Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.383
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(40): e2410993121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39331413

RESUMO

The electronic properties of moiré heterostructures depend sensitively on the relative orientation between layers of the stack. For example, near-magic-angle twisted bilayer graphene (TBG) commonly shows superconductivity, yet a TBG sample with one of the graphene layers rotationally aligned to a hexagonal Boron Nitride (hBN) cladding layer provided experimental observation of orbital ferromagnetism. To create samples with aligned graphene/hBN, researchers often align edges of exfoliated flakes that appear straight in optical micrographs. However, graphene or hBN can cleave along either zig-zag or armchair lattice directions, introducing a [Formula: see text] ambiguity in the relative orientation of two flakes. By characterizing the crystal lattice orientation of exfoliated flakes prior to stacking using Raman and second-harmonic generation for graphene and hBN, respectively, we unambiguously align monolayer graphene to hBN at a near-[Formula: see text], not [Formula: see text], relative twist angle. We confirm this alignment by torsional force microscopy of the graphene/hBN moiré on an open-face stack, and then by cryogenic transport measurements, after full encapsulation with a second, nonaligned hBN layer. This work demonstrates a key step toward systematically exploring the effects of the relative twist angle between dissimilar materials within moiré heterostructures.

2.
Proc Natl Acad Sci U S A ; 121(12): e2319465121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466854

RESUMO

In conventional thin materials, the diffraction limit of light constrains the number of waveguide modes that can exist at a given frequency. However, layered van der Waals (vdW) materials, such as hexagonal boron nitride (hBN), can surpass this limitation due to their dielectric anisotropy, exhibiting positive permittivity along one optic axis and negativity along the other. This enables the propagation of hyperbolic rays within the material bulk and an unlimited number of subdiffractional modes characterized by hyperbolic dispersion. By employing time-domain near-field interferometry to analyze ultrafast hyperbolic ray pulses in thin hBN, we showed that their zigzag reflection trajectories bound within the hBN layer create an illusion of backward-moving and leaping behavior of pulse fringes. These rays result from the coherent beating of hyperbolic waveguide modes but could be mistakenly interpreted as negative group velocities and backward energy flow. Moreover, the zigzag reflections produce nanoscale (60 nm) and ultrafast (40 fs) spatiotemporal optical vortices along the trajectory, presenting opportunities to chiral spatiotemporal control of light-matter interactions. Supported by experimental evidence, our simulations highlight the potential of hyperbolic ray reflections for molecular vibrational absorption nanospectroscopy. The results pave the way for miniaturized, on-chip optical spectrometers, and ultrafast optical manipulation.

3.
Nano Lett ; 24(11): 3395-3403, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359157

RESUMO

Bright, scalable, and deterministic single-photon emission (SPE) is essential for quantum optics, nanophotonics, and optical information systems. Recently, SPE from hexagonal boron nitride (h-BN) has attracted intense interest because it is optically active and stable at room temperature. Here, we demonstrate a tunable quantum emitter array in h-BN at room temperature by integrating a wafer-scale plasmonic array. The transient voltage electrophoretic deposition (EPD) reaction is developed to effectively enhance the filling of single-crystal nanometals in the designed patterns without aggregation, which ensures the fabricated array for tunable performances of these single-photon emitters. An enhancement of ∼500% of the SPE intensity of the h-BN emitter array is observed with a radiative quantum efficiency of up to 20% and a saturated count rate of more than 4.5 × 106 counts/s. These results suggest the integrated h-BN-plasmonic array as a promising platform for scalable and controllable SPE photonics at room temperature.

4.
Nano Lett ; 24(28): 8510-8517, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38856705

RESUMO

Optical emitters in hexagonal boron nitride (hBN) are promising probes for single-molecule sensing platforms. When engineered in nanoparticle form, they can be integrated as detectors in nanodevices, yet positional control at the nanoscale is lacking. Here we demonstrate the functionalization of DNA origami nanopores with optically active hBN nanoparticles (NPs) with nanometer precision. The NPs are active under three wavelengths of visible illumination and display both stable and blinking emission, enabling their accurate localization by using wide-field optical nanoscopy. Correlative opto-structural characterization reveals deterministic binding of bright, multicolor hBN NPs at the pore rim due to π-π stacking interactions at site-specific locations on the DNA origami. Our work provides a scalable, bottom-up approach toward deterministic assembly of solid-state emitters on arbitrary structural elements based on DNA origami. Such a nanoscale arrangement of optically active components can advance the development of single-molecule platforms, including optical nanopores and nanochannel sensors.


Assuntos
Compostos de Boro , DNA , Nanoporos , Compostos de Boro/química , DNA/química , Nanotecnologia/métodos , Nanopartículas/química
5.
Nano Lett ; 24(38): 11882-11888, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39284001

RESUMO

Twisted bilayers host many emergent phenomena in which the electronic excitations (quasiparticles, QPs) are closely intertwined with the local stacking order. By inspecting twisted hexagonal boron nitride (t-hBN), we show that nonlocal long-range interactions in large twisted systems cannot be reliably described by the local (high-symmetry) stacking and that the band gap variation (typically associated with the moiré excitonic potential) shows multiple minima with variable depth depending on the twist angle. We investigate twist angles of 2.45°, 2.88°, 3.48°, and 5.09° using the GW approximation together with stochastic compression to analyze the QP state interactions. We find that band-edge QP hybridization is suppressed for intermediate angles that exhibit two distinct local minima in the moiré potential (at AA region and saddle point (SP)) which become degenerate for the largest system (2.45°).

6.
Nano Lett ; 24(34): 10577-10582, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39150721

RESUMO

Nonlinear chiral photonics explores the nonlinear response of chiral structures, and it offers a pathway to novel optical functionalities not accessible through linear or achiral systems. Here we present the first application of nanostructured van der Waals materials to nonlinear chiral photonics. We demonstrate the 3 orders of magnitude enhancement of the third-harmonic generation from hBN metasurfaces driven by quasi-bound states in the continuum and accompanied by strong nonlinear circular dichroism at the resonances. This novel platform for chiral metaphotonics can be employed for achieving large circular dichroism combined with high-efficiency harmonic generation in a broad frequency range.

7.
Nano Lett ; 24(1): 43-50, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37930062

RESUMO

The defect emission from h-BN at 1.55 eV is interesting as it enables optical readout of spins. It is necessary to identify the nature of the relevant point defects for its controlled introduction. However, it is challenging to engineer point defects in h-BN without changing the local atomic structure. Here, we controllably introduce boron vacancies in h-BN using an ultrahigh spatial resolution and low-energy He+ ion beam. By optimizing the He+ ion irradiation conditions, we control the quantity and location of defects spatially and along the depth of h-BN to achieve a robust photoluminescence emission at 1.55 eV from 10 K to room temperature. We show that as-generated defects activate an additional Raman mode at 1295 cm-1. Electron energy loss spectroscopy confirms introduction of boron vacancies without modification of the local h-BN crystal structure. Our results provide a deterministic strategy to create scalable boron vacancy emitters in h-BN for quantum photonics.

8.
Nano Lett ; 24(4): 1106-1113, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240528

RESUMO

Most hexagonal boron nitride (hBN) single-photon emitters (SPEs) studied to date suffer from variable emission energy and unpredictable polarization, two crucial obstacles to their application in quantum technologies. Here, we report an SPE in hBN with an energy of 2.2444 ± 0.0013 eV created via carbon implantation that exhibits a small inhomogeneity of the emission energy. Polarization-resolved measurements reveal aligned absorption and emission dipole orientations with a 3-fold distribution, which follows the crystal symmetry. Photoluminescence excitation (PLE) spectroscopy results show the predictability of polarization is associated with a reproducible PLE band, in contrast with the non-reproducible bands found in previous hBN SPE species. Photon correlation measurements are consistent with a three-level model with weak coupling to a shelving state. Our ab initio excited-state calculations shed light on the atomic origin of this SPE defect, which consists of a pair of substitutional carbon atoms located at boron and nitrogen sites separated by a hexagonal unit cell.

9.
Nano Lett ; 24(5): 1522-1530, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38147533

RESUMO

Boron nitride nanotubes (BNNTs) have remarkable mechanical and thermal properties and are suitable for neutron shielding due to boron. Because BNNTs exist in bundled and stiff shapes, limiting their practical applications, however, it is essential to improve their formability and processability. In this study, we demonstrate form-factor-free BNNTs and agarose composites for use in neutron shielding for the first time; they are fabricated by mixing hydrophilic agarose with noncovalently functionalized water-soluble BNNTs (p-BNNTs). The mechanical properties of the agarose/p-BNNT composite films surpass those of conventional commodity plastics. When the p-BNNT concentration increased, the neutron linear attenuation coefficient of the composite film increases from 0.574 ± 0.010 to 0.765 ± 0.062 mm-1, which is comparable to that of conventional rigid shielding materials. In particular, the addition of 10 wt % p-BNNTs to agarose results in excellent form-factor flexibility, neutron shielding, and mechanical properties, thus rendering it a promising candidate for the nuclear industry.

10.
Nano Lett ; 24(8): 2473-2480, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38252466

RESUMO

Two-dimensional materials (2DMs) have gained significant interest for resistive-switching memory toward neuromorphic and in-memory computing (IMC). To achieve atomic-level miniaturization, we introduce vertical hexagonal boron nitride (h-BN) memristors with graphene edge contacts. In addition to enabling three-dimensional (3D) integration (i.e., vertical stacking) for ultimate scalability, the proposed structure delivers ultralow power by isolating single conductive nanofilaments (CNFs) in ultrasmall active areas with negligible leakage thanks to atomically thin (∼0.3 nm) graphene edge contacts. Moreover, it facilitates studying fundamental resistive-switching behavior of single CNFs in CVD-grown 2DMs that was previously unattainable with planar devices. This way, we studied their programming characteristics and observed a consistent single quantum step in conductance attributed to unique atomically constrained nanofilament behavior in CVD-grown 2DMs. This resistive-switching property was previously suggested for h-BN memristors and linked to potential improvements in stability (robustness of CNFs), and now we show experimental evidence including superior retention of quantized conductance.

11.
Nano Lett ; 24(40): 12390-12397, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39311406

RESUMO

Single photon emitters (SPEs) in hexagonal boron nitride (hBN) are elementary building blocks for room-temperature on-chip quantum photonic technologies. However, fundamental challenges, such as slow radiative decay and nondeterministic placement of the emitters, limit their full potential. Here, we demonstrate large-area arrays of plasmonic nanoresonators (PNRs) for Purcell-induced room-temperature SPEs by engineering emitter-cavity coupling and enhancing radiative emission. Gold-coated silicon pillars with an alumina spacer enable a 10-fold local-field enhancement in the emission band of native hBN defects. We observe bright SPEs with an average saturated emission rate surpassing 5 million counts per second, an average lifetime of <0.5 ns, and 29% yield. Density functional theory reveals the beneficial role of an alumina spacer between hBN and gold, mitigating the electronic broadening of emission from defects proximal to the metal. Our results offer arrays of bright, heterogeneously integrated single-photon sources, paving the way for robust and scalable quantum information systems.

12.
Nano Lett ; 24(25): 7623-7628, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38860722

RESUMO

Hexagonal boron nitride (h-BN) hosts pure single-photon emitters that have shown evidence of optically detected electronic spin dynamics. However, the electrical and chemical structures of these optically addressable spins are unknown, and the nature of their spin-optical interactions remains mysterious. Here, we use time-domain optical and microwave experiments to characterize a single emitter in h-BN exhibiting room temperature optically detected magnetic resonance. Using dynamical simulations, we constrain and quantify transition rates in the model, and we design optical control protocols that optimize the signal-to-noise ratio for spin readout. This constitutes a necessary step toward quantum control of spin states in h-BN.

13.
Nano Lett ; 24(31): 9442-9450, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39054654

RESUMO

The inherent properties of boron nitride nanotubes (BNNTs) can be further enhanced through the control of their anisotropy. In particular, horizontally aligned BNNTs (HABNNTs) exhibit considerable potential for various applications. However, directly synthesizing HABNNTs is difficult owing to the random floating of BNNTs and the absence of directional forces. Here, we employed a simple, efficient, and universal "surface-like growth" strategy to synthesize high-density and high-quality HABNNTs in the W2B5/Zn precursor system. First, the floating range of BNNTs was restricted to the vicinity of the precursor, and then, directional forces were applied to induce BNNT directional growth along the substrate surface. Experiments and simulations confirmed that the HABNNT orientation could be controlled through manipulation of the directional forces. Furthermore, the strategy was employed for HABNNTs synthesis using the MoB2/Zn, further demonstrating the universality of the approach. Overall, this work offers a fresh perspective on the synthesis of HABNNTs, further expanding their potential applications.

14.
Small ; 20(9): e2307054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37867241

RESUMO

Translation of the unique properties of 2D monolayers from non-scalable micron-sized samples to macroscopic scale is a longstanding challenge obstructed by the substrate-induced strains, interface nonuniformities, and sample-to-sample variations inherent to the scalable fabrication methods. So far, the most successful strategies to reduce strain in graphene are the reduction of the interface roughness and lattice mismatch by using hexagonal boron nitride (h-BN), with the drawback of limited uniformity and applicability to other 2D monolayers, and liquid water, which is not compatible with electronic devices. This work demonstrates a new class of substrates based on hydrogels that overcome these limitations and excel h-BN and water substrates at strain relaxation enabling superiorly uniform and reproducible centimeter-sized sheets of unstrained monolayers. The ultimate strain relaxation and uniformity are rationalized by the extreme structural adaptability of the hydrogel surface owing to its high liquid content and low Young's modulus, and are universal to all 2D materials irrespective of their crystalline structure. Such platforms can be integrated into field effect transistors and demonstrate enhanced charge carrier mobilities in graphene. These results present a universal strategy for attaining uniform and strain-free sheets of 2D materials and underline the opportunities enabled by interfacing them with soft matter.

15.
Small ; : e2404662, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073247

RESUMO

Polymer-based dielectric film capacitors are essential energy storage components in electronic and power systems due to their ultrahigh power density and ultra-fast charge storage/release capability. Nonetheless, their relatively low energy density does not fully meet the requirements of power electronics and pulsed power systems. Herein, a scalable composite dielectric film based on a ferroelectric polymer with edge hydroxylated boron nitride nanosheets (BNNS-OH) is fabricated via the construction of a hydrogen bonding network and stretching orientation strategy. The presence of hydroxyl groups on boron nitride aids in forming a robust hydrogen bonding network within the ferroelectric polymer, leading to a significant increase in Young's modulus and superior dielectric performance. Furthermore, the stretching process aligns the BNNS-OH and the hydrogen bonding network along the drawing direction via covalent and hydrogen bonding interaction, resulting in a remarkable tensile strength (109 MPa), breakdown strength (688 MV m-1), and energy density (28.2 J cm-3), outperforming mostrepresentative polymer-based dielectric films. In combining the advantages of a simple preparation process, extraordinary energy storage performance, and low-cost raw materials, this strategy is viable for large-scale production of polymer-based dielectric films with high mechanical and dielectric performance and opens a new path for the development of next-generation energy storage applications.

16.
Small ; 20(7): e2306132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800612

RESUMO

Epitaxy growth and mechanical transfer of high-quality III-nitrides using 2D materials, weakly bonded by van der Waals force, becomes an important technology for semiconductor industry. In this work, wafer-scale transferrable GaN epilayer with low dislocation density is successfully achieved through AlN/h-BN composite buffer layer and its application in flexible InGaN-based light-emitting diodes (LEDs) is demonstrated. Guided by first-principles calculations, the nucleation and bonding mechanism of GaN and AlN on h-BN is presented, and it is confirmed that the adsorption energy of Al atoms on O2 -plasma-treated h-BN is over 1 eV larger than that of Ga atoms. It is found that the introduced high-temperature AlN buffer layer induces sufficient tensile strain during rapid coalescence to compensate the compressive strain generated by the heteromismatch, and a strain-relaxation model for III-nitrides on h-BN is proposed. Eventually, the mechanical exfoliation of single-crystalline GaN film and LED through weak interaction between multilayer h-BN is realized. The flexible free-standing thin-film LED exhibits ≈66% luminescence enhancement with good reliability compared to that before transfer. This work proposes a new approach for the development of flexible semiconductor devices.

17.
Small ; 20(7): e2304803, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37821403

RESUMO

Metallic surfaces with unidirectional anisotropy are often used to guide the self-assembly of organic molecules along a particular direction. Such supports thus offer an avenue for the fabrication of hybrid organic-metal interfaces with tailored morphology and precise elemental composition. Nonetheless, such control often comes at the expense of detrimental interfacial interactions that might quench the pristine properties of molecules. Here, hexagonal boron nitride grown on Ir(100) is introduced as a robust platform with several coexisting 1D stripe-like moiré superstructures that effectively guide unidirectional self-assemblies of pentacene molecules, concomitantly preserving their pristine electronic properties. In particular, highly-aligned longitudinal arrays of equally-oriented molecules are formed along two perpendicular directions, as demonstrated by comprehensive scanning tunneling microscopy and photoemission characterization performed at the local and non-local scale, respectively. The functionality of the template is demonstrated by photoemission tomography, a surface-averaging technique requiring a high degree of orientational order of the probed molecules. The successful identification of pentacene's pristine frontier orbitals underlines that the template induces excellent long-range molecular ordering via weak interactions, preventing charge transfer.

18.
Small ; : e2403737, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949018

RESUMO

In next-generation neuromorphic computing applications, the primary challenge lies in achieving energy-efficient and reliable memristors while minimizing their energy consumption to a level comparable to that of biological synapses. In this work, hexagonal boron nitride (h-BN)-based metal-insulator-semiconductor (MIS) memristors operating is presented at the attojoule-level tailored for high-performance artificial neural networks. The memristors benefit from a wafer-scale uniform h-BN resistive switching medium grown directly on a highly doped Si wafer using metal-organic chemical vapor deposition (MOCVD), resulting in outstanding reliability and low variability. Notably, the h-BN-based memristors exhibit exceptionally low energy consumption of attojoule levels, coupled with fast switching speed. The switching mechanisms are systematically substantiated by electrical and nano-structural analysis, confirming that the h-BN layer facilitates the resistive switching with extremely low high resistance states (HRS) and the native SiOx on Si contributes to suppressing excessive current, enabling attojoule-level energy consumption. Furthermore, the formation of atomic-scale conductive filaments leads to remarkably fast response times within the nanosecond range, and allows for the attainment of multi-resistance states, making these memristors well-suited for next-generation neuromorphic applications. The h-BN-based MIS memristors hold the potential to revolutionize energy consumption limitations in neuromorphic devices, bridging the gap between artificial and biological synapses.

19.
Small ; 20(38): e2401387, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38773909

RESUMO

Bulk hexagonal boron nitride (h-BN) ceramics with structural integrity, high-temperature resistance and low expansion rate are expected for multifunctional applications in extreme conditions. However, due to its sluggish self-diffusion and intrinsic inertness, it remains a great challenge to overcome high-energy barrier for h-BN powder sintering. Herein, a cross-linking and pressureless-welding strategy is reported to produce bulk boron nitride nanosheets (BNNSs) ceramics with well-crystalized and dense B-N covalent-welding frameworks. The essence of this synthesis strategy lies in the construction of >B─O─H2C─H2C─H2N:→B< bond bridge connection structure among hydroxyl functionalized BNNSs (BNNSs-OH) using bifunctional monoethanolamine (MEA) as cross-linker through esterification and intermolecular-coordination reactions. The prepared BNNSs-interlaced ceramics have densities not less than 1.2 g cm-3, and exhibit exceptional mechanical robustness and resiliency, excellent thermomechanical stability, ultra-low linear thermal expansion coefficient of 0.06 ppm °C-1, and high thermal diffusion coefficient of 4.76 mm2 s-1 at 25 °C and 3.72 mm2 s-1 at 450 °C. This research not only reduces the free energy barrier from h-BN particles to bulk ceramics through facile multi-step physicochemical reaction, but also stimulates further exploration of multifunctional applications for bulk h-BN ceramics over a wide temperature range.

20.
Small ; 20(37): e2311836, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38770997

RESUMO

2D materials exhibit exceptional properties as compared to their macroscopic counterparts, with promising applications in nearly every area of science and technology. To unlock further functionality, the chemical functionalization of 2D structures is a powerful technique that enables tunability and new properties within these materials. Here, the successful effort to chemically functionalize hexagonal boron nitride (hBN), a chemically inert 2D ceramic with weak interlayer forces, using a gas-phase fluorination process is exploited. The fluorine functionalization guides interlayer expansion and increased polar surface charges on the hBN sheets resulting in a number of vastly improved applications. Specifically, the F-hBN exhibits enhanced dispersibility and thermal conductivity at higher temperatures by more than 75% offering exceptional performance as a thermofluid additive. Dispersion of low volumes of F-hBN in lubricating oils also offers marked improvements in lubrication and wear resistance for steel tribological contacts decreasing friction by 31% and wear by 71%. Additionally, incorporating numerous negatively charged fluorine atoms on hBN induces a permanent dipole moment, demonstrating its applicability in microelectronic device applications. The findings suggest that anchoring chemical functionalities to hBN moieties improves a variety of properties for h-BN, making it suitable for numerous other applications such as fillers or reinforcement agents and developing high-performance composite structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA