RESUMO
BACKGROUND: The infection of carbapenem-resistant organisms was a huge threat to human health due to their global spread. Dealing with a carbapenem-resistant Serratia marcescens (CRSM) infection poses a significant challenge in clinical settings. This study aims to provide insights into strategies for controlling CRSM infection by exploring the transformation mechanism of carbapenem-resistance. METHODS: We used whole genome sequencing (WGS) to investigate the mechanism of carbapenem resistance in 14 S. marcescens isolates in vivo. The expression level of related genes and the minimum inhibitory concentration of meropenem (MICMEM) were also evaluated to confirm the mechanism of carbapenem resistance. RESULTS: Seven groups of S. marcescens, each consisting of two strains, were collected from a hospital and displayed a shift in MICMEM from low to high levels. Homology analysis revealed that the isolates in five groups were significantly different from the remaining two. WGS and experimental evidence indicated that four groups of strains developed carbapenem resistance by acquiring the blaKPC (obtaining group), while two groups (persisting group) increased the expression level of the blaKPC. In contrast, isolates in the last group (missing group) did not carry the blaKPC. All strains possessed multiple ß-lactamase genes, including blaCTX-M-14, blaSRT-1, and blaSRT-2. However, only in the missing group, the carbapenem-resistant strain lost an outer membrane protein-encoding gene, leading to increased blaCTX-M-14 expression compared to the carbapenem-susceptible strain. CONCLUSION: The study findings suggest that S. marcescens strains developed diverse carbapenem resistance in vivo through the evolution of drug resistance, rather than through clone replacement. We hypothesize that carbapenem resistance in S. marcescens was due to certain clonal types with a distinct mechanism.
Assuntos
Carbapenêmicos , Serratia marcescens , Humanos , Carbapenêmicos/farmacologia , Meropeném/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologiaRESUMO
BACKGROUND: Klebsiella pneumoniae infections have become a major cause of hospital acquired infection worldwide with the increased rate of acquisition of resistance to antibiotics. Carbapenem resistance mainly among Gram negative is an ongoing problem which causes serious outbreaks dramatically limiting treatment options. This prospective cross-sectional study was designed to detect blaKPC gene from carbapenem resistant K. pneumoniae. MATERIALS AND METHODS: A totally of 1118 different clinical specimens were screened and confirmed for KPC producing K. pneumoniae phenotypically using Meropenem (10 µg) disc. The blaKPC gene was amplified from the isolates of K. pneumoniae to detect the presence of this gene. RESULT: Of the total samples processed, 18.6% (n = 36) were K. pneumoniae and among 36 K. pneumoniae, 61.1% (n = 22/36) were meropenem resistant. This study demonstrated the higher level of MDR 91.7% (n = 33) and KPC production 47.2% (n = 17) among K. pneumoniae isolates. The blaKPC gene was detected in 8.3% (n = 3) of meropenem resistant isolates. CONCLUSION: Since the study demonstrates the higher level of MDR and KPC producing K. pneumoniae isolates that has challenged the use of antimicrobial agents, continuous microbiology, and molecular surveillance to assist early detection and minimize the further dissemination of blaKPC should be initiated. We anticipate that the findings of this study will be useful in understanding the prevalence of KPC-producing K. pneumoniae in Nepal.
Assuntos
Antibacterianos , Proteínas de Bactérias , Infecções por Klebsiella , Klebsiella pneumoniae , Meropeném , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , beta-Lactamases/genética , Humanos , Nepal/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Proteínas de Bactérias/genética , Estudos Transversais , Estudos Prospectivos , Antibacterianos/farmacologia , Meropeném/farmacologia , Masculino , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Idoso , AdolescenteRESUMO
OBJECTIVE: We explored whether the Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification (R-M) systems are compatible and act together to resist plasmid attacks. METHODS: 932 global whole-genome sequences from GenBank, and 459 K. pneumoniae isolates from six provinces of China, were collected to investigate the co-distribution of CRISPR-Cas, R-M systems, and blaKPC plasmid. Conjugation and transformation assays were applied to explore the anti-plasmid function of CRISPR and R-M systems. RESULTS: We found a significant inverse correlation between the presence of CRISPR and R-M systems and blaKPC plasmids in K. pneumoniae, especially when both systems cohabited in one host. The multiple matched recognition sequences of both systems in blaKPC-IncF plasmids (97%) revealed that they were good targets for both systems. Furthermore, the results of conjugation assay demonstrated that CRISPR-Cas and R-M systems in K. pneumoniae could effectively hinder blaKPC plasmid invasion. Notably, CRISPR-Cas and R-M worked together to confer a 4-log reduction in the acquisition of blaKPC plasmid in conjugative events, exhibiting robust synergistic anti-plasmid immunity. CONCLUSIONS: Our results indicate the synergistic role of CRISPR and R-M in regulating horizontal gene transfer in K. pneumoniae and rationalize the development of antimicrobial strategies that capitalize on the immunocompromised status of KPC-KP.
Assuntos
Sistemas CRISPR-Cas , Conjugação Genética , Klebsiella pneumoniae , Plasmídeos , Klebsiella pneumoniae/genética , Plasmídeos/genética , beta-Lactamases/genética , Enzimas de Restrição-Modificação do DNA/genética , China , Infecções por Klebsiella/microbiologia , Transferência Genética Horizontal , Humanos , Genoma Bacteriano/genéticaRESUMO
OBJECTIVES: The aim of this study was to investigate the clinical and molecular characteristics of Klebsiella pneumoniae infection from a tertiary general hospital in Wuhan, China. METHODS: From December 2019 to August 2022, 311 non-duplicate isolates of K. pneumoniae were collected from a tertiary hospital in Wuhan. These comprised 140 carbapenem-resistant K. pneumoniae (CRKP) isolates and 171 carbapenem-susceptible K. pneumoniae (CSKP) isolates. The clinical characteristics of patients with K. pneumoniae infection were retrospectively collected. Polymerase chain reaction (PCR) assays were used to identify the main carbapenem resistance genes, virulence genes and multi-locus sequence typing (MLST) profiles of the isolates, and the Galleria mellonella infection model was used to determine their virulence phenotypes. RESULTS: Independent risk factors for CRKP infection were hypertension, neurological disorders, being admitted to the intensive care unit (ICU) and prior use of antibiotics. Patient with CRKP infection had higher mortality than those with CSKP infection (23.6% vs 14.0%, P < 0.05). One hundred and two sequence types (STs) were identified among the K. pneumoniae isolates, and the most prevalent ST type was ST11 (112/311, 36.0%). All of the ST11 isolates were CRKP. Among the 112 ST11 isolates, 105 (93.8%) harboured the carbapenem resistance gene blaKPC-2 (ST11-KPC-2), and of these isolates, 78 (74.3%, 78/105) contained all of the four virulence genes, namely rmpA, rmpA2, iroN and iucA, suggesting that these genes were widespread among the isolates responsible for K. pneumoniae infections. CONCLUSION: In this study, ST11-KPC-2 was responsible for most of the K. pneumoniae infection cases. Carbapenem resistance rather than the co-occurrence of the virulence genes rmpA, rmpA2, iroN and iucA was associated with K. pneumoniae infection-related mortality during hospitalisation. Furthermore, a high proportion of ST11-KPC-2 isolates carried all of the four virulence genes.
Assuntos
Infecções por Klebsiella , beta-Lactamases , Humanos , Tipagem de Sequências Multilocus , beta-Lactamases/genética , Klebsiella pneumoniae , Centros de Atenção Terciária , Hospitais Gerais , Estudos Retrospectivos , Infecções por Klebsiella/microbiologia , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , China/epidemiologia , FerroRESUMO
BACKGROUND: Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) co-producing blaKPC and blaNDM poses a serious threat to public health. This study aimed to investigate the mechanisms underlying the resistance and virulence of CR-hvKP isolates collected from a Chinese hospital, with a focus on blaKPC and blaNDM dual-positive hvKP strains. METHODS: Five CR-hvKP strains were isolated from a teaching hospital in China. Antimicrobial susceptibility and plasmid stability testing, plasmid conjugation, pulsed-field gel electrophoresis, and whole-genome sequencing (WGS) were performed to examine the mechanisms of resistance and virulence. The virulence of CR-hvKP was evaluated through serum-killing assay and Galleria mellonella lethality experiments. Phylogenetic analysis based on 16 highly homologous carbapenem-resistant K. pneumoniae (CRKP) producing KPC-2 isolates from the same hospital was conducted to elucidate the potential evolutionary pathway of CRKP co-producing NDM and KPC. RESULTS: WGS revealed that five isolates individually carried three unique plasmids: an IncFIB/IncHI1B-type virulence plasmid, IncFII/IncR-type plasmid harboring KPC-2 and IncC-type plasmid harboring NDM-1. The conjugation test results indicated that the transference of KPC-2 harboring IncFII/IncR-type plasmid was unsuccessful on their own, but could be transferred by forming a hybrid plasmid with the IncC plasmid harboring NDM. Further genetic analysis confirmed that the pJNKPN26-KPC plasmid was entirely integrated into the IncC-type plasmid via the copy-in route, which was mediated by TnAs1 and IS26. CONCLUSION: KPC-NDM-CR-hvKP likely evolved from a KPC-2-CRKP ancestor and later acquired a highly transferable blaNDM-1 plasmid. ST11-KL64 CRKP exhibited enhanced plasticity. The identification of KPC-2-NDM-1-CR-hvKP highlights the urgent need for effective preventive strategies against aggravated accumulation of resistance genes.
Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Filogenia , Saúde Pública , Genômica , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Hospitais de Ensino , Plasmídeos/genética , Antibacterianos/farmacologiaRESUMO
BACKGROUND: Carbapenemase production is a global public health threat. Antimicrobial resistance (AMR) data analysis is critical to public health policy. Here we analyzed carbapenemase detection trends using the AMR Brazilian Surveillance Network. METHODS: Carbapenemase detection data from Brazilian hospitals included in the public laboratory information system dataset were evaluated. The detection rate (DR) was defined as carbapenemase detected by gene tested per isolate per year. The temporal trends were estimated using the Prais-Winsten regression model. The impact of COVID-19 on carbapenemase genes in Brazil was determined for the period 2015-2022. Detection pre- (October 2017 to March 2020) and post-pandemic onset (April 2020 to September 2022) was compared using the χ2 test. Analyses were performed with Stata 17.0 (StataCorp, College Station, TX). RESULTS: 83 282 blaKPC and 86 038 blaNDM were tested for all microorganisms. Enterobacterales DR for blaKPC and blaNDM was 68.6% (41 301/60 205) and 14.4% (8377/58 172), respectively. P. aeruginosa DR for blaNDM was 2.5% (313/12 528). An annual percent increase for blaNDM of 41.1% was observed, and a decrease for blaKPC of -4.0% in Enterobacterales, and an annual increase for blaNDM of 71.6% and for blaKPC of 22.2% in P. aeruginosa. From 2020 to 2022, overall increases of 65.2% for Enterobacterales, 77.7% for ABC, and 61.3% for P. aeruginosa were observed in the total isolates. CONCLUSIONS: This study shows the strengths of the AMR Brazilian Surveillance Network with robust data related to carbapenemases in Brazil and the impact of COVID-19 with a change in carbapenemase profiles with blaNDM rising over the years.
Assuntos
Acinetobacter baumannii , COVID-19 , Humanos , Pseudomonas aeruginosa/genética , Carbapenêmicos/farmacologia , Acinetobacter baumannii/genética , Brasil/epidemiologia , Pandemias , COVID-19/epidemiologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Plasmídeos , Antibacterianos/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
Pseudomonas aeruginosa high-risk clones pose severe threats to public health. Here, we characterize the imipenem/relebactam (IR) resistance mechanisms in P. aeruginosa high-risk clones sequence type 235 (ST235) and ST463 in China. Minimum inhibitory concentrations (MICs) were determined, and Illumina short-read sequencing was performed for 1,168 clinical carbapenem-resistant P. aeruginosa (CRPA) isolates. The gene copy number and expression level were analyzed by Illumina sequencing depth and reverse transcription-quantitative PCR, respectively. Resistance conferred by bla GES-5 was evaluated by cloning experiments. ST463 and ST235 accounted for 9.8% (115/1,168) and 4.5% (53/1,168) of total isolates, respectively, and showed high frequencies of extensively drug-resistant and difficult-to-treat resistant phenotypes. The overall IR-resistant rate in CRPA was 21.0% (245/1,168). However, the IR resistance rate was 81.7% (94/115) in ST463-PA and 52.8% (28/53) in ST235-PA. Of the ST463 isolates, 92.2% (106/115) were Klebsiella pneumoniae carbapenemase-producing P. aeruginosa (KPC-PA), and all 94 IR-resistant ST463-PA produced KPC-2. Compared to IR-susceptible ST463 KPC-2-PA, IR-resistant ST463 KPC-2-PA exhibited significantly higher bla KPC-2 copy numbers and expression levels. In ST463 KPC-2-PA, 16 mg/L relebactam resulted in additional fourfold reductions in imipenem MIC50/90 values compared to 4 mg/L relebactam. In ST235, 1.9% (1/53) carried bla IMP carbapenemase and 54.7% (29/53) carried bla GES carbapenemase. Other than the IMP producer, all 27 IR-resistant ST235-PA produced GES-5. Cloning experiments revealed that imipenem resistance in bla GES-5-carrying PAO1 transformants was generally unaffected by relebactam. In conclusion, IR-resistant CRPA isolates in China were mainly distributed in P. aeruginosa high-risk clones ST463 and ST235. The major underlying IR resistance mechanisms were bla KPC-2 overexpression and bla GES-5 carriage.
Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Carbapenêmicos/uso terapêutico , Células Clonais/metabolismo , Imipenem/farmacologia , Imipenem/uso terapêutico , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Infecções por Pseudomonas/tratamento farmacológicoRESUMO
BACKGROUND: The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) attracted extensive attention. Information on CRKP from hospital wastewater (HWW) is limited. The aims of this study were to investigate the genomic characteristics and to evaluate the survivability characteristics of 11 CRKP from HWW in a Chinese teaching hospital in Fujian province. RESULTS: A total of 11 CRKP from HWW were recovered in this study. All CRKP from HWW were resistant to most antibiotics. Comparative genetic analysis demonstrated that all CRKP isolates were clustered into the three distinct phylogenetic clades and clade 2 and clade 3 were mixtures of samples collected from both HWW and clinical settings. Varieties of resistance genes, virulence genes and plasmid replicon types were detected in CRKP from HWW. In vitro transfer of blaKPC-2 was successful for 3 blaKPC-2-positive CRKP from HWW with high conjugation frequency. Our study demonstrated that the genetic environments of blaKPC-2 shared core structure with ISKpn27-blaKPC-2-ISKpn6. Group analysis showed that CRKP from HWW had a lower survivability in serum compared to clinical CRKP (p < 005); and CRKP from HWW had no significant difference in survivability in HWW compared to clinical CRKP (p > 005). CONCLUSIONS: We analyzed the genomic and survivability characteristics of CRKP from HWW in a Chinese teaching hospital. These genomes represent a significant addition of genomic data from the genus and could serve as a valuable resource for future genomic studies about CRKP from HWW.
Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Carbapenêmicos , Klebsiella pneumoniae/genética , Águas Residuárias , Filogenia , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/uso terapêutico , Genômica , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Hospitais de Ensino , Testes de Sensibilidade Microbiana , beta-Lactamases/genéticaRESUMO
OBJECTIVE: The purpose of this study is to re-sensitive bacteria to carbapenemases and reduce the transmission of the blaKPC-2 gene by curing the blaKPC-2-harboring plasmid of carbapenem-resistant using the CRISPR-Cas9 system. METHODS: The single guide RNA (sgRNA) specifically targeted to the blaKPC-2 gene was designed and cloned into plasmid pCas9. The recombinant plasmid pCas9-sgRNA(blaKPC-2) was transformed into Escherichia coli (E.coli) carrying pET24-blaKPC-2. The elimination efficiency in strains was evaluated by polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR). Susceptibility testing was performed by broth microdilution assay and by E-test strips (bioMérieux, France) to detect changes in bacterial drug resistance phenotype after drug resistance plasmid clearance. RESULTS: In the present study, we constructed a specific prokaryotic CRISPR-Cas9 system plasmid targeting cleavage of the blaKPC-2 gene. PCR and qPCR results indicated that prokaryotic CRISPR-Cas9 plasmid transforming drug-resistant bacteria can efficiently clear blaKPC-2-harboring plasmids. In addition, the drug susceptibility test results showed that the bacterial resistance to imipenem was significantly reduced and allowed the resistant model bacteria to restore susceptibility to antibiotics after the blaKPC-2-containing drug-resistant plasmid was specifically cleaved by the CRISPR-Cas system. CONCLUSION: In conclusion, our study demonstrated that the one plasmid-mediated CRISPR-Cas9 system can be used as a novel tool to remove resistance plasmids and re-sensitize the recipient bacteria to antibiotics. This strategy provided a great potential to counteract the ever-worsening spread of the blaKPC-2 gene among bacterial pathogens and laid the foundation for subsequent research using the CRISPR-Cas9 system as adjuvant antibiotic therapy.
Assuntos
Sistemas CRISPR-Cas , Farmacorresistência Bacteriana , Escherichia coli , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Plasmídeos/genética , RNA Guia de Sistemas CRISPR-CasRESUMO
OBJECTIVE: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection is a worldwide health issue that poses a serious threat to public health. This study summarizes the clinical features of four patients with CRKP coproducing NDM and KPC infections and further analyses the molecular typing, resistance and virulence factors of the four CRKP strains. METHODS: Of the twenty-two CRKP isolates, four strains coharbouring blaKPC and blaNDM isolated from four patients were screened by Sanger sequencing between October 2019 and April 2021. Demographics, clinical and pathological data of the four patients were collected through electronic medical records. Antimicrobial susceptibility testing, biofilm formation assays and serum bactericidal assays were performed on the four isolates. The antibiotic resistance and virulence genes were investigated by whole-genome sequencing. Sequence types (STs) were determined by multilocus sequence typing, and serotypes were identified by wzi gene sequencing. RESULTS: Three patients recovered, and one patient stopped treatment. Four strains were multiple carbapenemase producers: KPC-2, NDM-4, SME-5 and IMI-4 coproducer; KPC-2, NDM-1 and SME-3 coproducer; KPC-2, NDM-1 and IMI-3 coproducer; KPC-2 and NDM-5 coproducer. They also harboured ESBL genes and mutations in the efflux pump regulator genes. They were multidrug resistant but sensitive to tigecycline and colistin. Four isolates had moderate biofilm-forming abilities and carried various virulence genes, including siderophores, type 1 fimbriae and E. coli common pilus. Only the NO. 3 strain was resistant to the serum. The STs and serotypes of the four strains were ST11 and KL64, ST337 and none, ST307 and KL102KL149KL155, and ST29 and K54, respectively. CONCLUSION: Four CRKP strains coharbouring blaKPC and blaNDM also carried other carbapenemase genes. Notably, the NO. 1 isolate carrying four carbapenemase genes has not been reported globally until now. Four strains exhibited a high level of resistance to multiple antibiotics. Additionally, three of the four patients were exposed to invasive medical devices that provided an environment for biofilm formation. Meanwhile, three strains with adhesion genes as moderate biofilm formers might form biofilms resulting in long hospital stays, increasing therapeutic difficulty, and even treatment failure. This study reminds clinicians that CRKP strains with multiple carbapenemase genes emerged in our hospital, and stronger measures should be taken to the control of nosocomial infections.
Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Proteínas de Escherichia coli , Infecções por Klebsiella , Humanos , Carbapenêmicos/farmacologia , Klebsiella pneumoniae , Virulência/genética , Escherichia coli , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência Microbiana a Medicamentos , Infecções por Klebsiella/tratamento farmacológico , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , China , Hospitais de Ensino , Testes de Sensibilidade Microbiana , Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli/uso terapêuticoRESUMO
AIMS: Determine which sequence type (ST) clones were carrying the blaKPC, blaNDM, blaVIM, blaIMP, and blaGES genes and their variants in clinical isolates of multidrug-resistant Klebsiella pneumoniae. METHODS AND RESULTS: Ten K. pneumoniae isolates were obtained from the colonized and infected patients in a public hospital in the city of Recife-PE, in northeastern Brazil, and were further analyzed. The detection of carbapenem resistance genes and the seven housekeeping genes [for multilocus sequence typing (MLST) detection] were done with PCR and sequencing. The blaKPC and blaNDM genes were detected concomitantly in all isolates, with variants being detected blaNDM-1, blaNDM-5, blaNDM-7, and blaKPC-2. The blaKPC-2 and blaNDM-1 combination being the most frequent. Molecular typing by MLST detected three types of high-risk ST clones, associated with the clonal complex 258, ST11/CC258 in eight isolates, and ST855/CC258 and ST340/CC258 in the other two isolates. CONCLUSIONS: These findings are worrying, as they have a negative impact on the scenario of antimicrobial resistance, and show the high genetic variability of K. pneumoniae and its ability to mutate resistance genes and risk of dissemination via different ST clones.
Assuntos
Klebsiella pneumoniae , beta-Lactamases , Humanos , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , beta-Lactamases/genética , Brasil/epidemiologia , Células Clonais , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologiaRESUMO
BACKGROUND: Despite the global prevalence of Klebsiella pneumoniae Carbapenemase (KPC)-type class A ß-lactamases, occurrences of KPC-3-producing isolates in China remain infrequent. This study aims to explore the emergence, antibiotic resistance profiles, and plasmid characteristics of blaKPC-3-carrying Pseudomonas aeruginosa. METHODS: Species identification was performed by MALDI-TOF-MS, and antimicrobial resistance genes (ARGs) were identified by polymerase chain reaction (PCR). The characteristics of the target strain were detected by whole-genome sequencing (WGS) and antimicrobial susceptibility testing (AST). Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis(S1-PFGE), Southern blotting and transconjugation experiment. RESULTS: Five P. aeruginosa strains carrying blaKPC-3 were isolated from two Chinese patients without a history of travelling to endemic areas. All strains belonged to the novel sequence type ST1076. The blaKPC-3 was carried on a 395-kb IncP-2 megaplasmid with a conserved structure (IS6100-ISKpn27-blaKPC-3-ISKpn6-korC-klcA), and this genetic sequence was identical to many plasmid-encoded KPC of Pseudomonas species. By further analyzing the genetic context, it was supposed that the original of blaKPC-3 in our work was a series of mutation of blaKPC-2. CONCLUSIONS: The emergence of a multidrug resistance IncP-2 megaplasmid and clonal transmission of blaKPC-3-producing P. aeruginosa in China underlined the crucial need for continuous monitoring of blaKPC-3 for prevention and control of its further dissemination in China.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Pseudomonas aeruginosa/genética , Tipagem de Sequências Multilocus , beta-Lactamases/genética , Proteínas de Bactérias/genética , Plasmídeos/genética , China/epidemiologia , Antibacterianos/farmacologia , Infecções por Klebsiella/epidemiologiaRESUMO
The study examined the epidemiological characteristics of carbapenem-resistant Enterobacteriaceae (CRE) isolated from migratory birds and surroundings in Qinghai Lake, China. We identified 69 (15.7%) CRE isolates from a total of 439 samples including 29 (6.6%) blaNDM-5 Escherichia coli and 40 (9.1%) blaKPC-2 Klebsiella pneumoniae. WGS analysis indicated that ST746, ST48, ST1011, and ST167 were the primary sequence types (ST) for blaNDM-5 E. coli, while all blaKPC-2 K. pneumoniae were ST11 and harbored numerous antibiotic resistance gene types including blaCTX-M, qnrS, and rmtB. A phylogenetic tree based on core genomes revealed that blaNDM-5 E. coli was highly heterogeneous while the blaKPC-2 K. pneumoniae was highly genetically similar within the group and to human Chinese isolates. IncX3, IncHI2, and IncFIB-HI2 plasmid replicon types were associated with blaNDM-5 spread, while IncFII-R and IncFII plasmids mediated blaKPC-2 spread. We also identified IncFII-R hybrid plasmids most likely formed by IS26-mediated integration of IncFII into IncR plasmid backbones. This also facilitated the persistence of IncFII-R plasmids and antibiotic resistance genes including blaKPC-2. In addition, all of the blaKPC-2 K. pneumoniae isolates harbored a pLVKP-like virulence plasmid carrying a combination of two or more hypervirulence markers that included peg-344, iroB, iucA, rmpA, and rmpA2. This is the first description of ST11 K. pneumoniae that co-carried blaKPC-2- and pLVKP-like virulence plasmids from migratory birds. The blaKPC-2 K. pneumoniae carried by migratory birds displayed high genetic relatedness to human isolates highlighting a high risk of transmission of these K. pneumoniae. KEY POINTS: ⢠Multidrug resistance plasmids (blaKPC-2, bla436NDM-5, bla CTX-M, qnrS, and rmtB). ⢠Co-occurrence of plasmid-mediated resistance and virulence genes. ⢠High similarity between migratory bird genomes and humans.
Assuntos
Enterobacteriaceae , Infecções por Klebsiella , Humanos , Enterobacteriaceae/genética , Escherichia coli/genética , beta-Lactamases/genética , Filogenia , Lagos , Klebsiella pneumoniae/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Genômica , China , Infecções por Klebsiella/veterináriaRESUMO
Gram-negative bacteria containing three different carbapenemases are extremely rare. Klebsiella pneumoniae (N22-925) with KPC-2, NDM-1, and OXA-48 was obtained from a Canadian patient with recent hospitalization in Romania. Short and long read whole genome sequencing showed that the blaKPC-2 was situated on a 214 kb IncFIB(K)/IncFII(K) plasmid, the blaNDM-1 on a 104 kb IncFIB (pQil)/IncFII(K) plasmid, and the blaOXA-48 on a 64 kb IncL plasmid. These plasmids were conjugated to Escherichia coli J53. N22-925 belonged to a unique ST147 cluster that is likely endemic in Romania. This case emphasizes the need for rapid carbapenemase screening in patients from endemic regions. We described the first complete genome sequence of a K. pneumoniae isolate with three different carbapenemases, providing a reference for future studies on this rarely reported occurrence.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Canadá , beta-Lactamases/genética , Proteínas de Bactérias/genética , Plasmídeos/genética , Escherichia coli/genética , Infecções por Klebsiella/microbiologiaRESUMO
INTRODUCTION: Proteus mirabilis is one of the main pathogens that cause urinary tract infections. Therefore, the aim of this study was to analyze and compare the genetic profile of 36 clinical isolates of P. mirabilis that carry and do not carry the blaKPC and blaNDM gene with respect to virulence factors (mrpG, pmfA, ucaA, nrpG and pbtA) and antimicrobial resistance (blaVIM,blaIMP, blaSPM, blaGES,blaOXA-23-like, blaOXA-48-like, blaOXA-58-like and blaOXA-10-like). METHODS: The virulence and resistance genes were investigated by using PCR and sequencing. RESULTS: ERIC-PCR typing showed that the isolates showed multiclonal dissemination and high genetic variability. The gene that was most found blaOXA-10-like (n = 18), followed by blaKPC (n = 10) and blaNDM (n = 8). To our knowledge, this is the first report of blaOXA-10 in P. mirabilis in Brazil, as well as the first report of the occurrence of P. mirabilis co-carrying blaOXA-10/blaKPC and blaOXA-10/blaNDM. The blaNDM or blaKPC carrier isolates showed important virulence genes, such as ucaA (n = 8/44.4%), pbtA (n = 10/55.5%) and nrpG (n = 2/11.1%). However, in general, the non-carrier isolates of blaKPC and blaNDM showed a greater number of virulence genes when compared to the carrier group. CONCLUSION: Clinical isolates of P. mirabilis, in addition to being multi-drug resistant, presented efficient virulence factors that can establish infection outside the gastrointestinal tract.
Assuntos
Proteus mirabilis , Fatores de Virulência , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Brasil , Humanos , Testes de Sensibilidade Microbiana , Proteus mirabilis/genética , Fatores de Virulência/genética , beta-Lactamases/genéticaRESUMO
Duplex polymerase chain reaction with lateral flow dipsticks (duplex PCR-LFD) was developed for the simultaneous detection of beta-lactamase Klebsiella pneumoniae carbapenemase (blaKPC ) and beta-lactamase New Dehli metallo-beta-lactamase (blaNDM ) genes in body fluid samples. This method was validated using well-characterized isolates. The assessment of the specificity of duplex PCR-LFD showed that there was no cross-reactivity with other targets. The detection limit of the duplex PCR-LFD assay was 20 CFU per ml for blaKPC and blaNDM . Among 177 sterile body fluid samples tested by the duplex PCR-LFD assay, 40 were blaKPC -positive and five were blaNDM -positive. The results obtained from 122 corresponding Gram-negative bacteria which were isolated from these clinical samples and tested by duplex PCR-LFD assay showed that there were 37 strains carrying blaKPC genes in 40 blaKPC -positive samples and three strains carrying blaNDM genes in five blaNDM -positive samples. Statistical analysis indicated that there was no significant difference between the direct detection of blaKPC and blaNDM genes in clinical sterile body fluid samples and their corresponding clinical isolates. Therefore, duplex PCR-LFD can be effective for the simultaneous detection of blaKPC and blaNDM in clinical isolates and directly from clinical samples, which may be helpful for the administration of appropriate antimicrobial treatment.
Assuntos
Líquidos Corporais , beta-Lactamases , Proteínas de Bactérias/genética , Bactérias Gram-Negativas/genética , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , beta-Lactamases/genéticaRESUMO
BACKGROUND: Resistance to ceftazidime-avibactam was reported, and it is important to investigate the mechanisms of ceftazidime/avibactam resistance in K. pneumoniae with mutations in blaKPC. RESULTS: We report the mutated blaKPC is not the only mechanism related to CZA resistance, and investigate the role of outer porin defects, efflux pump, and relative gene expression and copy number of blaKPC and ompk35/36. Four ceftazidime/avibactam-sensitive isolates detected wild type blaKPC-2, while 4 ceftazidime/avibactam-resistant isolates detected mutated blaKPC (blaKPC-51, blaKPC-52, and blaKPC-33). Compared with other ceftazidime/avibactam-resistant isolates with the minimal inhibitory concentration of ceftazidime/avibactam ranging 128-256 mg/L, the relative gene expression and copy number of blaKPC was increased in the isolate which carried blaKPC-51 and also showed the highest minimal inhibitory concentration of ceftazidime/avibactam at 2048 mg/L. The truncated Ompk35 contributes rare to ceftazidime/avibactam resistance in our isolates. No significant difference in minimal inhibitory concentration of ceftazidime/avibactam was observed after the addition of PABN. CONCLUSIONS: Increased gene expression and copy number of mutated blaKPC can cause high-level ceftazidime/avibactam resistance.
Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Dosagem de Genes , Expressão Gênica , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Mutação , beta-Lactamases/genética , Combinação de Medicamentos , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/enzimologia , Testes de Sensibilidade MicrobianaRESUMO
Carbapenem-resistant Enterobacteriaceae are a worldwide health problem and isolates carrying both blaKPC-2 and blaNDM-1 are unusual. Here we describe the microbiological and clinical characteristics of five cases of bloodstream infections (BSI) caused by carbapenem-resistant Klebsiella pneumoniae and Serratia marcescens having both blaKPC-2 and blaNDM-1. Of the five blood samples, three are from hematopoietic stem cell transplantation patients, one from a renal transplant patient, and one from a surgical patient. All patients lived in low-income neighbourhoods and had no travel history. Despite antibiotic treatment, four out of five patients died. The phenotypic susceptibility assays showed that meropenem with the addition of either EDTA, phenylboronic acid (PBA), or both, increased the zone of inhibition in comparison to meropenem alone. Molecular tests showed the presence of blaKPC-2 and blaNDM-1 genes. K. pneumoniae isolates were assigned to ST258 or ST340 by whole genome sequencing. This case-series showed a high mortality among patients with BSI caused by Enterobacteriae harbouring both carbapenemases. The detection of carbapenemase-producing isolates carrying both blaKPC-2 and blaNDM-1 remains a challenge when using only phenotypic assays. Microbiology laboratories must be alert for K. pneumoniae isolates producing both KPC-2 and NDM-1.
Assuntos
Bacteriemia/diagnóstico , Klebsiella pneumoniae/isolamento & purificação , Serratia marcescens/isolamento & purificação , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Sepse , Serratia marcescens/genética , beta-Lactamases/genética , beta-Lactamases/metabolismoRESUMO
This is the first report of ceftazidime-avibactam resistance caused by the blaKPC-33 mutation through the D179Y variant during the treatment of blaKPC-2-positive Klebsiella pneumoniae-related infections in China. The blaKPC-33-containing K. pneumoniae was susceptible to meropenem-vaborbactam, cefepime-zidebactam, tigecycline, and polymyxin B. The blaKPC-33 gene was located on a 77â 551-bp transformable plasmid harboring qnrS1 and blaLAP-2. Detecting blaKPC-33-positive K. pneumoniae clinical strains is important for infection control.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Ceftazidima , China , Combinação de Medicamentos , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genéticaRESUMO
Wastewater treatment plants (WWTPs) are considered to be a reservoir and a source of bacterial resistance. Worryingly, the presence of carbapenem-resistant Gram-negative bacilli (CRGNB) in WWTPs has recently been reported, but there are still many research gaps regarding its emergence and impact. The distribution of CRGNB in the different stages of a WWTP in Colombia and the relationship between the physicochemical factors involved with their presence are described in this paper. Additionally, given the impact on public health, the CRGNB detected were compared with isolates previously found in hospital patients. Residual water samples were taken from five different stages of a WWTP between January and July 2017. A total of 390 GNB were isolated, and a significant frequency of CRGNB harboring blaKPC-2 (38.2%, n = 149/390) was detected, of which 57% were Enterobacteriaceae, 41.6% Aeromonadaceae, and 1.3% Pseudomonadaceae. The Enterobacteriaceae were more frequent in the raw effluent compared to the Aeromonadaceae, which in turn were more prevalent in the recycled activated sludge and final effluent. Environmental variables such as pH, oxygen, chemical oxygen demand, and temperature were significantly correlated with the quantification of carbapenem-resistant Enterobacteriaceae (CRE) at specific points in the WWTP. Interestingly, isolated K. pneumoniae harboring blaKPC-2 from the WWTPs were diverse and did not relate genetically to the hospital strains with which they were compared. In conclusion, these results confirm the worrying scenario of the dissemination and persistence of emerging contaminants such as CRGNB harboring blaKPC-2, and reinforce the need to establish strategies aimed at containing this problem using multifocal interventions.