Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 25(10): e12957, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39450581

RESUMO

Lysosomal compartments control the clearance of cell-own material (autophagy) or of material that cells endocytose from the external environment (heterophagy) to warrant supply of nutrients, to eliminate macromolecules or parts of organelles present in excess, aged, or containing toxic material. Inherited or sporadic mutations in lysosomal proteins and enzymes may hamper their folding in the endoplasmic reticulum (ER) and their lysosomal transport via the Golgi compartment, resulting in lysosomal dysfunction and storage disorders. Defective cargo delivery to lysosomal compartments is harmful to cells and organs since it causes accumulation of toxic compounds and defective organellar homeostasis. Assessment of resident proteins and cargo fluxes to the lysosomal compartments is crucial for the mechanistic dissection of intracellular transport and catabolic events. It might be combined with high-throughput screenings to identify cellular, chemical, or pharmacological modulators of these events that may find therapeutic use for autophagy-related and lysosomal storage disorders. Here, discuss qualitative, quantitative and chronologic monitoring of autophagic, heterophagic and lysosomal protein trafficking in fixed and live cells, which relies on fluorescent single and tandem reporters used in combination with biochemical, flow cytometry, light and electron microscopy approaches implemented by artificial intelligence-based technology.


Assuntos
Inteligência Artificial , Autofagia , Lisossomos , Transporte Proteico , Autofagia/fisiologia , Lisossomos/metabolismo , Humanos , Animais , Corantes Fluorescentes/metabolismo
2.
Genes Cells ; 29(4): 328-336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366711

RESUMO

The deposition of α-synuclein (α-Syn) fibrils in neuronal cells has been implicated as a causative factor in Parkinson's disease (PD) and dementia with Lewy Bodies (DLB). α-Syn can be degraded by autophagy, proteasome, and chaperone-mediated autophagy, and previous studies have suggested the potency of certain cathepsins, lysosomal proteases, for α-Syn degradation. However, no studies have comprehensively evaluated all cathepsins. Here, we evaluated the efficacy of all 15 cathepsins using a cell model of α-Syn fibril propagation and found that overexpression of cathepsin L (CTSL) was the most effective in preventing the accumulation of α-Syn aggregates. CTSL-mediated degradation of α-Syn aggregates was dependent on the autophagy machinery, and CTSL itself promoted autophagy flux. Interestingly, CTSL was effective in autophagic degradation of wild-type (WT) α-Syn, but not in the case of A53T and E46K missense mutations, which are causative for familial PD. These results suggest that CTSL is a potential therapeutic strategy for sporadic PD pathology in WT α-Syn.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Catepsina L/genética , Catepsina L/metabolismo , Doença de Parkinson/metabolismo , Mutação de Sentido Incorreto , Complexo de Endopeptidases do Proteassoma/metabolismo
3.
J Proteome Res ; 23(5): 1615-1633, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38649144

RESUMO

Autophagy supervises the proteostasis and survival of B lymphocytic cells. Trk-fused gene (TFG) promotes autophagosome-lysosome flux in murine CH12 B cells, as well as their survival. Hence, quantitative proteomics of CH12tfgKO and WT B cells in combination with lysosomal inhibition should identify proteins that are prone to lysosomal degradation and contribute to autophagy and B cell survival. Lysosome inhibition via NH4Cl unexpectedly reduced a number of proteins but increased a large cluster of translational, ribosomal, and mitochondrial proteins, independent of TFG. Hence, we propose a role for lysosomes in ribophagy in B cells. TFG-regulated proteins include CD74, BCL10, or the immunoglobulin JCHAIN. Gene ontology (GO) analysis reveals that proteins regulated by TFG alone, or in concert with lysosomes, localize to mitochondria and membrane-bound organelles. Likewise, TFG regulates the abundance of metabolic enzymes, such as ALDOC and the fatty acid-activating enzyme ACOT9. To test consequently for a function of TFG in lipid metabolism, we performed shotgun lipidomics of glycerophospholipids. Total phosphatidylglycerol is more abundant in CH12tfgKO B cells. Several glycerophospholipid species with similar acyl side chains, such as 36:2 phosphatidylethanolamine and 36:2 phosphatidylinositol, show a dysequilibrium. We suggest a role for TFG in lipid homeostasis, mitochondrial functions, translation, and metabolism in B cells.


Assuntos
Autofagia , Linfócitos B , Glicerofosfolipídeos , Lisossomos , Animais , Camundongos , Linfócitos B/metabolismo , Glicerofosfolipídeos/metabolismo , Metabolismo dos Lipídeos , Lipidômica/métodos , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Proteômica/métodos
4.
Am J Physiol Renal Physiol ; 327(5): F739-F757, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39298552

RESUMO

Oxidative stress mediated by reactive oxygen species (ROS) contributes to apoptosis of tubular epithelial cells (TECs) and renal inflammation during acute kidney injury (AKI). Copper metabolism MURR1 domain-containing 5 [COMMD5/hypertension-related, calcium-regulated gene (HCaRG)] shows strong cytoprotective properties. COMMD5 is highly expressed in proximal tubules (PTs), where it controls cell differentiation. We assessed its role in cisplatin-induced AKI using transgenic mice in which COMMD5 is overexpressed in the PTs. Cisplatin caused the accumulation of damaged mitochondria and cellular waste in PTs, thus increasing the apoptosis of TECs. COMMD5 overexpression effectively protected TECs from cisplatin nephrotoxicity by decreasing intracellular ROS levels, mitochondrial dysfunction, and apoptosis through the preservation of tubular epithelial integrity, thus alleviating morphological and functional kidney damage. Excessive ROS production by hydrogen peroxide led to long-term autophagy activation through an increased burden on the autophagy/lysosome degradation system in TECs, and autophagic elimination of damaged mitochondria and cellular waste was compromised. COMMD5 attenuated oxidative injury by increasing autophagy flux, possibly due to a reduction of intracellular ROS levels through maintained tubular epithelial integrity, which decreased JNK/caspase-3-dependent apoptosis. Meanwhile, COMMD5 inhibition by siRNA reduced the resistance of TECs to cisplatin cytotoxicity, as shown by disrupted tubular epithelial integrity and cell viability. These data indicated that COMMD5 protects TECs from drug-induced oxidative stress and toxicity by maintaining tubular epithelial integrity and autophagy flux and ultimately decreases mitochondrial dysfunction and apoptosis. Increasing COMMD5 content in PTs is proposed as a new protective and therapeutic strategy against AKI.NEW & NOTEWORTHY Oxidative stress overload by drug treatment causes the accumulation of damaged mitochondria that could contribute to tubulopathy. However, effective preventive treatment for drug-induced acute kidney injury remains incompletely understood. Our study showed that copper metabolism MURR1 domain-containing 5 (COMMD5) reduced mitochondrial dysfunction and increased autophagy flux by alleviating reactive oxygen species production through maintaining tubular epithelial integrity when tubular epithelial cells were under oxidative stress, thus ameliorating renal function in cisplatin-treated mice. These results uncover a novel renoprotective mechanism underlying tubular epithelial integrity and autophagy flux.


Assuntos
Injúria Renal Aguda , Apoptose , Autofagia , Cisplatino , Células Epiteliais , Túbulos Renais Proximais , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Cisplatino/toxicidade , Autofagia/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Apoptose/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Camundongos , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino
5.
Curr Issues Mol Biol ; 46(4): 3353-3363, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38666940

RESUMO

Donation after circulatory death (DCD) is a promising strategy for alleviating donor shortage in heart transplantation. Trehalose, an autophagy inducer, has been shown to be cardioprotective in an ischemia-reperfusion (IR) model; however, its role in IR injury in DCD remains unknown. In the present study, we evaluated the effects of trehalose on cardiomyocyte viability and autophagy activation in a DCD model. In the DCD model, cardiomyocytes (H9C2) were exposed to 1 h warm ischemia, 1 h cold ischemia, and 1 h reperfusion. Trehalose was administered before cold ischemia (preconditioning), during cold ischemia, or during reperfusion. Cell viability was measured using the Cell Counting Kit-8 after treatment with trehalose. Autophagy activation was evaluated by measuring autophagy flux using an autophagy inhibitor, chloroquine, and microtubule-associated protein 1A/1B light chain 3 B (LC3)-II by western blotting. Trehalose administered before the ischemic period (trehalose preconditioning) increased cell viability. The protective effects of trehalose preconditioning on cell viability were negated by chloroquine treatment. Furthermore, trehalose preconditioning increased autophagy flux. Trehalose preconditioning increased cardiomyocyte viability through the activation of autophagy in a DCD model, which could be a promising strategy for the prevention of cardiomyocyte damage in DCD transplantation.

6.
Eur J Neurosci ; 60(5): 4843-4860, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049535

RESUMO

Skeletal muscle wasting is a clinically proven pathology associated with Japanese encephalitis virus (JEV) infection; however, underlying factors that govern skeletal muscle damage are yet to be explored. The current study aims to investigate the pathobiology of skeletal muscle damage using a mouse model of JEV infection. Our study reveals a significant increment in viral copy number in skeletal muscle post-JEV infection, which is associated with enhanced skeletal muscle cell death. Molecular and biochemical analysis confirms NOX2-dependent generation of reactive oxygen species, leading to autophagy flux inhibition and cell apoptosis. Along with this, an alteration in mitochondrial dynamics (change in fusion and fission process) and a decrease in the total number of mitochondria copies were found during JEV disease progression. The study represents the initial evidence of skeletal muscle damage caused by JEV and provides insights into potential avenues for therapeutic advancement.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Dinâmica Mitocondrial , Músculo Esquelético , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/virologia , Camundongos , Encefalite Japonesa/metabolismo , Dinâmica Mitocondrial/fisiologia , Apoptose/fisiologia , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Autofagia/fisiologia , Modelos Animais de Doenças
7.
Arch Biochem Biophys ; 754: 109945, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38395121

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) poses a significant threat to patients with coronary heart disease. Adenosine A2A receptors have been known as a protective role in MIRI by regulating autophagy, so we assumed that activation of adenosine A2B receptor (A2BAR) might exert a similar effect during MIRI and underlying mechanism be related to proteostasis maintenance as well. In situ hearts were subjected to 30 min of ischemia and 120 min of reperfusion (IR), while invitro cardiomyocytes from neonatal rats experienced 6 h of oxygen-glucose deprivation followed by 12 h of reoxygenation (OGDR). Initially, we observed that post-ischemia-reperfusion induced autophagy flux blockade and ERS both in vivo and in vitro, evident through the increased expression of p62, LC3II, and BIP, which indicated the deteriorated proteostasis. We used a selective A2BAR agonist, Bay 60-6583, to explore the positive effects of A2BAR on cardiomyocytes and found that A2BAR activation rescued damaged cardiac function and morphological changes in the IR group and improved frail cell viability in the OGDR group. The A2BAR agonist also alleviated the blockage of autophagic flux, coupled with augmented ERS in the IR/OGDR group, which was reassured by using an autophagy inhibitor chloroquine (CQ) and ERS inhibitor (4-PBA) in vitro. Additionally, considering cAMP/PKA as a well-known downstream effector of A2BAR, we utilized H89, a selective PKA inhibitor. We observed that the positive efficacy of Bay 60-6583 was inhibited by H89. Collectively, our findings demonstrate that the A2BAR/cAMP/PKA signaling pathway exerts a protective role in MIRI by mitigating impaired autophagic flux and excessive ERS.


Assuntos
Aminopiridinas , Isoquinolinas , Traumatismo por Reperfusão Miocárdica , Sulfonamidas , Humanos , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Receptor A2B de Adenosina/metabolismo , Miócitos Cardíacos/metabolismo , Autofagia , Isquemia/metabolismo , Estresse do Retículo Endoplasmático , Apoptose
8.
Bioorg Chem ; 144: 107166, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308998

RESUMO

Twelve phthalideisoquinoline hemiacetal alkaloids including eight new ones (1-8) and one natural alkaloid characterized by an aziridine moiety with unassigned NMR data (9), were isolated and identified from the bulbs of Corydalis decumbens. Their structures were established by comprehensive analyses of HRESIMS, NMR, X-ray crystallography, and ECD analyses. The unambiguously established structures of the phthalideisoquinoline hemiacetal alkaloids indicated that the absolute configurations of C-1, C-9, and C-7' were confusable only relied on coupling constants. A summary of their ECD spectra was concluded and provided an insight for C-1, C-9, and C-7' absolute configuration assignment. These new compounds were evaluated to induce autophagy flux through flow cytometry analysis. Moreover, compounds 2 and 6 could significantly induce autophagy and inhibit Tau pathology by AMPK-ULK1 pathway activation, which provided an avenue for anti-AD lead compounds discovery.


Assuntos
Alcaloides , Corydalis , Corydalis/química , Proteínas Quinases Ativadas por AMP/metabolismo , Alcaloides/química , Espectroscopia de Ressonância Magnética , Autofagia
9.
Cell Mol Neurobiol ; 43(7): 3251-3263, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37382853

RESUMO

The abnormal initiation of autophagy flux in neurons after ischemic stroke caused dysfunction of autophagy-lysosome, which not only led to autophagy flux blockage, but also resulted in autophagic death of neurons. However, the pathological mechanism of neuronal autophagy-lysosome dysfunction did not form a unified viewpoint until now. In this review, taking the autophagy lysosomal dysfunction of neurons as a starting point, we summarized the molecular mechanisms that led to neuronal autophagy lysosomal dysfunction after ischemic stroke, which would provide theoretical basis for the clinical treatment of ischemic stroke.


Assuntos
Autofagia , AVC Isquêmico , Lisossomos , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , AVC Isquêmico/terapia , Humanos , Animais , Neurônios/metabolismo , Neurônios/patologia , Lisossomos/patologia , Reperfusão , Proteínas do Tecido Nervoso/metabolismo
10.
J Periodontal Res ; 58(1): 70-82, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36346119

RESUMO

BACKGROUND AND OBJECTIVES: Periodontitis is the top reason for tooth loss, and smoking significantly increases severe periodontitis risk. Defective autophagy has been reported to play a vital role in periodontitis. This study aimed to elucidate the relationship between autophagy and inflammation factors production in nicotine-treated periodontal ligament stem cells (PDLSCs) and the underlying mechanism. METHODS: In this study, transmission electron microscopy, immunofluorescence, and the mCherry-GFP-LC3 plasmid were used to study autophagy flux. The gene levels of inflammation factors and long noncoding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) were detected by quantitative real-time PCR (qRT-PCR). Western blot was performed to assess the protein levels of autophagic markers and α7 nicotinic acetylcholine receptor (α7nAChR). RESULTS: We found that nicotine impaired autophagosome-lysosome fusion and lysosome functions to block autophagy flux, contributing to inflammatory factors production in nicotine-treated PDLSCs. Moreover, nicotine upregulated NEAT1 by activating α7nAChR. NEAT1 decreased autophagy flux by downregulating syntaxin 17 (STX17). CONCLUSION: Our data indicate that NEAT1-decreased autophagy flux is pivotal for inflammation factors production in nicotine-treated PDLSCs.


Assuntos
Periodontite , RNA Longo não Codificante , Humanos , Receptor Nicotínico de Acetilcolina alfa7/genética , Autofagia/genética , Células Cultivadas , Inflamação/metabolismo , Nicotina/farmacologia , Nicotina/metabolismo , Ligamento Periodontal/metabolismo , Periodontite/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco/metabolismo
11.
Bioorg Chem ; 140: 106795, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657195

RESUMO

Hepatic fibrosis remains a great challenge clinically. The orphan nuclear receptor Nur77 is recently suggested as the critical regulator of transforming growth factor-ß (TGF-ß) signaling, which plays a central role in multi-organic fibrosis. Herein, we optimized our previously reported Nur77-targeted compound 9 h for attempting to develop effective and safe anti-hepatic fibrosis agents. The critical pharmacophore scaffold of pyridine-carbonyl-hydrazine-1-carboxamide was retained, while the naphthalene ring was replaced with an aromatic ring containing pyridyl or indole groups. Four series of derivatives were thus generated, among which the compound 16f had excellent binding activity toward Nur77-LBD (KD = 470 nM) with the best inhibitory activity against the TGF- ß 1 activation of hepatic stellate cells (HSCs) and low cytotoxicity to normal mice liver AML-12 cells (IC50 > 80 µM). In mice, 16f displayed potent activity against CCl4-induced liver fibrosis with improved liver function. Mechanistically, 16f-mediated inactivation of HSC and suppression of liver fibrosis were associated with its enhancement of autophagic flux in a Nur77-dependent manner. Together, 16f was identified as a potential anti-liver fibrosis agent. Our study suggests that Nur77 may serve as a critical anti-hepatic fibrosis target.


Assuntos
Anticonvulsivantes , Cirrose Hepática , Animais , Camundongos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Antifibróticos , Autofagia , Células Estreladas do Fígado
12.
Proc Natl Acad Sci U S A ; 117(27): 15989-15999, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581130

RESUMO

Huntington disease (HD) is caused by an expansion mutation of the N-terminal polyglutamine of huntingtin (mHTT). mHTT is ubiquitously present, but it induces noticeable damage to the brain's striatum, thereby affecting motor, psychiatric, and cognitive functions. The striatal damage and progression of HD are associated with the inflammatory response; however, the underlying molecular mechanisms remain unclear. Here, we report that cGMP-AMP synthase (cGAS), a DNA sensor, is a critical regulator of inflammatory and autophagy responses in HD. Ribosome profiling revealed that the cGAS mRNA has high ribosome occupancy at exon 1 and codon-specific pauses at positions 171 (CCG) and 172 (CGT) in HD striatal cells. Moreover, the protein levels and activity of cGAS (based on the phosphorylated STING and phosphorylated TBK1 levels), and the expression and ribosome occupancy of cGAS-dependent inflammatory genes (Ccl5 and Cxcl10) are increased in HD striatum. Depletion of cGAS diminishes cGAS activity and decreases the expression of inflammatory genes while suppressing the up-regulation of autophagy in HD cells. In contrast, reinstating cGAS in cGAS-depleted HD cells activates cGAS activity and promotes inflammatory and autophagy responses. Ribosome profiling also revealed that LC3A and LC3B, the two major autophagy initiators, show altered ribosome occupancy in HD cells. We also detected the presence of numerous micronuclei, which are known to induce cGAS, in the cytoplasm of neurons derived from human HD embryonic stem cells. Collectively, our results indicate that cGAS is up-regulated in HD and mediates inflammatory and autophagy responses. Thus, targeting the cGAS pathway may offer therapeutic benefits in HD.


Assuntos
Autofagia/fisiologia , Doença de Huntington/genética , Doença de Huntington/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Animais , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Corpo Estriado/metabolismo , Células-Tronco Embrionárias , Humanos , Proteína Huntingtina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Neostriado/metabolismo , Neurônios/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transcriptoma , Regulação para Cima
13.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674718

RESUMO

Our previous studies have confirmed that cadmium (Cd) exposure causes hepatotoxicity; it also induces autophagy and blocks the autophagy flux. Therefore, we hypothesized that Cd hepatotoxicity could be alleviated through nutritional intervention. Taurine (Tau) has various biological functions such as acting as an antioxidant, acting as an anti-inflammatory, and stabilizing cell membranes. In order to explore the protective effect and internal mechanism of Tau on Cd-induced hepatotoxicity, normal rat liver cell line BRL3A cells were treated with Cd alone or in combination with Tau to detect cell injury and autophagy-related indexes in this study. We found that Tau can alleviate Cd-induced cell-proliferation decline and morphological changes in the cell. In addition, Tau activates autophagy and alleviates the blockage of Cd-induced autophagy flux. In this process, lysosome acidification and degradation were enhanced, and autophagosomes were further fused with lysosomes. Then, we found that Tau alleviated autophagic flux block by promoting the transfer of membrane fusion proteins STX17 and SNAP29 to autophagosomes and the translocation of VAMP8 to lysosomes, which in turn attenuated the hepatocyte injury induced by Cd exposure. This will further reveal the hepatotoxicity mechanism of Cd and provide the theoretical basis for the prevention and treatment of Cd poisoning.


Assuntos
Cádmio , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Animais , Cádmio/metabolismo , Autofagia , Autofagossomos/metabolismo , Linhagem Celular , Lisossomos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo
14.
J Mol Cell Cardiol ; 173: 30-46, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36179399

RESUMO

Autophagy flux is impaired during myocardial ischemia/reperfusion (M-I/R) via the accumulation of autophagosome and insufficient clearance, which exacerbates cardiomyocyte death. Peli1 (Pellion1) is a RING finger domain-containing ubiquitin E3 ligase that could catalyze the polyubiquitination of substrate proteins. Peli1 has been demonstrated to play an important role in ischemic cardiac diseases. However, little is known about whether Peli1 is involved in the regulation of autophagy flux during M-I/R. The present study investigated whether M-I/R induced impaired autophagy flux could be mediated through Peli1 dependent mechanisms. We induced M-I/R injury in wild type (WT) and Peli1 knockout mice and observed that M-I/R significantly decreased cardiac function that was associated with increased cardiac Peli1 expression and upregulated autophagy-associated protein LC3II and P62. In contrast, Peli1 knockout mice exhibited significant improvement of M-I/R induced cardiac dysfunction and decreased LC3II and P62 expression. Besides, inhibitors of autophagy also increased the infarct size in Peli1 knockout mice after 24 h of reperfusion. Mechanistic studies demonstrated that in vivo I/R or in vitro hypoxia/reoxygenation (H/R) markedly increased the Peli1 E3 ligase activity which directly promoted the ubiquitination of P62 at lysine(K)7 via K63-linkage to inhibit its dimerization and autophagic degradation. Co-immunoprecipitation and GST-pull down assay indicated that Peli1 interacted with P62 via the Ring domain. In addition, Peli1 deficiency also decreased cardiomyocyte apoptosis. Together, our work demonstrated a critical link between increased expression and activity of Peli1 and autophagy flux blockage in M-I/R injury, providing insight into a promising strategy for treating myocardium M-I/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagia , Miócitos Cardíacos/metabolismo , Ubiquitinação , Camundongos Knockout , Proteínas Nucleares/metabolismo
15.
J Cell Mol Med ; 26(21): 5539-5550, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36251949

RESUMO

Larotrectinib (Lar) is a highly selective and potent small-molecule inhibitor used in patients with tropomyosin receptor kinase (TRK) fusion-positive cancers, including colon cancer. However, the underlying molecular mechanisms specifically in patients with colon cancer have not yet been explored. Our data showed that Lar significantly suppressed proliferation and migration of colon cancer cells. In addition, Lar suppressed the epithelial-mesenchymal transition (EMT) process, as evidenced by elevation in E-cadherin (E-cad), and downregulation of vimentin and matrix metalloproteinase (MMP) 2/9 expression. Furthermore, Lar was found to activate autophagic flux, in which Lar increased the ratio between LC3II/LC3I and decreased the expression of p62 in colon cancer cells. More importantly, Lar also increased AMPK phosphorylation and suppressed mTOR phosphorylation in colon cancer cells. However, when we silenced AMPK in colon cancer cells, Lar-induced accumulation of autolysomes as well as Lar-induced suppression of the EMT process were significantly diminished. An in vivo assay also confirmed that tumour volume and weight decreased in Lar-treated mice than in control mice. Taken together, this study suggests that Lar significantly suppresses colon cancer proliferation and migration by activating AMPK/mTOR-mediated autophagic cell death.


Assuntos
Morte Celular Autofágica , Neoplasias do Colo , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Neoplasias do Colo/tratamento farmacológico , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Proliferação de Células/fisiologia
16.
J Cell Mol Med ; 26(14): 3873-3890, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670018

RESUMO

Despite advances in molecular characterization, glioblastoma (GBM) remains the most common and lethal brain tumour with high mortality rates in both paediatric and adult patients. The signal transducer and activator of transcription 3 (STAT3) is an important oncogenic driver of GBM. Although STAT3 reportedly plays a role in autophagy of some cells, its role in cancer cell autophagy remains unclear. In this study, we found Serine-727 and Tyrosine-705 phosphorylation of STAT3 was constitutive in GBM cell lines. Tyrosine phosphorylation of STAT3 in GBM cells suppresses autophagy, whereas knockout (KO) of STAT3 increases ULK1 gene expression, increases TSC2-AMPKα-ULK1 signalling, and increases lysosomal Cathepsin D processing, leading to the stimulation of autophagy. Rescue of STAT3-KO cells by the enforced expression of wild-type (WT) STAT3 reverses these pathways and inhibits autophagy. Conversely, expression of Y705F- and S727A-STAT3 phosphorylation deficient mutants in STAT3-KO cells did not suppress autophagy. Inhibition of ULK1 activity (by treatment with MRT68921) or its expression (by siRNA knockdown) in STAT3-KO cells inhibits autophagy and sensitizes cells to apoptosis. Taken together, our findings suggest that serine and tyrosine phosphorylation of STAT3 play critical roles in STAT3-dependent autophagy in GBM, and thus are potential targets to treat GBM.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Glioblastoma , Peptídeos e Proteínas de Sinalização Intracelular , Fator de Transcrição STAT3 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Glioblastoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Fator de Transcrição STAT3/metabolismo , Serina/metabolismo , Tirosina/metabolismo
17.
Cell Microbiol ; 23(4): e13298, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33237610

RESUMO

Autophagy, a process of degradation and recycling of macromolecules and organelles to maintain cellular homeostasis, has also been shown to help eliminate invading pathogens. Conversely, various pathogens including parasites have been shown to modulate/exploit host autophagy facilitating their intracellular infectious cycle. In this regard, Cryptosporidium parvum (CP), a protozoan parasite of small intestine is emerging as a major global health challenge. However, the pathophysiology of cryptosporidiosis is mostly unknown. We have recently demonstrated CP-induced epithelial barrier disruption via decreasing the expression of specific tight junction (TJ) and adherens junction (AJ) proteins such as occludin, claudin-4 and E-cadherin. Therefore, we utilised confluent Caco-2 cell monolayers as in vitro model of intestinal epithelial cells (IECs) to investigate the potential role of autophagy in the pathophysiology of cryptosporidiosis. Autophagy was assessed by increase in the ratio of LC3II (microtubule associated protein 1 light chain 3) to LC3I protein and decrease in p62/SQSTM1 protein levels. CP treatment of Caco-2 cells for 24 hr induced autophagy with a maximum effect observed with 0.5 × 106 oocyst/well. CP decreased mTOR (mammalian target of rapamycin, a suppressor of autophagy) phosphorylation, suggesting autophagy induction via mTOR inactivation. Measurement of autophagic flux utilizing the lysosomal inhibitor chloroquine (CQ) showed more pronounced increase in LC3II level in cells co-treated with CP + CQ as compared to CP or CQ alone, suggesting that CP-induced increase in LC3II was due to enhanced autophagosome formation rather than impaired lysosomal clearance. CP infection did not alter ATG7, a key autophagy protein. However, the decrease in occludin, claudin-4 and E-cadherin by CP was partially blocked following siRNA silencing of ATG7, suggesting the role of autophagy in CP-induced decrease in these TJ/AJ proteins. Our results provide novel evidence of autophagy induction by CP in host IECs that could alter important host cell processes contributing to the pathophysiology of cryptosporidiosis.


Assuntos
Autofagia , Cryptosporidium parvum/patogenicidade , Células Epiteliais/patologia , Células Epiteliais/parasitologia , Interações Hospedeiro-Parasita , Células CACO-2 , Humanos , Mucosa Intestinal/parasitologia , Proteínas de Junções Íntimas/metabolismo
18.
Cell Commun Signal ; 20(1): 189, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434621

RESUMO

BACKGROUND: Autophagy is an intracellular degradation process crucial for homeostasis. During autophagy, a double-membrane autophagosome fuses with lysosome through SNARE machinery STX17 to form autolysosome for degradation of damaged organelle. Whereas defective autophagy enhances cholesterol accumulation in the lysosome and impaired autophagic flux that results Niemann-Pick type C1 (NPC1) disease. However, exact interconnection between NPC1 and autophagic flux remain obscure due to the existence of controversial reports. RESULTS: This study aimed at a comparison of the effects of three autophagic inhibitor drugs, including chloroquine, U18666A, and bafilomycin A1, on the intracellular cholesterol transport and autophagy flux. Chloroquine, an autophagic flux inhibitor; U1866A, a NPC1 inhibitor, and bafilomycin A, a lysosomotropic agent are well known to inhibit autophagy by different mechanism. Here we showed that treatment with U1866A and bafilomycin A induces lysosomal cholesterol accumulation that prevented autophagic flux by decreasing autophagosome-lysosome fusion. We also demonstrated that accumulation of cholesterol within the lysosome did not affect lysosomal pH. Although the clearance of accumulated cholesterol by cyclodextrin restored the defective autophagosome-lysosome fusion, the autophagy flux restoration was possible only when lysosomal acidification was not altered. In addition, a failure of STX17 trafficking to autophagosomes plays a key role in prevention of autophagy flux caused by intracellular cholesterol transport inhibitors. CONCLUSIONS: Our data provide a new insight that the impaired autophagy flux does not necessarily result in lysosomal cholesterol accumulation even though it prevents autophagosome-lysosome fusion. Video abstract.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Lisossomos/metabolismo , Cloroquina/farmacologia , Cloroquina/metabolismo , Colesterol/metabolismo
19.
J Nanobiotechnology ; 20(1): 125, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264192

RESUMO

BACKGROUND: Fabry disease (FD) is a lysosome storage disease (LSD) characterized by significantly reduced intracellular autophagy function. This contributes to the progression of intracellular pathologic signaling and can lead to organ injury. Phospholipid-polyethyleneglycol-capped Ceria-Zirconia antioxidant nanoparticles (PEG-CZNPs) have been reported to enhance autophagy flux. We analyzed whether they suppress globotriaosylceramide (Gb3) accumulation by enhancing autophagy flux and thereby attenuate kidney injury in both cellular and animal models of FD. RESULTS: Gb3 was significantly increased in cultured human renal proximal tubular epithelial cells (HK-2) and human podocytes following the siRNA silencing of α galactosidase A (α-GLA). PEG-CZNPs effectively reduced the intracellular accumulation of Gb3 in both cell models of FD and improved both intracellular inflammation and apoptosis in the HK-2 cell model of FD. Moreover these particles attenuated pro fibrotic cytokines in the human podocyte model of FD. This effect was revealed through an improvement of the intracellular autophagy flux function and a reduction in reactive oxygen species (ROS). An FD animal model was generated in which 4-week-old male B6;129-Glatm1Kul/J mice were treated for 8 weeks with 10 mg/kg of PEG-CZNPs (twice weekly via intraperitoneal injection). Gb3 levels were reduced in the kidney tissues of these animals, and their podocyte characteristics and autophagy flux functions were preserved. CONCLUSIONS: PEG-CZNPs alleviate FD associated kidney injury by enhancing autophagy function and thus provide a foundation for the development of new drugs to treat of storage disease.


Assuntos
Doença de Fabry , Nanopartículas , Animais , Autofagia , Modelos Animais de Doenças , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Doença de Fabry/patologia , Rim/patologia , Masculino , Camundongos , Triexosilceramidas , Zircônio
20.
Clin Exp Pharmacol Physiol ; 49(1): 122-133, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494284

RESUMO

Previous studies reveal that hydrogen sulphide (H2 S) exerts neuroprotection against neurotoxin-induced Parkinson's disease (PD), but the underlying mechanism remains elusive. The present study was aimed to investigate whether H2 S inhibits neuronal apoptosis of substantia nigra with the involvement of autophagy via promoting leptin signalling in 6-hydroxydopamine (6-OHDA)-induced PD rats. In this study, neuronal apoptosis was analysed by TUNEL staining, the activity of caspase-3 was measured by Caspase-3 fluorometric assay kit, the expressions of Bax, Bcl-2, Beclin-1, LC3II, P62 and leptin were determined by Western blot analysis, and the numbers of autophagosomes and autolysosomes were assessed by transmission electron microscopy. Results showed that NaHS, a donor of exogenous H2 S, mitigates 6-OHDA-induced the increases in the numbers of TUNEL-positive cells, the activity of caspase-3 and the expression of Bax, and attenuates 6-OHDA-induced a decrease in the expression of Bcl-2 in substantia nigra of rats. In addition, 6-OHDA enhanced the expressions of Beclin-1, LC3-II and P62, increased the number of autophagosomes, and decreased the number of autolysosomes in the substantia nigra, which were also blocked by administration of NaHS. Furthermore, NaHS reversed 6-OHDA-induced the down-regulation of leptin expression in the substantia nigra, and treatment with leptin-OBR, a blocking antibody of leptin receptor, attenuated the inhibition of NaHS on neuronal apoptosis and the improvement of NaHS on the blocked autophagic flux in substantia nigra of 6-OHDA-treated rats. Taken together, these results demonstrated that H2 S attenuates neuronal apoptosis of substantia nigra depending on restoring impaired autophagic flux through up-regulating leptin signalling in PD.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Sulfeto de Hidrogênio/uso terapêutico , Leptina/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Substância Negra/efeitos dos fármacos , Animais , Autofagossomos/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Masculino , Microscopia Eletrônica de Transmissão , Fármacos Neuroprotetores/farmacologia , Oxidopamina/farmacologia , Transtornos Parkinsonianos/patologia , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo , Substância Negra/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA