial ATP synthase is a multiprotein complex, which consists of a matrix-localized F1 domain (F1-ATPase) and an inner membrane-embedded Fo domain (Fo-ATPase). The assembly process of mitochondrial ATP synthase is complex and requires the function of many assembly factors. Although extensive studies on mitochondrial ATP synthase assembly have been conducted on yeast, much less study has been performed on plants. Here, we revealed the function of Arabidopsis prohibitin 3 (PHB3) in mitochondrial ATP synthase assembly by characterizing the phb3 mutant. The blue native PAGE (BN-PAGE) and in-gel activity staining assays showed that the activities of ATP synthase and F1-ATPase were significantly decreased in the phb3 mutant. The absence of PHB3 resulted in the accumulation of the Fo-ATPase and F1-ATPase intermediates, whereas the abundance of the Fo-ATPase subunit a was decreased in the ATP synthase monomer. Furthermore, we showed that PHB3 could interact with the F1-ATPase subunits ß and δ in the yeast two-hybrid system (Y2H) and luciferase complementation imaging (LCI) assay and with Fo-ATPase subunit c in the LCI assay. These results indicate that PHB3 acts as an assembly factor required for the assembly and activity of mitochondrial ATP synthase.


Assuntos
Arabidopsis , ATPases Mitocondriais Próton-Translocadoras , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proibitinas , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina
10.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834876

RESUMO

Ribosome synthesis is a complex process that involves a large set of protein trans-acting factors, among them DEx(D/H)-box helicases. These are enzymes that carry out remodelling activities onto RNAs by hydrolysing ATP. The nucleolar DEGD-box protein Dbp7 is required for the biogenesis of large 60S ribosomal subunits. Recently, we have shown that Dbp7 is an RNA helicase that regulates the dynamic base-pairing between the snR190 small nucleolar RNA and the precursors of the ribosomal RNA within early pre-60S ribosomal particles. As the rest of DEx(D/H)-box proteins, Dbp7 has a modular organization formed by a helicase core region, which contains conserved motifs, and variable, non-conserved N- and C-terminal extensions. The role of these extensions remains unknown. Herein, we show that the N-terminal domain of Dbp7 is necessary for efficient nuclear import of the protein. Indeed, a basic bipartite nuclear localization signal (NLS) could be identified in its N-terminal domain. Removal of this putative NLS impairs, but does not abolish, Dbp7 nuclear import. Both N- and C-terminal domains are required for normal growth and 60S ribosomal subunit synthesis. Furthermore, we have studied the role of these domains in the association of Dbp7 with pre-ribosomal particles. Altogether, our results show that the N- and C-terminal domains of Dbp7 are important for the optimal function of this protein during ribosome biogenesis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/metabolismo , Ribossomos/metabolismo , RNA Ribossômico/metabolismo , Proteínas Nucleares/genética , Proteínas Ribossômicas/metabolismo , Precursores de RNA/genética
11.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982777

RESUMO

Mitochondrial metabolism plays an important role in the occurrence and development of cancers. Cytochrome C oxidase assembly factor six (COA6) is essential in mitochondrial metabolism. However, the role of COA6 in lung adenocarcinoma (LUAD) remains unknown. Here we report that the expression of COA6 mRNA and protein were upregulated in LUAD tissues compared with lung normal tissues. We found that COA6 had high sensitivity and specificity to distinguish LUAD tissues from normal lung tissues shown by a receiver operating characteristic (ROC) curve. In addition, our univariate and multivariate Cox regression analysis indicated that COA6 was an independent unfavorable prognostic factor for LUAD patients. Furthermore, our survival analysis and nomogram showed that a high expression of COA6 mRNA was related to the short overall survival (OS) of LUAD patients. Notably, our weighted correlation network analysis (WGCNA) and functional enrichment analysis revealed that COA6 may participate in the development of LUAD by affecting mitochondrial oxidative phosphorylation (OXPHOS). Importantly, we demonstrated that depletion of COA6 could decrease the mitochondrial membrane potential (MMP), nicotinamide adenine dinucleotide (NAD) + hydrogen (H) (NADH), and adenosine triphosphate (ATP) production in LUAD cells (A549 and H1975), hence inhibiting the proliferation of these cells in vitro. Together, our study strongly suggests that COA6 is significantly associated with the prognosis and OXPHOS in LUAD. Hence, COA6 is highly likely a novel prognostic biomarker and therapeutic target of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Fosforilação Oxidativa , Adenocarcinoma de Pulmão/genética , RNA Mensageiro , Neoplasias Pulmonares/genética , Proteínas de Transporte , Proteínas Mitocondriais
12.
J Biol Chem ; 297(3): 100998, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302807

RESUMO

The microtubule-based mitotic spindle is responsible for equally partitioning the genome during each cell division, and its assembly is executed via several microtubule nucleation pathways. Targeting Protein for XKlp2 (TPX2) stimulates the branching microtubule nucleation pathway, where new microtubules are nucleated from preexisting ones within mitotic or meiotic spindles. TPX2, like other spindle assembly factors, is sequestered by binding to nuclear importins-α/ß until the onset of mitosis, yet the molecular nature of this regulation remains unclear. Here we demonstrate that TPX2 interacts with importins-α/ß with nanomolar affinity in a 1:1:1 monodispersed trimer. We also identify a new nuclear localization sequence in TPX2 that contributes to its high-affinity interaction with importin-α. In addition, we establish that TPX2 interacts with importin-ß via dispersed, weak interactions. We show that interactions of both importin-α and -ß with TPX2 inhibit its ability to undergo phase separation, which was recently shown to enhance the kinetics of branching microtubule nucleation. In summary, our study informs how importins regulate TPX2 to facilitate spindle assembly, and provides novel insight into the functional regulation of protein phase separation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Cromatografia em Gel/métodos , Humanos , Microtúbulos/metabolismo , Sinais de Localização Nuclear , Proteínas Nucleares/metabolismo , Ligação Proteica
13.
Hum Mutat ; 42(2): 135-141, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169484

RESUMO

COX16 is involved in the biogenesis of cytochrome-c-oxidase (complex IV), the terminal complex of the mitochondrial respiratory chain. We present the first report of two unrelated patients with the homozygous nonsense variant c.244C>T(p. Arg82*) in COX16 with hypertrophic cardiomyopathy, encephalopathy and severe fatal lactic acidosis, and isolated complex IV deficiency. The absence of COX16 protein expression leads to a complete loss of the holo-complex IV, as detected by Western blot in patient fibroblasts. Lentiviral transduction of patient fibroblasts with wild-type COX16 complementary DNA rescued complex IV biosynthesis. We hypothesize that COX16 could play a role in the copper delivery route of the COX2 module as part of the complex IV assembly. Our data provide clear evidence for the pathogenicity of the COX16 variant as a cause for the observed clinical features and the isolated complex IV deficiency in these two patients and that COX16 deficiency is a cause for mitochondrial disease.


Assuntos
Acidose Láctica , Encefalopatias , Cardiomiopatias , Deficiência de Citocromo-c Oxidase , Hepatopatias , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Acidose Láctica/genética , Cardiomiopatias/genética , Deficiência de Citocromo-c Oxidase/genética , Humanos , Recém-Nascido , Proteínas Mitocondriais/metabolismo
14.
Cancer Sci ; 112(1): 101-116, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32888357

RESUMO

Ribosome assembly factor URB1 is essential for ribosome biogenesis. However, its latent role in cancer remains unclear. Analysis of The Cancer Genome Atlas database and clinical tissue microarray staining showed that URB1 expression was upregulated in colorectal cancer (CRC) and prominently related to clinicopathological characteristics. Silencing of URB1 hampered human CRC cell proliferation and growth in vitro and in vivo. Microarray screening, ingenuity pathway analysis, and JASPAR assessment indicated that activating transcription factor 4 (ATF4) and X-box binding protein 1 (XBP1) are potential downstream targets of URB1 and could transcriptionally interact through direct binding. Silencing of URB1 significantly decreased ATF4 and cyclin A2 (CCNA2) expression in vivo and in vitro. Restoration of ATF4 effectively reversed the malignant proliferation phenotype of URB1-silenced CRC cells. Dual-luciferase reporter and ChIP assays indicated that XBP1 transcriptionally activated ATF4 by binding with its promoter region. X-box binding protein 1 colocalized with ATF4 in the nuclei of RKO cells, and ATF4 mRNA expression was positively regulated by XBP1. This study shows that URB1 contributes to oncogenesis and CRC growth through XBP1-mediated transcriptional activation of ATF4. Therefore, URB1 could be a potential therapeutic target for CRC.


Assuntos
Fator 4 Ativador da Transcrição/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Proteínas Nucleares/genética , Ribossomos/genética , Ativação Transcricional/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética , Regulação para Cima/genética , Proteína 1 de Ligação a X-Box/genética
15.
J Cell Sci ; 132(2)2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30630896

RESUMO

Chromatin assembly factor 1 (CAF1), a histone chaperone that mediates the deposition of histone H3/H4 onto newly synthesized DNA, is involved in Notch signaling activation during Drosophila wing imaginal disc development. Here, we report another side of CAF1, wherein the subunits CAF1-p105 and CAF1-p180 (also known as CAF1-105 and CAF1-180, respectively) inhibit expression of Notch target genes and show this is required for proliferation of Drosophila ovarian follicle cells. Loss-of-function of either CAF1-p105 or CAF1-p180 caused premature activation of Notch signaling reporters and early expression of the Notch target Hindsight (Hnt, also known as Pebbled), leading to Cut downregulation and inhibition of follicle cell mitosis. Our studies further show Notch is functionally responsible for these phenotypes observed in both the CAF1-p105- and CAF1-p180-deficient follicle cells. Moreover, we reveal that CAF1-p105- and CAF1-p180-dependent Cut expression is essential for inhibiting Hnt expression in follicle cells during their mitotic stage. These findings together indicate a novel negative-feedback regulatory loop between Cut and Hnt underlying CAF1-p105 and CAF-p180 regulation, which is crucial for follicle cell differentiation. In conclusion, our studies suggest CAF1 plays a dual role to sustain cell proliferation by positively or negatively regulating Drosophila Notch signaling in a tissue-context-dependent manner.


Assuntos
Proliferação de Células , Proteínas de Drosophila/metabolismo , Folículo Ovariano/metabolismo , Receptores Notch/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Transdução de Sinais , Animais , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Discos Imaginais/citologia , Discos Imaginais/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Folículo Ovariano/citologia , Receptores Notch/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
16.
FASEB J ; 34(11): 15547-15558, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32985767

RESUMO

RNA polymerase II is one of the most vital macromolecular complexes in eukaryotes and the assembly of such complete enzyme requires many factors. Three members of GPN-loop GTPase family Npa3/Gpn1, Gpn2, and Gpn3 participate in the biogenesis of RNA polymerase II with nonredundant roles. We show here that rapid degradation of each GPN protein in yeast leads to cytoplasmic accumulation of Rpb1 and defects in the assembly of RNA polymerase II, suggesting conserved functions of GPN paralogs for RNA polymerase II biogenesis as in humans. Taking advantage of a multicopy genetic screening, we identified GPN3 and assembly factor RBA50 among others as strong suppressors of npa3ts mutants. We further demonstrated that Npa3 interacts with Gpn3 and Rba50, similarly human Gpn1 physically interacts with Gpn3 and RPAP1 (human analog of Rba50). Moreover, a mutual dependency of protein levels of Npa3 and Gpn3 was also clearly presented in yeast using an auxin-inducible degron (AID) system. Interestingly, Rpb2, the second largest subunit of RNA polymerase II was determined to be the subunit that interacts with both Gpn1 and Rba50, indicating a close association of Npa3 and Rba50 in Rpb2 subcomplex assembly. Based on these results, we conclude that Npa3 interacts with Gpn3 and Rba50, for RNA polymerase II biogenesis. We therefore propose that multiple factors may coordinate through conserved regulatory mechanisms in the assembly of RNA polymerase complex.


Assuntos
Proteínas de Transporte/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Humanos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , Ligação Proteica , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Semin Cell Dev Biol ; 76: 154-162, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28797839

RESUMO

Mitochondrial complex I is the primary entry point for electrons into the electron transport chain, required for the bulk of cellular ATP production via oxidative phosphorylation. Complex I consists of 45 subunits, which are encoded by both nuclear and mitochondrial DNA. Currently, at least 15 assembly factors are known to be required for the complete maturation of complex I. Mutations in the genes encoding subunits and assembly factors lead to complex I deficiency, which can manifest as mitochondrial disease. The current model of complex I assembly suggests that the enzyme is built by the association of a set of smaller intermediate modules containing specific conserved core subunits and additional accessory subunits. Each module must converge in a spatially and temporally orchestrated fashion to allow assembly of the mature holoenzyme to occur. This review outlines the current understanding of complex I biogenesis, with an emphasis on the assembly factors that facilitate the building of this architectural giant.


Assuntos
Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Humanos
18.
Semin Cell Dev Biol ; 76: 163-178, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28870773

RESUMO

Mitochondrial cytochrome c oxidase (COX) is the primary site of cellular oxygen consumption and is essential for aerobic energy generation in the form of ATP. Human COX is a copper-heme A hetero-multimeric complex formed by 3 catalytic core subunits encoded in the mitochondrial DNA and 11 subunits encoded in the nuclear genome. Investigations over the last 50 years have progressively shed light into the sophistication surrounding COX biogenesis and the regulation of this process, disclosing multiple assembly factors, several redox-regulated processes leading to metal co-factor insertion, regulatory mechanisms to couple synthesis of COX subunits to COX assembly, and the incorporation of COX into respiratory supercomplexes. Here, we will critically summarize recent progress and controversies in several key aspects of COX biogenesis: linear versus modular assembly, the coupling of mitochondrial translation to COX assembly and COX assembly into respiratory supercomplexes.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Humanos
19.
J Biol Chem ; 294(45): 16663-16671, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31537648

RESUMO

Assembly of the mitochondrial respiratory chain requires the coordinated synthesis of mitochondrial and nuclear encoded subunits, redox co-factor acquisition, and correct joining of the subunits to form functional complexes. The conserved Cbp3-Cbp6 chaperone complex binds newly synthesized cytochrome b and supports the ordered acquisition of the heme co-factors. Moreover, it functions as a translational activator by interacting with the mitoribosome. Cbp3 consists of two distinct domains: an N-terminal domain present in mitochondrial Cbp3 homologs and a highly conserved C-terminal domain comprising a ubiquinol-cytochrome c chaperone region. Here, we solved the crystal structure of this C-terminal domain from a bacterial homolog at 1.4 Å resolution, revealing a unique all-helical fold. This structure allowed mapping of the interaction sites of yeast Cbp3 with Cbp6 and cytochrome b via site-specific photo-cross-linking. We propose that mitochondrial Cbp3 homologs carry an N-terminal extension that positions the conserved C-terminal domain at the ribosomal tunnel exit for an efficient interaction with its substrate, the newly synthesized cytochrome b protein.


Assuntos
Citocromos b/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/metabolismo , Cristalografia por Raios X , Citocromos b/química , Citocromos b/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
20.
J Biol Chem ; 294(48): 18360-18371, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31537647

RESUMO

Precise modification and processing of rRNAs are required for the production of ribosomes and accurate translation of proteins. Small nucleolar ribonucleoproteins (snoRNPs) guide the folding, modification, and processing of rRNAs and are thus critical for all eukaryotic cells. Bcd1, an essential zinc finger HIT protein functionally conserved in eukaryotes, has been implicated as an early regulator for biogenesis of box C/D snoRNPs and controls steady-state levels of box C/D snoRNAs through an unknown mechanism. Using a combination of genetic and biochemical approaches, here we found a conserved N-terminal motif in Bcd1 from Saccharomyces cerevisiae that is required for interactions with box C/D snoRNAs and the core snoRNP protein, Snu13. We show that both the Bcd1-snoRNA and Bcd1-Snu13 interactions are critical for snoRNP assembly and ribosome biogenesis. Our results provide mechanistic insight into Bcd1 interactions that likely control the early steps of snoRNP maturation and contribute to the essential role of this protein in maintaining the steady-state levels of snoRNAs in the cell.


Assuntos
Mutação , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Sobrevivência Celular/genética , Sequência Conservada/genética , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA