RESUMO
Cellular inhibitor of apoptosis proteins (cIAPs) are RING-containing E3 ubiquitin ligases that ubiquitylate receptor-interacting protein kinase 1 (RIPK1) to regulate TNF signalling. Here, we established mice simultaneously expressing enzymatically inactive cIAP1/2 variants, bearing mutations in the RING domains of cIAP1/2 (cIAP1/2 mutant RING, cIAP1/2MutR ). cIap1/2MutR/MutR mice died during embryonic development due to RIPK1-mediated apoptosis. While expression of kinase-inactive RIPK1D138N rescued embryonic development, Ripk1D138N/D138N /cIap1/2MutR/MutR mice developed systemic inflammation and died postweaning. Cells expressing cIAP1/2MutR and RIPK1D138N were still susceptible to TNF-induced apoptosis and necroptosis, implying additional kinase-independent RIPK1 activities in regulating TNF signalling. Although further ablation of Ripk3 did not lead to any phenotypic improvement, Tnfr1 gene knock-out prevented early onset of systemic inflammation and premature mortality, indicating that cIAPs control TNFR1-mediated toxicity independent of RIPK1 and RIPK3. Beyond providing novel molecular insights into TNF-signalling, the mouse model established in this study can serve as a useful tool to further evaluate ongoing therapeutic protocols using inhibitors of TNF, cIAPs and RIPK1.
Assuntos
Proteínas Inibidoras de Apoptose , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Morte Celular , Apoptose , Inflamação/genética , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
Necroptosis is a form of regulated cell death that depends on the receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL). The molecular mechanisms underlying distinct instances of necroptosis have only recently begun to emerge. In the present study, we characterized RABGEF1 as a positive regulator of RIPK1/RIPK3 activation in vitro. Based on the overexpression and knockdown experiments, we determined that RABGEF1 accelerated the phosphorylation of RIPK1 and promoted necrosome formation in L929 cells. The pro-necrotic effect of RABGEF1 is associated with its E3 ubiquitin ligase activity and guanine nucleotide exchange factor (GEF) activity. We further confirmed that RABGEF1 interacts with cIAP1 protein by inhibiting its function and plays a regulatory role in necroptosis, which can be abolished by treatment with the antagonist Smac mimetic (SM)-164. In conclusion, our study highlights a potential and novel role of RABGEF1 in promoting TNF-induced cell necrosis.
Assuntos
Fatores de Troca do Nucleotídeo Guanina , Necroptose , Proteínas Quinases , Humanos , Apoptose , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Necrose , Fosforilação , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , CamundongosRESUMO
Helicobacter pylori infection constitutes one of the major risk factors for the development of gastric diseases including gastric cancer. The activation of nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB) via classical and alternative pathways is a hallmark of H. pylori infection leading to inflammation in gastric epithelial cells. Tumor necrosis factor receptor-associated factor (TRAF)-interacting protein with forkhead-associated domain (TIFA) was previously suggested to trigger classical NF-κB activation, but its role in alternative NF-κB activation remains unexplored. Here, we identify TRAF6 and TRAF2 as binding partners of TIFA, contributing to the formation of TIFAsomes upon H. pylori infection. Importantly, the TIFA/TRAF6 interaction enables binding of TGFß-activated kinase 1 (TAK1), leading to the activation of classical NF-κB signaling, while the TIFA/TRAF2 interaction causes the transient displacement of cellular inhibitor of apoptosis 1 (cIAP1) from TRAF2, and proteasomal degradation of cIAP1, to facilitate the activation of the alternative NF-κB pathway. Our findings therefore establish a dual function of TIFA in the activation of classical and alternative NF-κB signaling in H. pylori-infected gastric epithelial cells.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Helicobacter pylori/metabolismo , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismoRESUMO
BACKGROUND: Tumor necrosis factor-α (TNFα) is a pleiotropic cytokine involved in nuclear factor kappa B (NF-κB) mediated cell survival as well as cell death. High serum TNFα levels correlate with liver fibrosis and enhance hepatic stellate cell (HSC) viability. However, the regulatory role of cellular inhibitor of apoptosis-1/2 (cIAP1/2) during TNFα induced NF-κB signaling in activated HSCs is largely unknown. METHOD AND RESULTS: Activated HSCs were treated with cIAP1/2 inhbitiors i.e., SMAC mimetic BV6, and Birinapant in the presence of TNFα and macrophage conditioned media. TNFα cytokine increased cIAP2 expression and enhanced cell viability through the canonical NF-κB signaling in activated HSCs. cIAP2 inhibition via BV6 decreased the TNFα induced canonical NF-κB signaling, and reduced cell viability in activated HSCs. SMAC mimetic, Birinapant alone did not affect the cell viability but treatment of TNFα sensitized HSCs with Birinapant induced cell death. While BV6 mediated cIAP2 ablation was able to decrease the TNFα induced canonical NF-κB signaling, this effect was not observed with Birinapant treatment. Secreted TNFα from M1 polarized macrophages sensitized activated HSCs to BV6 or Birinapant mediated cell death. However, M2 polarized macrophage conditioned medium rescued the activated HSCs from BV6 mediated cytotoxicity. CONCLUSION: In this study, we describe the regulatory role of cIAP2 in TNFα induced NF-κB signaling in activated HSCs. Targeting cIAP2 may be a promising approach for liver fibrosis treatment via modulating NF-κB signaling in activated HSCs.
Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Sobrevivência Celular , Células Estreladas do Fígado/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Linhagem Celular Tumoral , Citocinas , Apoptose , Proteínas Mitocondriais/metabolismoRESUMO
Precision oncology is the ultimate goal of cancer treatment, i.e., to treat cancer and only cancer, leaving all the remaining cells and tissues as intact as possible. Classical chemotherapy and radiotherapy, however, are still effective in many patients with cancer by effectively inducing apoptosis of cancer cells. Cancer cells might resist apoptosis via the anti-apoptotic effects of the inhibitor of apoptosis proteins. Recently, the inhibitors of those proteins have been developed with the goal of enhancing the cytotoxic effects of chemotherapy and radiotherapy, and one of them, xevinapant, has already demonstrated effectiveness in a phase II clinical trial. This class of drugs represents an example of synergism between classical cytotoxic chemo- and radiotherapy and new targeted therapy.
Assuntos
Neoplasias , Radioterapia (Especialidade) , Humanos , Neoplasias/tratamento farmacológico , Medicina de Precisão , Apoptose , Proteínas Inibidoras de ApoptoseRESUMO
Chalcones are interesting anticancer drug candidates which have attracted much interest due to their unique structure and their extensive biological activity. Various functional modifications in chalcones have been reported, along with their pharmacological properties. In the current study, novel chalcone derivatives with the chemical base of tetrahydro-[1,2,4]triazolo[3,4-a]isoquinolin-3-yl)-3-arylprop-2-en-1-one were synthesized, and the structure of their molecules was confirmed through NMR spectroscopy. The antitumor activity of these newly synthesized chalcone derivatives was tested on mouse (Luc-4T1) and human (MDA-MB-231) breast cancer cell lines. The antiproliferative effect was evaluated through SRB screening and the MTT assay after 48 h of treatment at different concentrations. Interestingly, among the tested chalcone derivatives, chalcone analogues with a methoxy group were found to have significant anticancer activity and displayed gradient-dependent inhibition against breast cancer cell proliferation. The anticancer properties of these unique analogues were examined further by cytometric analysis of the cell cycle, quantitative PCR, and the caspases-Glo 3/7 assay. Chalcone methoxy derivatives showed the capability of cell cycle arrest and increased Bax/Bcl2 mRNA ratios as well as caspases 3/7 activity. The molecular docking analysis suggests that these chalcone methoxy derivatives may inhibit anti-apoptotic proteins, particularly cIAP1, BCL2, and EGFRK proteins. In conclusion, our findings confirm that chalcone methoxy derivatives could be considered to be potent drug candidates against breast cancer.
Assuntos
Antineoplásicos , Neoplasias da Mama , Chalcona , Chalconas , Humanos , Animais , Camundongos , Feminino , Chalconas/química , Chalcona/química , Simulação de Acoplamento Molecular , Proliferação de Células , Pontos de Checagem do Ciclo Celular , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/química , Apoptose , Isoquinolinas/farmacologia , Caspases , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura MolecularRESUMO
SMAC antagonization of cIAP1/2 in TH 17 cells upregulates cell adhesion and cytoskeleton genes through the NIK-RelB and p52 axis. SMAC also increases the homotypic interactions of TH 17 cells through a non-canonical NF-κB- and integrin-mediated mechanism resulting in increased ability of TH 17 cells to withstand shear stress.
Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Mitocondriais/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/imunologia , Células Th17/metabolismo , Proteína 3 com Repetições IAP de Baculovírus/antagonistas & inibidores , Adesão Celular/fisiologia , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Ativação Linfocitária/fisiologiaRESUMO
Protooncogene c-MYC, a master transcription factor, is a major driver of human tumorigenesis. Development of pharmacological agents for inhibiting c-MYC as an anticancer therapy has been a longstanding but elusive goal in the cancer field. E3 ubiquitin ligase cIAP1 has been shown to mediate the activation of c-MYC by destabilizing MAD1, a key antagonist of c-MYC. Here we developed a high-throughput assay for cIAP1 ubiquitination and identified D19, a small-molecule inhibitor of E3 ligase activity of cIAP1. We show that D19 binds to the RING domain of cIAP1 and inhibits the E3 ligase activity of cIAP1 by interfering with the dynamics of its interaction with E2. Blocking cIAP1 with D19 antagonizes c-MYC by stabilizing MAD1 protein in cells. Furthermore, we show that D19 and an improved analog (D19-14) promote c-MYC degradation and inhibit the oncogenic function of c-MYC in cells and xenograft animal models. In contrast, we show that activating E3 ubiquitin ligase activity of cIAP1 by Smac mimetics destabilizes MAD1, the antagonist of MYC, and increases the protein levels of c-MYC. Our study provides an interesting example using chemical biological approaches for determining distinct biological consequences from inhibiting vs. activating an E3 ubiquitin ligase and suggests a potential broad therapeutic strategy for targeting c-MYC in cancer treatment by pharmacologically modulating cIAP1 E3 ligase activity.
Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ubiquitinação/efeitos dos fármacos , Animais , Antineoplásicos/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Ubiquitin (Ub)-conjugating enzymes and Ub ligases control protein degradation and regulate many cellular processes in eukaryotes. Cellular inhibitor of apoptosis protein-1 (cIAP1) plays a central role in apoptosis and tumor necrosis factor signaling. It harbors a C-terminal RING domain that homodimerizes to recruit E2â¼Ub (where â¼ denotes a thioester bond) complex to catalyze Ub transfer. Noncovalent Ub binding to the backside of the E2 Ub-conjugating enzyme UbcH5 has previously been shown to enhance RING domain activity, but the molecular basis for this enhancement is unclear. To investigate how dimeric cIAP1 RING activates E2â¼Ub for Ub transfer and what role noncovalently bound Ub has in Ub transfer, here we determined the crystal structure of the cIAP1 RING dimer bound to both UbcH5B covalently linked to Ub (UbcH5B-Ub) and a noncovalent Ub to 1.7 Å resolution. The structure along with biochemical analyses revealed that the cIAP1 RING domain interacts with UbcH5B-Ub and thereby promotes the formation of a closed UbcH5B-Ub conformation that primes the thioester bond for Ub transfer. We observed that the noncovalent Ub binds to the backside of UbcH5B and abuts UbcH5B's α1ß1-loop, which, in turn, stabilizes the closed UbcH5B-Ub conformation. Our results disclose the mechanism by which cIAP1 RING dimer activates UbcH5Bâ¼Ub and indicate that noncovalent Ub binding further stabilizes the cIAP1-UbcH5Bâ¼Ub complex in the active conformation to stimulate Ub transfer.
Assuntos
Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , UbiquitinaçãoRESUMO
C-terminal binding protein 2 (CtBP2) is a transcriptional co-repressor that regulates many genes involved in normal cellular events. Because CtBP2 overexpression has been implicated in various human cancers, its protein levels must be precisely regulated. Previously, we reported that CtBP1 and CtBP1-mediated transcriptional repression are regulated by X-linked inhibitor of apoptosis protein (XIAP). In the present study, we sought to investigate whether CtBP2 is also regulated by XIAP or any other human IAP. We found that cIAP1 interacts with CtBP2 via through BIR domains to regulates the steady-state levels of CtBP2 protein in the nucleus. The levels of CtBP2 were gradually increased upon cIAP1 overexpression and downregulated upon cIAP1 depletion. Interestingly, the RING domain of cIAP1 responsible for E3 ligase activity was not required for this regulation. Finally, the levels of CtBP2 modulated by cIAP1 affected the transcription of CtBP2 target genes and subsequent cell migration. Taken together, our data demonstrate a novel function of cIAP1 which involves protecting CtBP2 from degradation to stabilize its steady-state level. These results suggest that cIAP1 might be a useful target in strategies aiming to downregulate the steady-state level of CtBP2 protein in treating human cancers.
Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas Correpressoras/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Oxirredutases do Álcool/química , Linhagem Celular Tumoral , Proteínas Correpressoras/química , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose/química , Neoplasias/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The elimination of unwanted cells by apoptosis is necessary for tissue morphogenesis. However, the cellular control of morphogenetic apoptosis is poorly understood, notably the modulation of cell sensitivity to apoptotic stimuli. Ureter maturation, the process by which the ureter is displaced to the bladder wall, represents an exquisite example of morphogenetic apoptosis, requiring the receptor protein tyrosine phosphatases (RPTPs): LAR and RPTPσ. Here we show that LAR-RPTPs act through cellular inhibitor of apoptosis protein 1 (cIAP1) to modulate caspase 3,7-mediated ureter maturation. Pharmacologic or genetic inactivation of cIAP1 reverts the apoptotic deficit of LAR-RPTP-deficient embryos. Moreover, Birc2 (cIAP1) inactivation generates excessive apoptosis leading to vesicoureteral reflux in newborns, which underscores the importance of apoptotic modulation during urinary tract morphogenesis. We finally demonstrate that LAR-RPTP deficiency increases cIAP1 stability during apoptotic cell death. Together these results identify a mode of cIAP1 regulation playing a critical role in the cellular response to apoptotic pathway activation in the embryo.
Assuntos
Apoptose/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Ureter/embriologia , Animais , Caspase 3/genética , Caspase 3/metabolismo , Células Cultivadas , Embrião de Mamíferos , Fibroblastos/fisiologia , Proteínas Inibidoras de Apoptose/genética , Camundongos , Camundongos Knockout , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases , Ureter/metabolismoRESUMO
The two major isoforms of the profilin (Pfn) family of proteins in mammals are Pfn1 and Pfn2. Pfn1 is a universal actin cytoskeletal regulator, while Pfn2 is an actin binding protein and mediator of synapse architecture, specific to neural tissues. However, it has recently been suggested that Pfn2 is also widely distributed in various tissues and involved in numerous cellular events as well as cytoskeletal regulation. In our previous study, we showed that Pfn1 is regulated by carboxyl terminus of Hsc70-Interacting Protein (CHIP) via an ubiquitin (Ub) proteasome system; although, the mechanism of regulation of Pfn2 is unknown. In this report, we demonstrate that Pfn2 is heavily ubiquitinated via differential Ub-linkages for degradation or as a regulatory signal. We also show that cellular inhibitor of apoptosis 1 (cIAP1) rather than CHIP, functions as an E3 ligase that targets Pfn2 for proteasomal degradation. Finally, we observed that Pfn2 levels, regulated by cIAP1, affected intracellular levels of reactive oxygen species. These results may provide a regulatory mechanism for cellular function of Pfn2 in various tissues.
Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Profilinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
Molluscum contagiosum virus (MCV) is a dermatotropic poxvirus that causes benign skin lesions. MCV lesions persist because of virally encoded immune evasion molecules that inhibit antiviral responses. The MCV MC159 protein suppresses NF-κB activation, a powerful antiviral response, via interactions with the NF-κB essential modulator (NEMO) subunit of the IκB kinase (IKK) complex. Binding of MC159 to NEMO does not disrupt the IKK complex, implying that MC159 prevents IKK activation via an as-yet-unidentified strategy. Here, we demonstrated that MC159 inhibited NEMO polyubiquitination, a posttranslational modification required for IKK and downstream NF-κB activation. Because MCV cannot be propagated in cell culture, MC159 was expressed independent of infection or during a surrogate vaccinia virus infection to identify how MC159 prevented polyubiquitination. Cellular inhibitor of apoptosis protein 1 (cIAP1) is a cellular E3 ligase that ubiquitinates NEMO. Mutational analyses revealed that MC159 and cIAP1 each bind to the same NEMO region, suggesting that MC159 may competitively inhibit cIAP1-NEMO interactions. Indeed, MC159 prevented cIAP1-NEMO interactions. MC159 also diminished cIAP1-mediated NEMO polyubiquitination and cIAP1-induced NF-κB activation. These data suggest that MC159 competitively binds to NEMO to prevent cIAP1-induced NEMO polyubiquitination. To our knowledge, this is the first report of a viral protein disrupting NEMO-cIAP1 interactions to strategically suppress IKK activation. All viruses must antagonize antiviral signaling events for survival. We hypothesize that MC159 inhibits NEMO polyubiquitination as a clever strategy to manipulate the host cell environment to the benefit of the virus.IMPORTANCE Molluscum contagiosum virus (MCV) is a human-specific poxvirus that causes persistent skin neoplasms. The persistence of MCV has been attributed to viral downregulation of host cell immune responses such as NF-κB activation. We show here that the MCV MC159 protein interacts with the NEMO subunit of the IKK complex to prevent NEMO interactions with the cIAP1 E3 ubiquitin ligase. This interaction correlates with a dampening of cIAP1 to polyubiquitinate NEMO and to activate NF-κB. This inhibition of cIAP1-NEMO interactions is a new viral strategy to minimize IKK activation and to control NEMO polyubiquitination. This research provides new insights into mechanisms that persistent viruses may use to cause long-term infection of host cells.
Assuntos
Interações Hospedeiro-Patógeno , Quinase I-kappa B/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Vírus do Molusco Contagioso/patogenicidade , Processamento de Proteína Pós-Traducional , Ubiquitinação , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Ligação ProteicaRESUMO
Hepatitis B virus (HBV) infection can result in a spectrum of outcomes from immune-mediated control to disease progression, cirrhosis, and liver cancer. The host molecular pathways that influence and contribute to these outcomes need to be defined. Using an immunocompetent mouse model of chronic HBV infection, we identified some of the host cellular and molecular factors that impact on infection outcomes. Here, we show that cellular inhibitor of apoptosis proteins (cIAPs) attenuate TNF signaling during hepatitis B infection, and they restrict the death of infected hepatocytes, thus allowing viral persistence. Animals with a liver-specific cIAP1 and total cIAP2 deficiency efficiently control HBV infection compared with WT mice. This phenotype was partly recapitulated in mice that were deficient in cIAP2 alone. These results indicate that antagonizing the function of cIAPs may promote the clearance of HBV infection.
Assuntos
Vírus da Hepatite B , Hepatite B/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteína 3 com Repetições IAP de Baculovírus , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Citocinas/metabolismo , DNA Viral/genética , Modelos Animais de Doenças , Genótipo , Hepatócitos/metabolismo , Hepatócitos/virologia , Imunofenotipagem , Terapia de Imunossupressão , Interferon gama/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismoRESUMO
YM155, which blocks the expression of survivin, a member of the inhibitor of apoptosis (IAP) family, induces cell death in a variety of cancer types, including prostate, bladder, breast, leukemia, and non-small lung cancer. However, the mechanism underlying gastric cancer susceptibility and resistance to YM155 is yet to be specified. Here, we demonstrate that cIAP1 stability dictates resistance to YM155 in human gastric cancer cells. Treatment of human gastric cancer cells with YM155 differentially induced cell death dependent on the stability of cIAP1 as well as survivin. Transfection with cIAP1 expression plasmids decreased cell sensitivity to YM155, whereas knockdown of endogenous cIAP1 using RNA interference enhanced sensitivity to YM155. In addition, double knockdown of survivin and cIAP1 significantly induced cell death in the YM155-resistant cell line, MKN45. We also showed that YM155 induced autoubiquitination and proteasome-dependent degradation of cIAP1. Surprisingly, survivin affected the stability of cIAP1 through binding, contributing to cell sensitivity to YM155. Thus, our findings reveal that YM155 sensitizes human gastric cancer cells to apoptotic cell death by degrading cIAP1, and furthermore, cIAP1 in gastric cancer cells may act as a PD marker for YM155 treatment.
Assuntos
Antineoplásicos/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Imidazóis/farmacologia , Proteínas Inibidoras de Apoptose/genética , Naftoquinonas/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Survivina , UbiquitinaçãoRESUMO
Hsp90 is an essential chaperone for more than 200 client proteins in eukaryotic cells. The human genome encodes two highly similar cytosolic Hsp90 proteins called Hsp90α and Hsp90ß. Most of the client proteins can interact with either Hsp90 protein; however, only a handful client proteins and one co-chaperone that interact specifically with one of the Hsp90 isoforms were identified. Structural differences underlying these isoform-specific interactions were not studied. Here we report for the first time that the Hsp90 co-chaperone Aha1 interacts preferentially with Hsp90α. The distinction depends on the middle domain of Hsp90. The middle domain of Hsp90α is also responsible for the slow growth phenotype of yeasts that express this isoform as a sole source of Hsp90. These results suggest that differences in the middle domain of Hsp90α and Hsp90ß may be responsible for the isoform-specific interactions with selected proteins. Also shown here within, we determine that preferential chaperoning of cIAP1 by Hsp90ß is mediated by the N-terminal domain of this isoform.
Assuntos
Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/metabolismo , Células HEK293 , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Mutação/genética , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-AtividadeRESUMO
Mitophagy is a highly specialised type of autophagy that plays an important role in regulating mitochondrial dynamics and controls cellular quality during stress. In this study, we established that serum starvation led to induction of cellular inhibitor of apoptosis protein-1 (cIAP1), which regulates mitophagy through ubiquitination. Importantly, gain and loss of function of cIAP1 resulted in concomitant alteration in mitophagy confirming the direct implication of cIAP1 in induction of mitophagy. Interestingly, it was observed that cIAP1 translocated to mitochondria to associate with TOM20, Ulk1, and LC3 to initiate mitophagy. Further, cIAP1-induced mitophagy led to dysfunctional mitochondria that resulted in abrogation of mitochondrial oxygen consumption rate along with the decrease in ATP levels. The ubiquitination of cIAP1 was found to be the critical regulator of mitophagy. The disruption of cIAP1-ubiquitin interaction by PYR41 ensured the abrogation of cIAP1-LC3 interaction and mitophagy inhibition. Our study revealed an important function of cIAP1 as a crucial molecular link between autophagy and apoptosis for regulation of mitochondrial dynamics to mitigate cellular stress.
Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Mitofagia/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose/fisiologia , Transporte Biológico Ativo , Meios de Cultura Livres de Soro , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Consumo de Oxigênio , Receptores de Superfície Celular/metabolismo , Estresse Fisiológico , UbiquitinaçãoRESUMO
Researches indicate that the dysregulation of microRNA (miRNA) is involved in tumorigenesis. Among such dysregulated miRNAs in cancer, miR-145 is reported to be downregulated in multiple cancers. In this study, we demonstrated the downregulation of miR-145 in triple-negative breast cancer (TNBC) tissues and TNBC cell lines by quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis. Furthermore, we found that the tumor necrosis factor-alpha (TNF-α)-induced apoptosis was expanded by the transfection of miR-145 in MDA-MB-231 which belongs to the TNBC cell lines. We then indicated that the mechanism by which miR-145 promotes the TNF-α-induced apoptosis is dependent on the formation of RIP1-FADD-caspase-8 complex. The cellular inhibitor of apoptosis (cIAP1), which is the inhibitor of apoptosis protein, was found to be a target of miR-145 in MDA-MB-231 cells. As a result of cIAP1 overexpression, the promotion of miR-145 on TNF-α-induced apoptosis was inhibited in MDA-MB-231 cells. Therefore, our results indicate that miR-145 acts as a tumor suppressor in TNBC, suggesting that the miR-145-cIAP1 axis might be a potential therapeutic target for TNBC.
Assuntos
Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , MicroRNAs/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fator de Necrose Tumoral alfa/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Caspase 8/genética , Proliferação de Células/efeitos dos fármacos , Proteína de Domínio de Morte Associada a Fas/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Prognóstico , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Células Tumorais CultivadasRESUMO
Apoptosis and necrosis are the two major modes of cell death, the molecular mechanisms of which have been extensively studied. Although initially thought to constitute mutually exclusive cellular states, recent findings reveal cellular contexts that require a balanced interplay between these two modes of cellular demise. Several death initiator and effector molecules, signaling pathways and subcellular sites have been identified as key mediators in both processes, either by constituting common modules or alternatively by functioning as a switch allowing cells to decide which route to take, depending on the specific situation. Importantly, autophagy, which is a predominantly cytoprotective process, has been linked to both types of cell death, serving either a pro-survival or pro-death function. Here we review the recent literature that highlights the intricate interplay between apoptosis, necrosis and autophagy, focusing on the relevance and impact of this crosstalk in normal development and in pathology. This article is part of a Special Section entitled: Cell Death Pathways.
Assuntos
Apoptose , Autofagia , Necrose/patologia , Transdução de Sinais , Humanos , Modelos BiológicosRESUMO
Inhibitors of Apoptosis Proteins (IAPs) are evolutionarily well conserved and have been recognized as the key negative regulators of apoptosis. Recently, the role of IAPs as E3 ligases through the Ring domain was revealed. Using proteomic analysis to explore potential target proteins of DIAP1, we identified Drosophila Endonuclease G (dEndoG), which is known as an effector of caspase-independent cell death. In this study, we demonstrate that human EndoG interacts with IAPs, including human cellular Inhibitor of Apoptosis Protein 1 (cIAP1). EndoG was ubiquitinated by IAPs in vitro and in human cell lines. Interestingly, cIAP1 was capable of ubiquitinating EndoG in the presence of wild-type and mutant Ubiquitin, in which all lysines except K63 were mutated to arginine. cIAP1 expression did not change the half-life of EndoG and cIAP1 depletion did not alter its levels. Expression of dEndoG 54310, in which the mitochondrial localization sequence was deleted, led to cell death that could not be suppressed by DIAP1 in S2 cells. Moreover, EndoG-mediated cell death induced by oxidative stress in HeLa cells was not affected by cIAP1. Therefore, these results indicate that IAPs interact and ubiquitinate EndoG via K63-mediated isopeptide linkages without affecting EndoG levels and EndoG-mediated cell death, suggesting that EndoG ubiquitination by IAPs may serve as a regulatory signal independent of proteasomal degradation.