Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38676004

RESUMO

To monitor the position and profile of therapeutic carbon beams in real-time, in this paper, we proposed a system called HiBeam-T. The HiBeam-T is a time projection chamber (TPC) with forty Topmetal-II- CMOS pixel sensors as its readout. Each Topmetal-II- has 72 × 72 pixels with the size of 83 µm × 83 µm. The detector consists of the charge drift region and the charge collection area. The readout electronics comprise three Readout Control Modules and one Clock Synchronization Module. This Hibeam-T has a sensitive area of 20 × 20 cm and can acquire the center of the incident beams. The test with a continuous 80.55 MeV/u 12C6+ beam shows that the measurement resolution to the beam center could reach 6.45 µm for unsaturated beam projections.

2.
J Synchrotron Radiat ; 27(Pt 1): 37-43, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868734

RESUMO

Collecting back-scattered X-rays from vacuum windows using a pinhole X-ray camera provides an efficient and reliable method of measuring the beam shape and position of the white synchrotron beam. In this paper, measurements are presented that were conducted at ESRF beamline ID6 which uses an in-vacuum cryogenically cooled permanent-magnet undulator (CPMU18) and a traditional U32 undulator as its radiation sources, allowing tests to be performed at very high power density levels that were adjusted by changing the gap of the undulators. These measurements show that it is possible to record beam shape and beam position using a simple geometry without having to place any further items in the beam path. With this simple test setup it was possible to record the beam position with a root-mean-square noise figure of 150 nm.

3.
J Synchrotron Radiat ; 26(Pt 2): 386-392, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855247

RESUMO

The improved performance of third-generation light sources and the advent of next-generation synchrotron radiation facilities require the use of extremely precise monitoring of the main photon-beam parameters, such as position, absolute and relative intensity, and temporal structure. These parameters, and associated real-time feedbacks, are fundamental at the beamline control level and at the machine control level, to improve the stability of the photon beams and to provide bunch-to-bunch quantitative information. Fast response time, high radiation hardness and visible-blind response are main features of photon-beam monitors for VUV and X-ray synchrotron radiation beamlines; hence diamond-based detectors are outstanding candidates. Here, results are presented of an extensive measurement campaign aiming at optimizing the capabilities of diamond detectors to discern time structures below the 100 ps timescale. A custom-built device has been fabricated and tested at the Italian Synchrotron Radiation Laboratory Elettra in Trieste. The results obtained show that diamond is an excellent material for ultra-fast photon pulses with picosecond time resolution; finally the possibilities for application at free-electron laser sources are discussed.

4.
Med Phys ; 51(4): 2905-2923, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456622

RESUMO

BACKGROUND: FLASH Radiotherapy (RT) is an emergent cancer RT modality where an entire therapeutic dose is delivered at more than 1000 times higher dose rate than conventional RT. For clinical trials to be conducted safely, a precise and fast beam monitor that can generate out-of-tolerance beam interrupts is required. This paper describes the overall concept and provides results from a prototype ultra-fast, scintillator-based beam monitor for both proton and electron beam FLASH applications. PURPOSE: A FLASH Beam Scintillator Monitor (FBSM) is being developed that employs a novel proprietary scintillator material. The FBSM has capabilities that conventional RT detector technologies are unable to simultaneously provide: (1) large area coverage; (2) a low mass profile; (3) a linear response over a broad dynamic range; (4) radiation hardness; (5) real-time analysis to provide an IEC-compliant fast beam-interrupt signal based on true two-dimensional beam imaging, radiation dosimetry and excellent spatial resolution. METHODS: The FBSM uses a proprietary low mass, less than 0.5 mm water equivalent, non-hygroscopic, radiation tolerant scintillator material (designated HM: hybrid material) that is viewed by high frame rate CMOS cameras. Folded optics using mirrors enable a thin monitor profile of ∼10 cm. A field programmable gate array (FPGA) data acquisition system generates real-time analysis on a time scale appropriate to the FLASH RT beam modality: 100-1000 Hz for pulsed electrons and 10-20 kHz for quasi-continuous scanning proton pencil beams. An ion beam monitor served as the initial development platform for this work and was tested in low energy heavy-ion beams (86Kr+26 and protons). A prototype FBSM was fabricated and then tested in various radiation beams that included FLASH level dose per pulse electron beams, and a hospital RT clinic with electron beams. RESULTS: Results presented in this report include image quality, response linearity, radiation hardness, spatial resolution, and real-time data processing. The HM scintillator was found to be highly radiation damage resistant. It exhibited a small 0.025%/kGy signal decrease from a 216 kGy cumulative dose resulting from continuous exposure for 15 min at a FLASH compatible dose rate of 237 Gy/s. Measurements of the signal amplitude versus beam fluence demonstrate linear response of the FBSM at FLASH compatible dose rates of >40 Gy/s. Comparison with commercial Gafchromic film indicates that the FBSM produces a high resolution 2D beam image and can reproduce a nearly identical beam profile, including primary beam tails. The spatial resolution was measured at 35-40 µm. Tests of the firmware beta version show successful operation at 20 000 Hz frame rate or 50 µs/frame, where the real-time analysis of the beam parameters is achieved in less than 1 µs. CONCLUSIONS: The FBSM is designed to provide real-time beam profile monitoring over a large active area without significantly degrading the beam quality. A prototype device has been staged in particle beams at currents of single particles up to FLASH level dose rates, using both continuous ion beams and pulsed electron beams. Using a novel scintillator, beam profiling has been demonstrated for currents extending from single particles to 10 nA currents. Radiation damage is minimal and even under FLASH conditions would require ≥50 kGy of accumulated exposure in a single spot to result in a 1% decrease in signal output. Beam imaging is comparable to radiochromic films, and provides immediate images without hours of processing. Real-time data processing, taking less than 50 µs (combined data transfer and analysis times), has been implemented in firmware for 20 kHz frame rates for continuous proton beams.


Assuntos
Prótons , Radiometria , Cintilografia , Dosagem Radioterapêutica
5.
Phys Med ; 104: 136-144, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403543

RESUMO

PURPOSE: Radiotherapy escalating dose rates above 50Gys-1, might offer a great potential in treating tumours while further sparing healthy tissue. However, these ultra-high intensities of FLASH-RT lead to new challenges with regard to dosimetry and beam monitoring. FLASH experiments at HIT (Heidelberg Ion Beam Therapy Center) and at GSI (GSI Helmholtz Centre for Heavy Ion Research) have shown a significant loss of signal in the beam monitoring system due to recombination effects. To enable accurate beam monitoring, this work investigates the recombination loss of different fill gases in the plane parallel ionisation chambers (ICs). METHODS: Therefore, saturation curves at high intensities were measured for the currently used fill gases Ar/CO2 (80/20) and pure He and also for He/CO2 mixtures as alternative fill gases. Furthermore, breakdown voltages and ion mobilities were measured in ICs filled with He/CO2 mixtures. A numerical model for volume recombination in plane parallel ionisation chambers was developed and implemented in Python. This includes a novel simulation method of the space charge effect from the charge carriers in the detector volume and predicts a significant effect on the electric field for high intensity beams. RESULTS: Even at high intensities the He/CO2 mixtures allow operation of the ICs at an electric field strength of 2 kVcm-1 or more which reduces recombination to negligible levels at intensities larger than 3 × 101012C-ions per second. Our measurements show that added fractions of CO2 to He decrease the ion mobility in the fill gas but significantly increase the breakdown voltage in the ICs compared to pure He.


Assuntos
Radioterapia , Dióxido de Carbono , Hélio , Humanos
6.
Z Med Phys ; 31(2): 154-165, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32747175

RESUMO

PURPOSE: This paper presents the implementation and comparison of two independent methods of beam monitor calibration in terms of number of particles for scanned proton and carbon ion beams. METHODS: In the first method, called the single-layer method, dose-area-product to water (DAPw) is derived from the absorbed dose to water determined using a Roos-type plane-parallel ionization chamber in single-energy scanned beams. This is considered the reference method for the beam monitor calibration in the clinically relevant proton and carbon energy ranges. In the second method, called the single-spot method, DAPw of a single central spot is determined using a Bragg-peak (BP) type large-area plane-parallel ionization chamber. Emphasis is given to the detailed characterization of the ionization chambers used for the beam monitor calibration. For both methods a detailed uncertainty budget on the DAPw determination is provided as well as on the derivation of the number of particles. RESULTS: Both calibration methods agreed on average within 1.1% for protons and within 2.6% for carbon ions. The uncertainty on DAPw using single-layer beams is 2.1% for protons and 3.1% for carbon ions with major contributions from the available values of kQ and the average spot spacing in both lateral directions. The uncertainty using the single-spot method is 2.2% for protons and 3.2% for carbon ions with major contributions from the available values of kQ and the non-uniformity of the BP chamber response, which can lead to a correction of up-to 3.2%. For the number of particles, an additional dominant uncertainty component for the mean stopping power per incident proton (or the CEMA) needs to be added. CONCLUSION: The agreement between both methods enhances confidence in the beam monitor calibration and the estimated uncertainty. The single-layer method can be used as a reference and the single-spot method is an alternative that, when more accumulated knowledge and data on the method becomes available, can be used as a redundant dose monitor calibration method. This work, together with the overview of information from the literature provided here, is a first step towards comprehensive information on the single-spot method.


Assuntos
Radiometria , Síncrotrons , Calibragem , Prótons , Incerteza
7.
Med Phys ; 46(12): 5867-5875, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31610031

RESUMO

PURPOSE: To clinically implement and comprehensively evaluate two independent methods for beam monitor calibration of scanning proton beam. METHODS: Seven proton energies that represent the lowest to highest energy proton beams were selected. Single energy layer circular fields of diameter 15 cm with 2.5 mm spot spacing and 10 times of repainting (FS15cm ) were designed for all energies. The effective measurement points of Bragg peak chamber (BPC), advanced Markus chamber (AMC) and farmer chamber (FC) were all aligned to 2 cm depth in water using SSD setup. The BPC and AMC were cross-calibrated with farmer chamber (FC) using the field FS15cm . In order to evaluate BPC's lateral response uniformity, a collimated narrow proton beam (5.8 mm diameter) was delivered to the active area and edge of the BPC. The dose area product (DAP) was measured using two methods by two BPCs, one AMC and one FC. For method 1, a single spot proton beam was delivered to the geometric center of the BPC. For method 2, the fields FS15cm were delivered to FC and AMC, respectively. Accumulated charges by these chambers were converted to DAPs, and the quantitative difference of DAPs between both methods was calculated. The causes of the uncertainties were discussed, and the advantages of the two methods were compared. RESULTS: The two BPCs showed different lateral response uniformity. BPC1 has a uniform response from the center up to a radius of 3.5 cm. BPC2 has a uniform response only to 2 cm and the response dropped 1% to 2% at 3.5 cm from center. BPC2 also has significant over-response compared to BPC1. A 2.2% systematic error would be transferred to DAP if the over-response from BPC2 was not considered. The DAPs measured by method 1 with two BPCs and by method 2 with FC and AMC were consistent to 0.5%. The major uncertainty component of method 1 is from the cross-calibration of the BPC. CONCLUSIONS: The two independent methods for DAP were shown to give consistent results, given the sources of uncertainties were carefully addressed in the measurements. Direct measurement of DAP with BPC is very efficient, but it may be subject to more than 2% systematic error if the BPC lateral response is not carefully evaluated.


Assuntos
Terapia com Prótons/métodos , Calibragem , Radiometria , Incerteza
8.
ACS Appl Mater Interfaces ; 9(19): 16313-16320, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28436216

RESUMO

A multilayer luminescent design concept is presented to develop energy-sensitive radiation-beam monitors on the basis of colorimetric analysis. Each luminescent layer within the stack consists of rare-earth-doped transparent oxides of optical quality and a characteristic luminescent emission under excitation with electron or ion beams. For a given type of particle beam (electron, protons, α particles, etc.), its penetration depth and therefore its energy loss at a particular buried layer within the multilayer stack depend on the energy of the initial beam. The intensity of the luminescent response of each layer is proportional to the energy deposited by the radiation beam within the layer, so characteristic color emission will be achieved if different phosphors are considered in the layers of the luminescent stack. Phosphor doping, emission efficiency, layer thickness, and multilayer structure design are key parameters relevant to achieving a broad colorimetric response. Two case examples are designed and fabricated to illustrate the capabilities of these new types of detector to evaluate the kinetic energy of either electron beams of a few kilo-electron volts or α particles of a few mega-electron volts.

9.
Phys Med ; 32(12): 1795-1800, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27890569

RESUMO

We present here the latest results from tests performed at the ESRF ID17 and ID21 beamlines for the characterization of novel beam monitors for Microbeam Radiation Therapy (MRT), which is currently being implemented at ID17. MRT aims at treating solid tumors by exploiting an array of evenly spaced microbeams, having an energy spectrum distributed between 27 and 600keV and peaking at 100keV. Given the high instantaneous dose delivered (up to 20kGy/s), the position and the intensity of the microbeams has to be precisely and instantly monitored. For this purpose, we developed dedicated silicon microstrip beam monitors. We have successfully characterized them, both with a microbeam array at ID17, and a submicron scanning beam at ID21. We present here the latest results obtained in recent tests along with an outlook on future developments.


Assuntos
Microtecnologia/instrumentação , Radioterapia/instrumentação , Silício , Desenho de Equipamento , Dosagem Radioterapêutica
10.
J Med Phys ; 32(2): 65-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21157537

RESUMO

Measurements designed to find the collimator backscatter into the beam monitor chamber from Micro Multileaf collimator of 6 MV photon beams of the Siemens Primus linear accelerator were made with the help of dose rate feedback control. The photons and electrons backscattered from the upper and lower secondary collimator jaws give rise to a significant increase in the ion charge measured by monitor chamber. This increase varies between the different accelerators. The output measurements were carried out in air at the isocenter. The effect of collimator backscatter was investigated by measuring the pulse width, number of beam pulses per monitor unit, monitor unit rate and dose for different mMLC openings. These measurements were made with and without dose rate feedback control, i.e., with constant electron beam current in the accelerator. Monitor unit rate (MU/min) was almost constant for all field sizes. The maximum variation between the open and the closed feedback control circuits was 2.5%. There was no difference in pulse width and negligible difference in pulse frequency. Maximum value of backscattered radiation from the micro Multileaf collimator into the beam monitor chamber was found to be 0.5%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA