Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 83, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806744

RESUMO

An aerobic, Gram-stain-negative, motile rod bacterium, designated as SYSU BS000021T, was isolated from a black soil sample in Harbin, Heilongjiang province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Methylobacterium, and showed the highest sequence similarity to Methylobacterium segetis KCTC 62267 T (98.51%) and Methylobacterium oxalidis DSM 24028 T (97.79%). Growth occurred at 20-37℃ (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 7.0) and in the presence of 0% (w/v) NaCl. Polar lipids comprised of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminolipid and one unidentified polar lipid. The major cellular fatty acids (> 5%) were C18:0 and C18:1 ω7c and/or C18:1 ω6c. The predominant respiratory quinone was Q-10. The genomic G + C content was 68.36% based on the whole genome analysis. The average nucleotide identity (≤ 83.5%) and digital DNA-DNA hybridization (≤ 27.3%) values between strain SYSU BS000021T and other members of the genus Methylobacterium were all lower than the threshold values recommended for distinguishing novel prokaryotic species. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain SYSU BS000021T represents a novel species of the genus Methylobacterium, for which the name Methylobacterium nigriterrae sp. nov. is proposed. The type strain of the proposed novel species is SYSU BS000021T (= GDMCC 1.3814 T = KCTC 8051 T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Methylobacterium , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Ácidos Graxos/química , Methylobacterium/genética , Methylobacterium/classificação , Methylobacterium/isolamento & purificação , China , Hibridização de Ácido Nucleico , Análise de Sequência de DNA , Fosfolipídeos/análise
2.
Ecotoxicol Environ Saf ; 283: 116783, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39067076

RESUMO

Residues of herbicides with the extensive applications may impact the soil ecosystem and ultimately threaten agricultural sustainability. However, the effects of long-term herbicide residues on soil multifunctionality and the soil microbial community remain poorly understood. Here, we evaluated relationships between soil multifunctionality and soil microbial communities with residual herbicide concentrations by surveying and analyzing 62 black soil samples collected from an agricultural area in northeastern China. Total residual herbicide concentrations varied from 35 to 568 µg/kg in the soil samples. The response of soil multifunctionality to increasing residual herbicide concentrations exhibited an inverted U-shaped relationship with a peak at approximately 310 µg/kg, with net mineralized organic nitrogen (Nm) and total nitrogen (TN) exhibiting the same trend. Microbial community richness was significantly lower in soil samples with high residual herbicide concentrations (> 310 µg/kg, HG) compared to low residual herbicide concentrations (< 310 µg/kg, LG). In addition, the relative abundances of specific keystone microbial genera differed significantly between LG and HG: norank_f_Acetobacteraceae, norank_f_Caldilineaceae, Candidatus_Alysiosphaera, and Gonytrichum. The relative abundances of these genera were also significantly correlated with soil multifunctionality. Structural equation models (SEMs) further showed that herbicide residues influenced soil multifunctionality by affecting these specific keystone genera. Our study demonstrates that long-term herbicide residues significantly impact the multifunctionality of agricultural black soil, where low concentrations stimulate while high concentrations inhibit, underscoring the need for reasonable application of herbicides to maintain soil ecosystem health.


Assuntos
Herbicidas , Microbiologia do Solo , Poluentes do Solo , Solo , Herbicidas/análise , Herbicidas/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , China , Solo/química , Nitrogênio/análise , Monitoramento Ambiental , Microbiota/efeitos dos fármacos , Agricultura , Bactérias/efeitos dos fármacos , Resíduos de Praguicidas/análise , Ecossistema
3.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732890

RESUMO

Black soils, which play an important role in agricultural production and food security, are well known for their relatively high content of soil organic matter (SOM). SOM has a significant impact on the sustainability of farmland and provides nutrients for plants. Hyperspectral imaging (HSI) in the visible and near-infrared region has shown the potential to detect soil nutrient levels in the laboratory. However, using portable spectrometers directly in the field remains challenging due to variations in soil moisture (SM). The current study used spectral data captured by a handheld spectrometer outdoors to predict SOM, available nitrogen (AN), available phosphorus (AP) and available potassium (AK) with different SM levels. Partial least squares regression (PLSR) models were established to compare the predictive performance of air-dried soil samples with SMs around 20%, 30% and 40%. The results showed that the model established using dry sample data had the best performance (RMSE = 4.47 g/kg) for the prediction of SOM, followed by AN (RMSE = 20.92 mg/kg) and AK (RMSE = 22.67 mg/kg). The AP was better predicted by the model based on 30% SM (RMSE = 8.04 mg/kg). In general, model performance deteriorated with an increase in SM, except for the case of AP. Feature wavelengths for predicting four kinds of soil properties were recommended based on variable importance in the projection (VIP), which offered useful guidance for the development of portable hyperspectral sensors based on discrete wavebands to reduce cost and save time for on-site data collection.

4.
J Environ Manage ; 356: 120629, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518492

RESUMO

The preservation of cultivated land quality stands as a vital prerequisite for ensuring food security and sustainability. In the black soil area of northeast China, a large amount of fertilizer was used to stabilize grain production in its early stages, which damaged soil structure and polluted the ecological environment. Based on the panel data of fertilization intensity of 48 districts and counties in Heilongjiang Province from 2010 to 2020, this study takes the implementation of the "Three-Year Action Plan for the Protection of Black Soil Farmland in Heilongjiang Province for the (2018-2020)" (TYAP) policy as a natural experiment, and uses the difference-in-differences (DiD) method to identify the causal effect of the policy on the local fertilization intensity. The results of the empirical study showed that the implementation of the TYAP policy significantly reduced the fertilization intensity of the black soil cultivated land implemented by the policy during the implementation period, which resulted in a decrease of 11.97% on average compared with the areas without the policy implementation. Several robustness tests provided additional confirmation of the aforementioned findings. This study further revealed that the policy mitigated fertilization intensity by fostering advancements in agricultural mechanization.


Assuntos
Agricultura , Solo , Solo/química , Fazendas , Políticas , China , Fertilização
5.
Environ Res ; 237(Pt 2): 116976, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625535

RESUMO

Soil, as a heterogeneous body, is composed of different-sized aggregates. There is limited data available on the potential role of microplastics (MPs) in microbial properties at the soil aggregate level. In this study, changes in microbial construction and diversity in farmland bulk soil and aggregates induced by polyethylene MPs (PE-MPs) were investigated at a dose of 0.5% (w/w) through 16s rDNA sequencing and enzyme activity measurements of different particle size aggregates in incubated soil. The presence of low-dose PE-MPs increased the proportion of >1 mm soil aggregates fraction, and decreased soil available nitrogen and available phosphorus in bulk soils. Furthermore, low-dose PE-MPs increased bacterial richness and diversity in 1-0.5 and < 0.25 mm fractions and decreased operational taxonomic unit, abundance-based coverage estimator, and Chao1 indices in bulk soil and >1 mm fractions. The levels of predicted functional genes taking part in the biodegradation and metabolism of exogenous substances also increased. At the phylum level, PE-MPs changed the proportion of Proteobacteria and Actinobacteria. The variations in soil aggregate properties were significantly correlated with the bacterial communities' composition and diversity. This study deepens our perception of the soil microenvironment, microbial community composition, and diversity in response to PE-MPs.

6.
Environ Res ; 228: 115895, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054835

RESUMO

Soil microbial communities are responsive to biochar application. However, few studies have investigated the synergistic effects of biochar application in the restoration of degraded black soil, especially soil aggregate-mediated microbial community changes that improve soil quality. From the perspective of soil aggregates, this study explored the potential microbial driving mechanism of biochar (derived from soybean straw) addition in black soil restoration in Northeast China. The results showed that biochar significantly improved the soil organic carbon, cation exchange capacity and water content, which play crucial roles in aggregate stability. The addition of biochar also significantly increased the concentration of the bacterial community in mega-aggregates (ME; 0.25-2 mm) compared with micro-aggregates (MI; <0.25 mm). Microbial co-occurrence networks analysis showed that biochar enhanced microbial interactions in terms of the number of links and modularity, particularly in ME. 16 S rRNA sequencing predicted that the expression of genes related to carbon (rbcL, acsA, gltS, aclB, and mcrA) and nitrogen (nifH and amoA) transformation increased after the addition of biochar. Furthermore, the functional microbes involved in carbon fixation (Firmicutes and Bacteroidetes) and nitrification (Proteobacteria) were significantly enriched and are the key regulators of carbon and nitrogen kinetics. Structural equation model (SEM) analysis further showed that the application of biochar promoted soil aggregates to positively regulate the abundance of soil nutrient conversion-related microorganisms, thereby increasing soil nutrient content and enzyme activities. These results provide new insights into the mechanisms of soil restoration through biochar addition.


Assuntos
Carbono , Microbiota , Carbono/química , Solo/química , Nitrogênio , Microbiologia do Solo
7.
Ecotoxicol Environ Saf ; 265: 115539, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37801754

RESUMO

Nitrification inhibitors (NIs) have been widely applied to inhibit nitrification and reduce N2O emissions in agriculture. However, there are still some shortcomings, e.g. short effective periods, large applying amounts, low effectiveness, easy deactivation and different effect. Thus, a nitrapyrin microcapsule suspension (CPCS) was used as a new experimental material to elaborate its effects on nitrogen transformation and microbial response mechanisms in black soil by cultivation experiments with six treatments of no fertilization (CK), urea, urea+ 0.2 % CPES, urea+ 0.1 % CPCS, urea+ 0.2 % CPCS, and urea+ 0.3 % CPCS. The content of ammonium, nitrate nitrogen, functional microbial activity, degradation rate and adsorption characteristics of CPCS in the soil at different incubating times were determine. Compared with the nitrapyrin emulsifiable concentrate (CPEC) treatment, the degradation rate of CPCS decreased by 21.54 %, the half-life increased by 10.2 days, and the adsorption rate of nitrapyrin on black soil decreased more than 6-fold. CPCS effectively inhibited the transformation of ammonium nitrogen to nitrate nitrogen within more than 42 days. CPCS had a negative effect on amoA gene abundance and a positive effect on nrfA gene abundance. The research results provide a basic theoretical support for the application of CPCS on black soil.


Assuntos
Compostos de Amônio , Solo , Nitrificação , Nitratos/farmacologia , Cápsulas , Óxido Nitroso/análise , Agricultura , Compostos de Amônio/farmacologia , Nitrogênio/análise , Ureia/metabolismo , Fertilizantes/análise
8.
Ecotoxicol Environ Saf ; 262: 115143, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37336091

RESUMO

Owing to complex pore systems and chemical substances, soil aggregates provide a spatially heterogeneous microenvironment for adsorption capacity and microbial survival. As the widely used pesticide in farmlands, atrazine environmental behavior is not well known at the aggregate scale. In this study, Mollisol soil samples were sieved into four aggregate-size classes: large macroaggregates (>2 mm, LMa), small macroaggregates (1-2 mm, SMa), microaggregates (0.25-1 mm, Mia) and primary particles (<0.25 mm, P). The pore characteristics of each aggregate fraction was visualized by non-invasive X-ray three-dimensional microscopic computed tomography (3D-CT) combined with pore network extraction. The adsorption kinetics of atrazine in each aggregate-size fraction can be described well by a pseudo-second-order kinetic model. The adsorption isothermal process of atrazine can be better fitted by the Langmuir isotherm model than Freundlich isotherm model. There was an obvious linear correlation between the maximum atrazine adsorption capacity and aggregate SOC content as well as TN. In addition, the abundance of bacteria, actinomycetes and anaerobic bacteria in P was totally higher than those in SMa and Mia. Although pH is strongly linked to the bacterial community in the aggregate fraction, aggregate particle size explained 18 % for shaping the microbial community. Therefore, chemical properties and pore characteristics of each soil aggregate fraction both contributed to performance of atrazine adsorption behavior and microbial community.

9.
J Environ Manage ; 348: 119306, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839204

RESUMO

Research studies on nutrient content and microbial communities after the application of organic manure have been reported, while available information about multi-interaction mechanisms of nutrient stoichiometry and microbial succession in soil aggregates remains limited. This work conducted a 10-year field experiment amended with cow manure (1.5 t/ha), during which the application of organic manure stimulated the fragmentation of soil macro-aggregates (>5 mm) and the agglomeration of soil micro-aggregates (<0.25 mm). Hence, the proportion of medium-size aggregates (0.25-5 mm) was increased in bulk soil, and there was an insignificant difference in the stability of soil aggregates. Meanwhile, the application of organic manure increased soil organic carbon (SOC), total nitrogen (TN) and phosphorus (TP) in all soil aggregate fractions. SOC, TN and TP were higher in micro-aggregates (<0.25 mm) after the application of organic manure, thus the dominating phylum of bacteria and fungi was more abundance in micro-aggregates due to the increase in nutrient level. During the organic fertilization process, fungal communities significantly changed because the variation of carbon-to-nitrogen ratio (C:N) in soil aggregates. Cultivated farmland in Northeast China showed a considerable capacity to sequestrate SOC during the organic fertilization process, but nitrogen may be a primary macro-element limiting soil productivity. Theoretically, organic manure amended with nitrogen fertilizer could be an effective measure to maintain microbial diversity and crop productivity in agro-ecosystems in Northeast China.


Assuntos
Microbiota , Solo , Carbono/análise , Esterco , Fertilizantes/análise , Nitrogênio/análise , China , Fertilização , Microbiologia do Solo , Agricultura
10.
J Environ Manage ; 340: 118023, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120999

RESUMO

Accurate identification of riverine nitrate sources is required for preventing and controlling nitrogen contamination in agricultural watersheds. The water chemistry and multiple stable isotopes (δ15N-NO3, δ18O-NO3, δ2H-H2O, and δ18O-H2O) of the river water and groundwater in an agricultural watershed in China's northeast black soil region were analyzed to better understand the sources and transformations of riverine nitrogen. Results showed that nitrate is an important pollutant that affects water quality in this watershed. Affected by factors such as seasonal rainfall changes and spatial differences in land use, the nitrate concentrations in the river water showed obvious temporal and spatial variations. The riverine nitrate concentration was higher in the wet season than in the dry season, and higher downstream than upstream. The water chemistry and dual nitrate isotopes revealed that riverine nitrate came primarily from manure and sewage (M&S). Results from the SIAR model showed that it accounted for more than 40% of riverine nitrate in the dry season. The proportional contribution of M&S decreased during the wet season due to the increased contribution of chemical fertilizers and soil nitrogen induced by large amounts of rainfall. The δ2H-H2O and δ18O-H2O signatures implied that interactions occurred between the river water and groundwater. Considering the large accumulation of nitrates in the groundwater, restoring groundwater nitrate levels is essential for controlling riverine nitrate pollution. As a systematic study on the sources, migration, and transformations of nitrate/nitrogen in agricultural watersheds in black soil regions, this research can provide a scientific support for nitrate pollution management in the Xinlicheng Reservoir watershed and provide a reference for other watersheds in black soil regions in the world with similar conditions.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Nitratos/análise , Isótopos de Nitrogênio/análise , Monitoramento Ambiental/métodos , Nitrogênio/análise , Solo , Esgotos , China , Qualidade da Água , Poluentes Químicos da Água/análise , Teorema de Bayes
11.
J Environ Manage ; 328: 117024, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36525733

RESUMO

Soil erosion (SE) is seriously threatening grain production and the ecological environment in the black soil region. Understanding the impact of changes in land use/land cover (LULC) and soil properties on SE is critical for agricultural sustainability and soil management. However, the contribution of soil property changes to SE is often ignored in existing studies. This study analyzed changes in LULC and soil properties from 1980 to 2020 in the black soil region, China. Then, the revised universal soil loss equation was used to explore the spatiotemporal changes of SE from 1980 to 2020. Finally, the contribution of LULC change and soil property change to SE was separated by scenario comparison. The results showed that cropland increased (by 24,157 km2) at the expense of grassland and forest from 1980 to 2020. Sand in cropland decreased by 21.95%, while the silt, clay, and SOC increased by 21.37%, 1.43%, and 15.38%, respectively. Soil erodibility in cropland increased greatly (+9.85%), while in forest and grassland decreased (-6.05% and -4.72%). LULC change and soil properties change together aggravated SE in the black soil region. LULC change and soil property change resulted in a 22% increase in SE, of which LULC change resulted in a 14% increase, and soil property change resulted in an 8% increase. Agricultural development policy was the main reason driving LULC change. The combination of LULC change, climatic factors, and long-term tillage resulted in changes in soil properties. Ecosystem management and policy can reduce SE through vegetation restoration and soil improvement. This study can provide important references for soil conservation and agricultural development in the black soil region.


Assuntos
Ecossistema , Solo , Erosão do Solo , Conservação dos Recursos Naturais/métodos , China , Monitoramento Ambiental/métodos
12.
J Environ Manage ; 345: 118458, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385196

RESUMO

Stover-covered no-tillage (NT) is of great significance to the rational utilization of stover resources and improvement of cultivated land quality, and also has a profound impact on ensuring groundwater, food and ecosystem security. However, the effects of tillage patterns and stover mulching on soil nitrogen turnover remain elusive. Based on the long-term conservation tillage field experiment in the mollisol area of Northeast China since 2007, the shotgun metagenomic sequencing of soils and microcosm incubation were combined with physical and chemical analyses, alkyne inhibition analysis to elucidate the regulatory mechanisms of NT and stover mulching on the farmland soil nitrogen emissions and microbial nitrogen cycling genes. Compared with conventional tillage (CT), NT stover mulching significantly reduced the emission of N2O instead of CO2, especially when 33% mulching was adopted, and correspondingly the nitrate nitrogen of NT33 was higher than that of other mulching amounts. The stover mulching was associated with higher total nitrogen, soil organic carbon and pH. The abundance of AOB (ammonia-oxidizing bacteria)-amoA (ammonia monooxygenase subunit A) was substantially increased by stover mulching, while the abundance of denitrification genes was reduced in most cases. Under alkyne inhibition, the tillage mode, treatment time, gas condition and interactions between them noticeably influenced the N2O emission and nitrogen transformation. In CT, NT0 (no mulching) and NT100 (full mulching), the relative contribution of AOB to N2O production was markedly higher than that of ammonia oxidizing archaea. Different tillage modes were associated with distinct microbial community composition, albeit NT100 was closer to CT than to NT0. Compared with CT, the co-occurrence network of microbial communities was more complex in NT0 and NT100. Our findings suggest that maintaining a low-quantity stover mulching could regulate soil nitrogen turnover toward proficiently enhancing soil health and regenerative agriculture, and coping with global climate change.


Assuntos
Microbiota , Solo , Solo/química , Amônia/análise , Carbono/análise , Agricultura , China , Nitrogênio/análise , Alcinos/análise , Microbiologia do Solo , Óxido Nitroso/análise
13.
Environ Monit Assess ; 195(12): 1508, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987867

RESUMO

In some developing countries, particularly China, a significant number of individual farmers manage small field scale of cultivated land. However, the existing research on cultivated land quality assessment mainly focuses on large-scale regions, establishing comprehensive index systems from a macro perspective, while lacking evaluations customized to individual farmers, who constitute a crucial component in agricultural production, and a demand-driven field-scale assessment of cultivated land quality. Therefore, we developed a field-scale index system that meets the needs of individual farmers in the black soil region of Northeast China. Additionally, we proposed a machine learning model for field-scale cultivated land quality assessment. The experimental results showed that our model achieved an [Formula: see text] value of 0.9660 and an [Formula: see text] of [Formula: see text] under fourfold cross-validation, which represents an improvement of 5.19% and a reduction of 1.13%, respectively, relative to the XGBoost model. Ultimately, we conducted obstacle factor diagnosis, aiming to assist individual farmers in identifying the existing issues in their cultivated land fields. This study not only provides guidance to individual farmers but also addresses the research gap in cultivated land quality assessment by offering an individual farmer demand-driven index system for field-scale studies.


Assuntos
Conservação dos Recursos Naturais , Solo , Monitoramento Ambiental , Agricultura , China
14.
J Environ Manage ; 319: 115640, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809539

RESUMO

Black soils (Mollisols) are among the most important soil resources for crop production and food security. In China, they are mainly distributed in the northeastern region. To investigate soil antibiotic resistance distribution patterns and monitor soil quality, we randomly chose nine corn fields in Northeast China and analyzed the antibiotic resistance gene (ARG) distribution and co-occurrence patterns on the basis of high-throughput approaches and network analyses. High genetic diversity (136 unique genes) and low ARG abundances (10-5-10-2 copies/16S rRNA gene copy) were detected, with relatively few interactions among ARGs. Type I integron genes were prevalent in the soil and were positively correlated with ARGs, which may increase the risk of ARG transmission. Most ARGs were strongly associated with microorganisms. Moreover, several ARGs were significantly correlated with antibiotics, nutrients, and metal elements. The generation and dissemination of ARGs, which were most likely mediated by mobile genetic elements (MGEs) and bacteria, were affected by environmental conditions. These results provide insights into the widespread co-occurrence patterns in soil resistomes.


Assuntos
Antibacterianos , Solo , Antibacterianos/farmacologia , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , RNA Ribossômico 16S/genética , Microbiologia do Solo
15.
Ecotoxicology ; 30(8): 1754-1768, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33432458

RESUMO

Long-term frequent tillage would cause black soil degradation and serious soil erosion as soil microbial communities and soil structure are extremely sensitive to tillage process. However, there is no unified conclusion on the relationship between the distribution of soil water-stable aggregates (WSAs), and microbial community construction and diversity under long-term tillage in black soil during different seasons. In this study, we used wet-sieving method to evaluate the composition and stability of soil WSAs and employed Illumina MiSeq high-throughput sequencing technology to study the diversity, taxonomic composition and co-occurrence network properties of microbial community, comparing outcomes between uncultivated soil and long-term cultivated soil for 60 years in Keshan farm of Heilongjiang Province. The results showed that after long-term tillage, the proportion of larger than 1 mm WSAs reduced by 34.17-51.37%, and the stability of WSAs, soil pH, organic matter (OM), total nitrogen (TN) contents decreased significantly in all seasons (P < 0.05), while soil available phosphorus (AP) and available potassium (AK) contents increased remarkably (P < 0.05). The diversity of bacteria increased, while that of fungi decreased. Soil fungal communities were more susceptible to long-term tillage than bacterial and archaeal communities. Actinobacteria mainly exist in large WSAs (˃1 mm), and when their relative abundance is high, it is beneficial to improve the water-stability of black soil; while Proteobacteria and Gemmatimonadetes may exist in small WSAs (˂1 mm), whose high relative abundance will weaken the water-stability of black soil. The experimental results provide a scientific theoretical basis for sustainable utilization of black soil.


Assuntos
Microbiota , Solo , Agricultura , China , Microbiologia do Solo , Água
16.
J Environ Manage ; 299: 113704, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523538

RESUMO

Natural vegetation restoration (NVR) highly relates to the development of gully erosion, and is mainly determined by both the soil properties and species competition in the gullies. However, it is still not clear what are the key factors influencing on the vegetation restoration in the gullies with the poor soil properties (e.g. low soil organic matter and nutrients) under the special hydrological process (e.g. high runoff intensity and long flow duration). In this study, soil total organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), total phosphorus (TP), available phosphorus (AP), pH, soil moisture (SM) were investigated, and both regression and structural equation model analysis were used for detecting how soil properties and species competition influence the herbaceous plants restoration in the poor quality of Mollisols in gullies of Northeast China. The results show that, (1) influence of NH4+-N, AN, TN, pH on biomass was stronger in 0-10 cm than that in 10-20 cm soil depth, opposite was stronger in 10-20 cm than that in 0-10 cm soil depth for NO3--N, SOC and SM (P < 0.05). (2) NH4+-N, NO3--N, AN, TN, SOC, pH, C:N were all negative, while SM was positive to plant biodiversity in soil layers (P < 0.05). (3) SOM mainly mediates the TN and NH4+-N and then directly or indirectly influences on biodiversity and biomass, and P changed the species richness when AP >20 mg kg-1 in 10-20 cm soil depth. (4) Vegetation restoration was mainly determined by the dynamics of Elymus dahuricus Turcz. firstly, and then by Leymus chinensis(Trin.) Tzvel. at the early of vegetation restoration. Generally, the heterogeneity of SOC and SM in soil layers and AP in deep soil layer was the key factors determining NVR in the gullies of Mollisols watershed. At the end of paper, the NVR process in Moillosols in gullies was classified as four stages, and each stage was depicted in detail.


Assuntos
Carbono , Nitrogênio , Nitrogênio/análise , Fósforo , Plantas , Solo
17.
J Sci Food Agric ; 101(11): 4523-4531, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33454954

RESUMO

BACKGROUND: Phosphorus (P) is an essential mineral nutrient for crop growth and development. Much remains unknown regarding the content and distribution of P forms in different soil aggregates as affected by tillage practices. A 3-year field experiment was conducted to investigate the effects of no-tillage (NT), rotary tillage (RT), subsoiling (SS), and deep tillage (DT) on soil aggregate distribution pattern, aggregate-associated P content, and to understand the conversion trend. RESULTS: Tillage has the potential to accelerate the processes in transforming macro-aggregates (> 0.25 mm) into micro-aggregates (< 0.25 mm). Greatest aggregate stability was attained under RT. Total phosphorus (TP) and available phosphorus (AP) under NT were increased by 21.1-82.0% in contrast to other tillage treatments. The NT had high content in inorganic phosphorus (IP), aluminum phosphorus (Al-P), and iron phosphorus (Fe-P) with 416.7, 107.9, and 99.1 mg·kg-1 on average, respectively. Aggregates with a size dimension of < 2 mm were more sensitive than other sizes of aggregates. IP was evenly distributed throughout all aggregates, ranging from 336.3 to 430.6 mg kg-1 . No differences in organic phosphorus (OP) were found in all tillage treatments, while NT promoted the transformation of labile OP to IP. The AP and OP were generally more abundant in aggregates of 2 to 0.25 mm and < 0.25 mm. CONCLUSION: Short-term NT can improve soil structure and increase P reserves, thus, enhancing the conversion of P from being scarce to available. © 2021 Society of Chemical Industry.


Assuntos
Agricultura/métodos , Fósforo/análise , Solo/química , Alumínio/análise , China , Fertilizantes/análise
18.
Environ Geochem Health ; 43(3): 1257-1271, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32803736

RESUMO

Selenium (Se) is an essential trace element within human beings that hold with crucial biological functions. Investigating the complex origin of soil Se is of great importance to scientifically approach the land use of Se-rich land use, and the respective promotion of regional economic development. In this study, 160 soil samples from 10 profiles in farmland and woodland were collected in Hailun city, which is a typical black soil region in Northeast China, in order to characterize the distribution and speciation of Se in the black soil, and to identify the origin of soil Se. The total selenium content in the soil ranges from 0.045 to 0.444 µg g-1, with an average selenium content in black soil (0.318 µg g-1) of three times greater than that found in the yellow-brown soil (0.114 µg g-1). The land-use type has a significant influence on the distribution of selenium in the black soil. Moreover, Se and heavy metals have a significant (positive or negative) correlation, in which TOC plays an important role. The black soil presents a consistent REE distribution pattern with underlying yellow-brown soil indicating black soil originates from yellow-brown soil. REE geostatistical analysis suggests that the soil Se partly originates from shale weathering and enriches in black soil. Moreover, elemental geochemical analysis and XRD results show that the paleoclimate change from humid and warm to dry and cold is favorable for organic matter accumulation, resulting in less leaching and enhanced adsorption of selenium into the black soil.


Assuntos
Selênio/análise , Solo/química , China , Metais Pesados/análise , Poluentes do Solo/análise , Oligoelementos/análise
19.
Ecotoxicol Environ Saf ; 190: 110079, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841891

RESUMO

The application of Atrazine in soil has always been a main problem in agriculture because its residuals may maintain in the soil for a long term. In this paper, two strains of Atrazine degrading bacteria (Klebsiella sp. FH-1 and Arthrobacter sp. NJ-1) were used to make biological compound microbial inoculum to repair the Atrazine contaminated typical black soil in Northeast China. Grain chaff was chosen as the optimal carrier material for microbial inoculum. The dynamic changes of Atrazine were detected by gas chromatography. The half-life of Atrazine in soil containing microbial inoculum was shortened from 9.8 d to 4.2 d. The Atrazine sensitive crops grown in the repaired soil showed increased stem length, root length, and emergence rate. The effects of microbial remediation on the original bacterial and fungal biota in the typical black soil in Northeast China were analyzed using the metagenomic approach. Results showed that Atrazine inhibited the original bacteria and fungi populations. The total numbers of bacterial and fungal species in the soil were partially recovered by adding the microbial inoculum. Two genera (Sphingosinicella and Sphingomonas) were the dominant bacteria. The beneficial bacterial biota was recovered and the number of species of the beneficial bacteria was higher than that in the original soil after adding the microbial inoculum. The dominant fungi included genera Guehomyces and Chaetomella. There was a total of 113 unclassified fungal genera (22.6% of 499), indicating the potential utility of the unclassified fungal species in the assessment of the soil contamination by Atrazine.


Assuntos
Arthrobacter/metabolismo , Atrazina/metabolismo , Herbicidas/metabolismo , Klebsiella/metabolismo , Microbiologia do Solo , Agricultura , Biodegradação Ambiental , China , Fungos/isolamento & purificação , Microbiota
20.
Environ Monit Assess ; 192(6): 370, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415432

RESUMO

The black soil region in Northeast China is an important production base of commodity grain. However, soil erosion is a major threat that has caused a decline in arable land area and productivity and a series of environmental problems in recent years. To understand the current situation of soil erosion and its changes in the whole black soil region, including six treatment regions, we used the spatial-temporal analysis of soil erosion from 2000 to 2015 and the overlay analysis with its drivers; additionally, soil erosion was evaluated qualitatively with the integrated evaluation method, and its change was indicated by the soil erosion change index (SECI). We found that soil erosion that caused soil loss occurred in each treatment region mainly at the light level in 2015. Water erosion, the most widely distributed erosion type, affected the largest area, while most serious erosion at intensive or higher levels stemmed from wind erosion. Although the situation of water erosion was improved in 2015 compared to that in 2000, the overall situation of soil erosion was worse due to the deterioration of wind and freeze-thaw erosion. Grassland, woodland, and cultivated land changes, such as the conversion from grassland to cultivated land, from woodland to sparse woodland and from dry land to paddy land, revealed these changes to a great extent.


Assuntos
Monitoramento Ambiental , Solo , China , Conservação dos Recursos Naturais , Florestas , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA