Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 35: 337-370, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28142321

RESUMO

Transcriptomics, the high-throughput characterization of RNAs, has been instrumental in defining pathogenic signatures in human autoimmunity and autoinflammation. It enabled the identification of new therapeutic targets in IFN-, IL-1- and IL-17-mediated diseases. Applied to immunomonitoring, transcriptomics is starting to unravel diagnostic and prognostic signatures that stratify patients, track molecular changes associated with disease activity, define personalized treatment strategies, and generally inform clinical practice. Herein, we review the use of transcriptomics to define mechanistic, diagnostic, and predictive signatures in human autoimmunity and autoinflammation. We discuss some of the analytical approaches applied to extract biological knowledge from high-dimensional data sets. Finally, we touch upon emerging applications of transcriptomics to study eQTLs, B and T cell repertoire diversity, and isoform usage.


Assuntos
Doenças Autoimunes/diagnóstico , Inflamação/diagnóstico , Transcriptoma , Doenças Autoimunes/imunologia , Conjuntos de Dados como Assunto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inflamação/imunologia , Armazenamento e Recuperação da Informação , Terapia de Alvo Molecular , Monitorização Imunológica , Prognóstico
2.
Cell ; 187(16): 4305-4317.e18, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38936360

RESUMO

Interleukin (IL)-23 and IL-17 are well-validated therapeutic targets in autoinflammatory diseases. Antibodies targeting IL-23 and IL-17 have shown clinical efficacy but are limited by high costs, safety risks, lack of sustained efficacy, and poor patient convenience as they require parenteral administration. Here, we present designed miniproteins inhibiting IL-23R and IL-17 with antibody-like, low picomolar affinities at a fraction of the molecular size. The minibinders potently block cell signaling in vitro and are extremely stable, enabling oral administration and low-cost manufacturing. The orally administered IL-23R minibinder shows efficacy better than a clinical anti-IL-23 antibody in mouse colitis and has a favorable pharmacokinetics (PK) and biodistribution profile in rats. This work demonstrates that orally administered de novo-designed minibinders can reach a therapeutic target past the gut epithelial barrier. With high potency, gut stability, and straightforward manufacturability, de novo-designed minibinders are a promising modality for oral biologics.


Assuntos
Colite , Interleucina-17 , Células Th17 , Animais , Administração Oral , Camundongos , Humanos , Ratos , Colite/tratamento farmacológico , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inibidores , Células Th17/imunologia , Receptores de Interleucina/metabolismo , Receptores de Interleucina/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Masculino , Interleucina-23/metabolismo , Interleucina-23/antagonistas & inibidores , Distribuição Tecidual , Feminino , Ratos Sprague-Dawley
3.
Cell ; 184(17): 4447-4463.e20, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34363755

RESUMO

TANK binding kinase 1 (TBK1) regulates IFN-I, NF-κB, and TNF-induced RIPK1-dependent cell death (RCD). In mice, biallelic loss of TBK1 is embryonically lethal. We discovered four humans, ages 32, 26, 7, and 8 from three unrelated consanguineous families with homozygous loss-of-function mutations in TBK1. All four patients suffer from chronic and systemic autoinflammation, but not severe viral infections. We demonstrate that TBK1 loss results in hypomorphic but sufficient IFN-I induction via RIG-I/MDA5, while the system retains near intact IL-6 induction through NF-κB. Autoinflammation is driven by TNF-induced RCD as patient-derived fibroblasts experienced higher rates of necroptosis in vitro, and CC3 was elevated in peripheral blood ex vivo. Treatment with anti-TNF dampened the baseline circulating inflammatory profile and ameliorated the clinical condition in vivo. These findings highlight the plasticity of the IFN-I response and underscore a cardinal role for TBK1 in the regulation of RCD.


Assuntos
Inflamação/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Fator de Necrose Tumoral alfa/farmacologia , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Autoimunidade/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Morte Celular/efeitos dos fármacos , Citocinas/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Feminino , Células HEK293 , Homozigoto , Humanos , Quinase I-kappa B/metabolismo , Imunofenotipagem , Inflamação/patologia , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Mutação com Perda de Função/genética , Masculino , Linhagem , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Receptor 3 Toll-Like/metabolismo , Transcriptoma/genética , Vesiculovirus/efeitos dos fármacos , Vesiculovirus/fisiologia
4.
Immunity ; 57(8): 1796-1811.e8, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38908373

RESUMO

Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-ß-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.


Assuntos
Autoimunidade , Citocinas , Lúpus Eritematoso Sistêmico , Transdução de Sinais , Espermina , Animais , Espermina/metabolismo , Espermina/farmacologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Citocinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Janus Quinase 1/metabolismo , Fosforilação , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Psoríase/imunologia , Psoríase/metabolismo , Camundongos Endogâmicos C57BL , Janus Quinases/metabolismo , Feminino , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo
5.
Cell ; 172(4): 797-810.e13, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29395326

RESUMO

Aberrant activation of innate immune receptors can cause a spectrum of immune disorders, such as Aicardi-Goutières syndrome (AGS). One such receptor is MDA5, a viral dsRNA sensor that induces antiviral immune response. Using a newly developed RNase-protection/RNA-seq approach, we demonstrate here that constitutive activation of MDA5 in AGS results from the loss of tolerance to cellular dsRNAs formed by Alu retroelements. While wild-type MDA5 cannot efficiently recognize Alu-dsRNAs because of its limited filament formation on imperfect duplexes, AGS variants of MDA5 display reduced sensitivity to duplex structural irregularities, assembling signaling-competent filaments on Alu-dsRNAs. Moreover, we identified an unexpected role of an RNA-rich cellular environment in suppressing aberrant MDA5 oligomerization, highlighting context dependence of self versus non-self discrimination. Overall, our work demonstrates that the increased efficiency of MDA5 in recognizing dsRNA comes at a cost of self-recognition and implicates a unique role of Alu-dsRNAs as virus-like elements that shape the primate immune system.


Assuntos
Elementos Alu/imunologia , Doenças Autoimunes do Sistema Nervoso/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Malformações do Sistema Nervoso/imunologia , Multimerização Proteica/imunologia , RNA de Cadeia Dupla/imunologia , Tolerância a Antígenos Próprios , Células A549 , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Helicase IFIH1 Induzida por Interferon/genética , Muramidase , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Fragmentos de Peptídeos , Multimerização Proteica/genética , RNA de Cadeia Dupla/genética , Células THP-1
6.
Mol Cell ; 82(19): 3712-3728.e10, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36150385

RESUMO

Recognition of pathogen-derived foreign nucleic acids is central to innate immune defense. This requires discrimination between structurally highly similar self and nonself nucleic acids to avoid aberrant inflammatory responses as in the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). How vast amounts of self RNA are shielded from immune recognition to prevent autoinflammation is not fully understood. Here, we show that human SAM-domain- and HD-domain-containing protein 1 (SAMHD1), one of the AGS-causing genes, functions as a single-stranded RNA (ssRNA) 3'exonuclease, the lack of which causes cellular RNA accumulation. Increased ssRNA in cells leads to dissolution of RNA-protein condensates, which sequester immunogenic double-stranded RNA (dsRNA). Release of sequestered dsRNA from condensates triggers activation of antiviral type I interferon via retinoic-acid-inducible gene I-like receptors. Our results establish SAMHD1 as a key regulator of cellular RNA homeostasis and demonstrate that buffering of immunogenic self RNA by condensates regulates innate immune responses.


Assuntos
Interferon Tipo I , RNA de Cadeia Dupla , Antivirais , Doenças Autoimunes do Sistema Nervoso , Exonucleases/genética , Humanos , Imunidade Inata/genética , Interferon Tipo I/genética , Malformações do Sistema Nervoso , RNA de Cadeia Dupla/genética , Proteína 1 com Domínio SAM e Domínio HD/genética
7.
Immunol Rev ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351983

RESUMO

Inflammasomes are multi-protein complexes that assemble within the cytoplasm of mammalian cells in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), driving the secretion of the pro-inflammatory cytokines IL-1ß and IL-18, and pyroptosis. The best-characterized inflammasome complexes are the NLRP3, NAIP-NLRC4, NLRP1, AIM2, and Pyrin canonical caspase-1-containing inflammasomes, and the caspase-11 non-canonical inflammasome. Newer inflammasome sensor proteins have been identified, including NLRP6, NLRP7, NLRP9, NLRP10, NLRP11, NLRP12, CARD8, and MxA. These inflammasome sensors can sense PAMPs from bacteria, viruses and protozoa, or DAMPs in the form of mitochondrial damage, ROS, stress and heme. The mechanisms of action, physiological relevance, consequences in human diseases, and avenues for therapeutic intervention for these novel inflammasomes are beginning to be realized. Here, we discuss these emerging inflammasome complexes and their putative activation mechanisms, molecular and signaling pathways, and physiological roles in health and disease.

8.
EMBO J ; 41(6): e109760, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35156720

RESUMO

RNA editing by the adenosine deaminase ADAR1 prevents innate immune responses to endogenous RNAs. In ADAR1-deficient cells, unedited self RNAs form base-paired structures that resemble viral RNAs and inadvertently activate the cytosolic RIG-I-like receptor (RLR) MDA5, leading to an antiviral type I interferon (IFN) response. Mutations in ADAR1 cause Aicardi-Goutières Syndrome (AGS), an autoinflammatory syndrome characterized by chronic type I IFN production. Conversely, ADAR1 loss and the consequent type I IFN production restricts tumor growth and potentiates the activity of some chemotherapeutics. Here, we show that another RIG-I-like receptor, LGP2, also has an essential role in the induction of a type I IFN response in ADAR1-deficient human cells. This requires the canonical function of LGP2 as an RNA sensor and facilitator of MDA5-dependent signaling. Furthermore, we show that the sensitivity of tumor cells to ADAR1 loss requires LGP2 expression. Finally, type I IFN induction in tumor cells depleted of ADAR1 and treated with some chemotherapeutics fully depends on LGP2 expression. These findings highlight a central role for LGP2 in self RNA sensing with important clinical implications.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , RNA Helicases/metabolismo , Doenças Autoimunes do Sistema Nervoso/genética , Humanos , Malformações do Sistema Nervoso/genética , Edição de RNA , RNA de Cadeia Dupla
9.
Immunity ; 47(5): 913-927.e6, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29150239

RESUMO

Although apoptotic cells (ACs) contain nucleic acids that can be recognized by Toll-like receptors (TLRs), engulfment of ACs does not initiate inflammation in healthy organisms. Here we identified macrophage populations that continually engulf ACs in distinct tissues and found that these macrophages share characteristics compatible with immunologically silent clearance of ACs; such characteristics include high expression of AC recognition receptors, low expression of TLR9, and reduced TLR responsiveness to nucleic acids. Removal of the macrophages from tissues resulted in loss of many of these characteristics and the ability to generate inflammatory responses to AC-derived nucleic acids, suggesting that cues from the tissue microenvironment program macrophages for silent AC clearance. The transcription factors KLF2 and KLF4 control the expression of many genes within this AC clearance program. The coordinated expression of AC receptors with genes that limit responses to nucleic acids might ensure maintenance of homeostasis and thus represent a central feature of tissue macrophages.


Assuntos
Apoptose , Macrófagos/imunologia , Animais , Feminino , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/fisiologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 7 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia
10.
Immunity ; 46(4): 635-648, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28410990

RESUMO

Mice carrying a hypomorphic point mutation in the Ptpn6 gene (Ptpn6spin mice) develop an inflammatory skin disease that resembles neutrophilic dermatosis in humans. Here, we demonstrated that interleukin-1α (IL-1α) signaling through IL-1R and MyD88 in both stromal and immune cells drive inflammation in Ptpn6spin mice. We further identified SYK as a critical kinase that phosphorylates MyD88, promoted MyD88-dependent signaling and mediates dermatosis in Ptpn6spin mice. Our studies further demonstrated that SHP1 encoded by Ptpn6 binds and suppresses SYK activation to inhibit MyD88 phosphorylation. Downstream of SHP1 and SYK-dependent counterregulation of MyD88 tyrosine phosphorylation, we have demonstrated that the scaffolding function of receptor interacting protein kinase 1 (RIPK1) and tumor growth factor-ß activated kinase 1 (TAK1)-mediating signaling were required to spur inflammatory disease. Overall, these studies identify SHP1 and SYK crosstalk as a critical regulator of MyD88 post-translational modifications and IL-1-driven inflammation.


Assuntos
Inflamação/imunologia , Interleucina-1alfa/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Dermatopatias/imunologia , Quinase Syk/imunologia , Animais , Citometria de Fluxo , Células HEK293 , Humanos , Immunoblotting , Inflamação/genética , Inflamação/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , MAP Quinase Quinase Quinases/metabolismo , Camundongos Knockout , Modelos Imunológicos , Mutação , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Interleucina-1/imunologia , Receptores de Interleucina-1/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Dermatopatias/genética , Dermatopatias/metabolismo , Quinase Syk/genética , Quinase Syk/metabolismo
11.
EMBO J ; 40(22): e108234, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34586646

RESUMO

DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis-specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1-deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.


Assuntos
Metilação de DNA , Dermatite/genética , Epiderme/fisiopatologia , Nucleotidiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aberrações Cromossômicas , Citosol/fisiologia , DNA (Citosina-5-)-Metiltransferase 1/genética , Dermatite/imunologia , Dermatite/patologia , Humanos , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Nucleotidiltransferases/genética
12.
FASEB J ; 38(5): e23528, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38441434

RESUMO

microRNAs (miRNAs) are small non-protein-coding RNAs which are essential regulators of host genome expression at the post-transcriptional level. There is evidence of dysregulated miRNA expression patterns in a wide variety of diseases, such as autoimmune and inflammatory conditions. These miRNAs have been termed "inflammamiRs." When working with miRNAs, the method followed, the approach to treat or diagnosis, and the selected biological material are very crucial. Demonstration of the role of miRNAs in particular disease phenotypes facilitates their evaluation as potential and effective therapeutic tools. A growing number of reports suggest the significant utility of miRNAs and other small RNA drugs in clinical medicine. Most miRNAs seem promising therapeutic options, but some features associated with miRNA therapy like off-target effect, effective dosage, or differential delivery methods, mainly caused by the short target's sequence, make miRNA therapies challenging. In this review, we aim to discuss some of the inflammamiRs in diseases associated with inflammatory pathways and the challenge of identifying the most potent therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics. We also discuss the status of inflammamiRs in clinical trials.


Assuntos
MicroRNAs , MicroRNAs/genética , Fenótipo
13.
J Allergy Clin Immunol ; 153(1): 1-11, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871669

RESUMO

Autoinflammatory diseases (AIDs) are a group of rare monogenetic disorders characterized by recurrent episodes of fever and systemic inflammation. A major pathologic hallmark of AIDs is excessive inflammasome assembly and activation, often the result of gain-of-function mutations in genes encoding core inflammasome components, including pyrin and cryopyrin. Recent advances in lipidomics have revealed that dysregulated metabolism of lipids such as cholesterol and fatty acids, especially in innate immune cells, exerts complex effects on inflammasome activation and the pathogenesis of AIDs. In this review, we summarize and discuss the impact of lipids and their metabolism on inflammasome activation and the disease pathogenesis of the most common AIDs, including familial Mediterranean fever, cryopyrin-associated periodic syndromes, and mevalonate kinase deficiency. We postulate that lipids hold diagnostic value in AIDs and that dietary and pharmacologic intervention studies could represent a promising approach to attenuate inflammasome activation and AID progression.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Febre Familiar do Mediterrâneo , Humanos , Inflamassomos , Febre Familiar do Mediterrâneo/genética , Síndromes Periódicas Associadas à Criopirina/genética , Inflamação , Lipídeos
14.
Artigo em Inglês | MEDLINE | ID: mdl-39197752

RESUMO

BACKGROUND: Cherubism is most commonly caused by rare heterozygous gain-of-function (GOF) missense variants in SH3BP2, which appear to signal through phospholipase C gamma 2 (PLCG2) to cause excessive osteoclast activity leading to expansile lesions in facial bones in childhood. GOF variants in PLCG2 lead to autoinflammatory PLCG2-associated antibody deficiency and immune dysregulation (autoinflammatory PLAID, or PLAID-GOF), characterized by variably penetrant autoinflammatory, autoimmune, infectious, and atopic manifestations. Cherubism has not been reported in PLAID to date. OBJECTIVE: We determined whether GOF PLCG2 variants may be associated with cherubism. METHODS: Clinical, laboratory, and genomic data from 2 patients with cherubism and other clinical symptoms observed in patients with PLCG2 variants were reviewed. Primary B-cell receptor-induced calcium flux was assessed by flow cytometry. RESULTS: Two patients with lesions consistent with cherubism but no SH3BP2 variants were found to have rare PLCG2 variants previously shown to be GOF in vitro, leading to increased primary B-cell receptor-induced calcium flux in one patient's B cells. Variable humoral defects, autoinflammatory rash, and other clinical and laboratory findings consistent with PLAID were observed as well. CONCLUSION: GOF PLCG2 variants likely represent a novel genetic driver of cherubism and should be assessed in SH3BP2-negative cases. Expansile bony lesions expand the phenotypic landscape of autoinflammatory PLAID, and bone imaging should be considered in PLAID patients.

15.
J Allergy Clin Immunol ; 153(1): 230-242, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769878

RESUMO

BACKGROUND: Pathogenic variants of phospholipase C gamma 2 (PLCG2) cause 2 related forms of autosomal-dominant immune dysregulation (ID), PLCγ2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammatory PLAID (APLAID). Since describing these conditions, many PLCG2 variants of uncertain significance have been identified by clinical sequencing of patients with diverse features of ID. OBJECTIVE: We sought to functionally classify PLCG2 variants and explore known and novel genotype-function-phenotype relationships. METHODS: Clinical data from patients with PLCG2 variants were obtained via standardized questionnaire. PLCG2 variants were generated by mutagenesis of enhanced green fluorescent protein (EGFP)-PLCG2 plasmid, which was overexpressed in Plcg2-deficient DT-40 B cells. B-cell receptor-induced calcium flux and extracellular signal-regulated kinase phosphorylation were assayed by flow cytometry. In some cases, stimulation-induced calcium flux was also measured in primary patient cells. RESULTS: Three-fourths of PLCG2 variants produced functional alteration of B-cell activation, in vitro. Thirteen variants led to gain of function (GOF); however, most functional variants defined a new class of PLCG2 mutation, monoallelic loss of function (LOF). Susceptibility to infection and autoinflammation were common with both GOF and LOF variants, whereas a new phenotypic cluster consisting of humoral immune deficiency, autoinflammation, susceptibility to herpesvirus infection, and natural killer cell dysfunction was observed in association with multiple heterozygous LOF variants detected in both familial and sporadic cases. In some cases, PLCG2 variants produced greater effects in natural killer cells than in B cells. CONCLUSIONS: This work expands the genotypic and phenotypic associations with functional variation in PLCG2, including a novel form of ID in carriers of heterozygous loss of PLCG2 function. It also demonstrates the need for more diverse assays for assessing the impact of PLCG2 variants on human disease.


Assuntos
Síndromes de Imunodeficiência , Fosfolipase C gama , Humanos , Doenças Autoimunes , Cálcio/metabolismo , Síndromes de Imunodeficiência/genética , Mutação , Fosfolipase C gama/genética
16.
J Biol Chem ; 299(7): 104866, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37247757

RESUMO

Stimulator of interferon genes (STING) is a sensor of cyclic dinucleotides including cyclic GMP-AMP, which is produced by cyclic GMP-AMP synthase (cGAS) in response to cytosolic DNA. The cGAS-STING signaling pathway regulates both innate and adaptive immune responses, as well as fundamental cellular functions such as autophagy, senescence, and apoptosis. Mutations leading to constitutive activation of STING cause devastating human diseases. Thus, the cGAS-STING pathway is of great interest because of its role in diverse cellular processes and because of the potential therapeutic implications of targeting cGAS and STING. Here, we review molecular and cellular mechanisms of STING signaling, and we propose a framework for understanding the immunological and other cellular functions of STING in the context of disease.


Assuntos
Nucleotidiltransferases , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Inflamação/metabolismo , DNA/metabolismo , Citosol/metabolismo , Imunidade Inata
17.
Immunology ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294737

RESUMO

Migraine (MI) is the most common neurological disease, affecting with 20% of the world population. A subset of 25% of MI patients showcase concurrent vestibular symptoms, which may classify as vestibular migraine (VM). Meniere's disease (MD) is a complex inner ear disorder defined by episodes of vertigo associated with tinnitus and sensorineural hearing loss with a significant autoimmune/autoinflammatory contribution, which symptoms overlap with VM. Blood samples from 18 patients with MI (5), VM (5) and MD (8) and 6 controls were collected and compared in a case-control study. Droplet-isolated nuclei from mononuclear cells used to generate scRNAseq and scATACseq data sets from MI, VM and MD. MI and VM have no differences in their immune transcriptome; therefore, they were considered as a single cluster for further analyses. Natural Killer (NK) cells transcriptomic data support a polarisation triggered by Type 1 innate immune cells via the release of interleukin (IL)-12, IL-15 and IL-18. According to the monocyte scRNAseq data, there were two MD clusters, one inactive and one driven by monocytes. The unique pathways of the MI + VM cluster were cellular responses to metal ions, whereas MD monocyte-driven cluster pathways showed responses to biotic stimuli. MI and MD have different immune responses. These findings support that MI and VM have a Type 1 immune lymphoid cell response, and that there are two clusters of MD patients, one inactive and one Monocyte-driven.

18.
Immunology ; 173(3): 520-535, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39054787

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disease driven by highly active autoantibody-producing B cells. Activation of B cells is maintained within ectopic germinal centres found in affected joints. Fibroblast-like synoviocytes (FLS) present in inflamed joints support B-cell survival, activation, and differentiation. CD27+ memory B cells and naive B cells show very different responses to activation, particularly by CD40 ligand (CD40L). We show that FLS-dependent activation of human B cells is dependent on interleukin-6 (IL-6) and CD40L. FLS have been shown to activate both naive and memory B cells. Whether the activating potential of FLS is different for naive and memory B cells has not been investigated. Our results suggest that FLS-induced activation of B cells is dependent on IL-6 and CD40L. While FLS are able to induce plasma cell differentiation, isotype switching, and antibody production in memory B cells, the ability of FLS to activate naive B cells is significantly lower.


Assuntos
Artrite Reumatoide , Diferenciação Celular , Fibroblastos , Imunoglobulina D , Células B de Memória , Sinoviócitos , Humanos , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Linfócitos B/imunologia , Ligante de CD40/metabolismo , Ligante de CD40/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Fibroblastos/imunologia , Fibroblastos/metabolismo , Switching de Imunoglobulina , Imunoglobulina D/metabolismo , Imunoglobulina D/imunologia , Memória Imunológica , Interleucina-6/metabolismo , Ativação Linfocitária , Células B de Memória/imunologia , Células B de Memória/metabolismo , Sinoviócitos/imunologia , Sinoviócitos/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
19.
Curr Issues Mol Biol ; 46(2): 1177-1191, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38392193

RESUMO

Adult-onset Still's disease (AOSD) is a complex systemic inflammatory disorder, categorized as an 'IL-1 driven' inflammasomapathy. Despite this, the interaction between T and B cells remains poorly understood. We conducted a study, enrolling 7 patients with relapsing AOSD and 15 healthy control subjects, utilizing deep flow cytometry analysis to examine peripheral blood T- and B-cell subsets. T-cell and B-cell subsets were significantly altered in patients with AOSD. Within CD4+ T cells, Th2 cells were decreased. Additionally, Th17 cell and follicular Th cell subsets were altered within CD45RA-CD62L+ and CD45RA-CD62L- Th cells in patients with AOSD compared to healthy controls. We identified changes in CD8+ T cell maturation and 'polarization' in AOSD patients, with an elevated presence of the TEMRA CD8+ T cell subset. Furthermore, the percentage of Tc1 cells was decreased, while the frequency of CCR6-CXCR3- Tc2 cells was elevated. Finally, we determined that the frequency of CD5+CD27- B cells was dramatically decreased in patients with AOSD compared to healthy controls. Further investigations on a large group of patients with AOSD are required to evaluate these adaptive immunity cells in the disease pathogenesis.

20.
Clin Immunol ; 268: 110368, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307482

RESUMO

Autoinflammatory diseases, while having a variety of underlying causes, are mediated by dysfunctional innate immune responses. Therefore, standard treatments target innate cytokines or block their receptors. Despite excellent responses in some patients, first-line treatments fail in others, for reasons which remain to be understood. We studied the effects of IL-37, an anti-inflammatory cytokine, on immune cells using multi-omics profiling of 325 healthy adults. Our findings show that IL-37 is associated with inflammation control and generally reduced immune cell activity. Further, genetic variants in IL37 are associated with impaired trained immunity, a memory phenotype of innate immune cells contributing to autoinflammation. To underpin the medical potential of IL-37, an explorative cohort of seven autoinflammatory disorders was built. In vitro stimulation experiments argue for recombinant IL-37 as a potential therapy in IL-6-, and IL-22-driven conditions. Concluding, IL-37 is highlighted as a cytokine with broad anti-inflammatory functions, implicating its potential as therapeutic intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA