Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(3): 642-658.e19, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218188

RESUMO

Despite advances in defining diverse somatic mutations that cause myeloid malignancies, a significant heritable component for these cancers remains largely unexplained. Here, we perform rare variant association studies in a large population cohort to identify inherited predisposition genes for these blood cancers. CTR9, which encodes a key component of the PAF1 transcription elongation complex, is among the significant genes identified. The risk variants found in the cases cause loss of function and result in a ∼10-fold increased odds of acquiring a myeloid malignancy. Partial CTR9 loss of function expands human hematopoietic stem cells (HSCs) by increased super elongation complex-mediated transcriptional activity, which thereby increases the expression of key regulators of HSC self-renewal. By following up on insights from a human genetic study examining inherited predisposition to the myeloid malignancies, we define a previously unknown antagonistic interaction between the PAF1 and super elongation complexes. These insights could enable targeted approaches for blood cancer prevention.


Assuntos
Neoplasias Hematológicas , Fosfoproteínas , Elongação da Transcrição Genética , Fatores de Transcrição , Humanos , Neoplasias Hematológicas/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fosfoproteínas/genética
2.
Cell ; 173(2): 355-370.e14, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625052

RESUMO

We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer.


Assuntos
Células Germinativas/metabolismo , Neoplasias/patologia , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Deleção de Genes , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Células Germinativas/citologia , Mutação em Linhagem Germinativa , Humanos , Perda de Heterozigosidade/genética , Mutação de Sentido Incorreto , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Supressoras de Tumor/genética
3.
Cell ; 171(5): 1042-1056.e10, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29056344

RESUMO

We present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures identified previous treatment and germline replication repair deficiency, which improved management of patients and families. These data will inform tumor classification, genetic testing, and clinical trial design.


Assuntos
Neoplasias/genética , Adulto , Criança , Análise por Conglomerados , DNA Polimerase II/genética , DNA Polimerase III/genética , Replicação do DNA , Humanos , Mutação , Neoplasias/classificação , Neoplasias/patologia , Neoplasias/terapia , Proteínas de Ligação a Poli-ADP-Ribose/genética
4.
Cell ; 171(6): 1272-1283.e15, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29107334

RESUMO

MHC-I molecules expose the intracellular protein content on the cell surface, allowing T cells to detect foreign or mutated peptides. The combination of six MHC-I alleles each individual carries defines the sub-peptidome that can be effectively presented. We applied this concept to human cancer, hypothesizing that oncogenic mutations could arise in gaps in personal MHC-I presentation. To validate this hypothesis, we developed and applied a residue-centric patient presentation score to 9,176 cancer patients across 1,018 recurrent oncogenic mutations. We found that patient MHC-I genotype-based scores could predict which mutations were more likely to emerge in their tumor. Accordingly, poor presentation of a mutation across patients was correlated with higher frequency among tumors. These results support that MHC-I genotype-restricted immunoediting during tumor formation shapes the landscape of oncogenic mutations observed in clinically diagnosed tumors and paves the way for predicting personal cancer susceptibilities from knowledge of MHC-I genotype.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Mutação , Neoplasias/imunologia , Linhagem Celular Tumoral , Simulação por Computador , Feminino , Células HeLa , Humanos , Masculino , Monitorização Imunológica , Proteoma
5.
Trends Genet ; 39(5): 401-414, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863945

RESUMO

MicroRNAs (miRNAs) play vital roles in the regulation of gene expression, a process known as miRNA-induced gene silencing. The human genome codes for many miRNAs, and their biogenesis relies on a handful of genes, including DROSHA, DGCR8, DICER1, and AGO1/2. Germline pathogenic variants (GPVs) in these genes cause at least three distinct genetic syndromes, with clinical manifestations that range from hyperplastic/neoplastic entities to neurodevelopmental disorders (NDDs). Over the past decade, DICER1 GPVs have been shown to lead to tumor predisposition. Moreover, recent findings have provided insight into the clinical consequences arising from GPVs in DGCR8, AGO1, and AGO2. Here we provide a timely update with respect to how GPVs in miRNA biogenesis genes alter miRNA biology and ultimately lead to their clinical manifestations.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Genótipo , Genoma Humano , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
6.
Am J Hum Genet ; 109(6): 1026-1037, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35512711

RESUMO

More knowledge is needed regarding germline predisposition to Ewing sarcoma to inform biological investigation and clinical practice. Here, we evaluated the enrichment of pathogenic germline variants in Ewing sarcoma relative to other pediatric sarcoma subtypes, as well as patterns of inheritance of these variants. We carried out European-focused and pan-ancestry case-control analyses to screen for enrichment of pathogenic germline variants in 141 established cancer predisposition genes in 1,147 individuals with pediatric sarcoma diagnoses (226 Ewing sarcoma, 438 osteosarcoma, 180 rhabdomyosarcoma, and 303 other sarcoma) relative to identically processed cancer-free control individuals. Findings in Ewing sarcoma were validated with an additional cohort of 430 individuals, and a subset of 301 Ewing sarcoma parent-proband trios was analyzed for inheritance patterns of identified pathogenic variants. A distinct pattern of pathogenic germline variants was seen in Ewing sarcoma relative to other sarcoma subtypes. FANCC was the only gene with an enrichment signal for heterozygous pathogenic variants in the European Ewing sarcoma discovery cohort (three individuals, OR 12.6, 95% CI 3.0-43.2, p = 0.003, FDR = 0.40). This enrichment in FANCC heterozygous pathogenic variants was again observed in the European Ewing sarcoma validation cohort (three individuals, OR 7.0, 95% CI 1.7-23.6, p = 0.014), representing a broader importance of genes involved in DNA damage repair, which were also nominally enriched in individuals with Ewing sarcoma. Pathogenic variants in DNA damage repair genes were acquired through autosomal inheritance. Our study provides new insight into germline risk factors contributing to Ewing sarcoma pathogenesis.


Assuntos
Sarcoma de Ewing , Sarcoma , Criança , Dano ao DNA/genética , Predisposição Genética para Doença , Células Germinativas , Mutação em Linhagem Germinativa/genética , Humanos , Sarcoma/genética , Sarcoma de Ewing/genética
7.
Int J Cancer ; 154(4): 607-614, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37776287

RESUMO

Genetic predisposition is one of the major risk factors for pediatric cancer, with ~10% of children being carriers of a predisposing germline alteration. It is likely that this is the tip of the iceberg and many children are underdiagnosed, as most of the analysis focuses on single or short nucleotide variants, not considering the full spectrum of DNA alterations. Hence, we applied optical genome mapping (OGM) to our cohort of 34 pediatric cancer patients to perform an unbiased germline screening and analyze the frequency of structural variants (SVs) and their impact on cancer predisposition. All children were clinically highly suspicious for germline alterations (concomitant conditions or congenital anomalies, positive family cancer history, particular cancer type, synchronous or metachronous tumors), but whole exome sequencing (WES) had failed to detect pathogenic variants in cancer predisposing genes. OGM detected a median of 49 rare SVs (range 27-149) per patient. By analysis of 18 patient-parent trios, we identified three de novo SVs. Moreover, we discovered a likely pathogenic deletion of exon 3 in the known cancer predisposition gene BRCA2, and identified a duplication in RPA1, which might represent a new cancer predisposition gene. We conclude that optical genome mapping is a suitable tool for detecting potentially predisposing SVs in addition to WES in pediatric cancer patients.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias , Criança , Humanos , Predisposição Genética para Doença , Mutação , Neoplasias/genética , Mapeamento Cromossômico
8.
Int J Cancer ; 154(8): 1455-1463, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38175816

RESUMO

Lynch syndrome (LS) predisposes to cancer in adulthood and is caused by heterozygous germline variants in a mismatch repair (MMR) gene. Recent studies show an increased prevalence of LS among children with cancer, suggesting a causal relationship. For LS-spectrum (LSS) cancers, including high-grade gliomas and colorectal cancer, causality has been supported by typical MMR-related tumor characteristics, but for non-LSS cancers, causality is unclear. We characterized 20 malignant tumors of 18 children with LS, including 16 non-LSS tumors. We investigated second hits, tumor mutational load, mutational signatures and MMR protein expression. In all LSS tumors and three non-LSS tumors, we detected MMR deficiency caused by second hit somatic alterations. Furthermore, these MMR-deficient tumors carried driver variants that likely originated as a consequence of MMR deficiency. However, in 13 non-LSS tumors (81%), a second hit and MMR deficiency were absent, thus a causal link between LS and cancer development in these children is lacking. These findings demonstrate that causality of LS in children with cancer, which can be determined by molecular tumor characterization, seems to be restricted to specific tumor types. Large molecular and epidemiological studies are needed to further refine the tumor spectrum in children with LS.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Criança , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Neoplasias Colorretais/patologia , Neoplasias Encefálicas/genética , Mutação em Linhagem Germinativa , Reparo de Erro de Pareamento de DNA/genética , Instabilidade de Microssatélites , Proteína 1 Homóloga a MutL/genética
9.
Gastroenterology ; 164(5): 719-735, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740198

RESUMO

Hereditary diffuse gastric cancer (HDGC) is a dominantly inherited cancer syndrome characterized by a high incidence of diffuse gastric cancer (DGC) and lobular breast cancer (LBC). HDGC is caused by germline mutations in 2 genes involved in the epithelial adherens junction complex, CDH1 and CTNNA1. We discuss the genetics of HDGC and the variability of its clinical phenotype, in particular the variable penetrance of advanced DGC and LBC, both within and between families. We review the pathology of the disease, the mechanism of tumor initiation, and its natural history. Finally, we describe current best practice for the clinical management of HDGC, including emerging genetic testing criteria for the identification of new families, methods for endoscopic surveillance, the complications associated with prophylactic surgery, postoperative quality of life, and the emerging field of HDGC chemoprevention.


Assuntos
Neoplasias da Mama , Carcinoma Lobular , Neoplasias Gástricas , Humanos , Feminino , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/prevenção & controle , Qualidade de Vida , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Caderinas/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença
10.
Genet Med ; : 101197, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38943478

RESUMO

PURPOSE: Germline testing in pediatric cancer presents opportunities and challenges. Understanding family perspectives, experiences, and preferences will optimize integration into routine care. METHODS: Following PRISMA guidelines, we searched four databases for studies exploring perspectives, experiences, and preferences of parents/caregivers and/or patients regarding germline testing of children with cancer. Qualitative and quantitative data was extracted, organized, and summarized by research question and themes. RESULTS: We identified 2286 unique articles, of which 24 were included. Interest in and uptake of testing was high. Families were motivated by altruism and a desire for inheritance/causation information. Testing barriers included psychological concerns, timing of the testing approach if offered at diagnosis or in a high-risk cancer setting and privacy/discrimination. Testing experiences highlighted challenges yet also positive impacts, with results providing psychological relief and informing proactive decision-making. Timing preferences varied, however allowing time to adjust to a new diagnosis was a common theme. Most wanted to receive as many germline sequencing-related results as possible. CONCLUSION: Findings underscore the importance of integrating germline analyses into pediatric cancer care with flexibility and support for families facing challenges. Where possible, consent should be provided at a time that suits each family's situation with access to information aligning with their needs and preferences. PROSPERO: CRD42023444890.

11.
Clin Genet ; 106(2): 193-198, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38658784

RESUMO

Acute promyelocytic leukemia (APL) represents 5%-10% of childhood acute myeloid leukemia (AML) and is the most curable subtype of AML. Fanconi anemia (FA) is one of the most common inherited bone marrow failure syndromes caused by biallelic pathogenic variants (PV) in specific DNA-repair genes. Biallelic PVs in FANCD1/BRCA2 (FA-D1) account for 3% of FA and are associated with early-onset leukemia and a high risk of solid tumors. We report a 4 year-old boy from non-consanguineous parents diagnosed with standard risk APL. This child had café-au-lait spots and an extra thumb remnant. Genomic sequencing revealed two PV in FANCD1/BRCA2 confirming a diagnosis of FA-D1. Chromosomal breakage studies were compatible with FA. Each parent carried one variant and had no personal history of cancer. Morphological then molecular remissions were achieved with all-trans retinoic acid and Arsenic trioxide. This patient underwent haploidentical stem cell transplant. In addition to our patient, a literature search revealed four additional patients with APL/FA, with a total of three patients with FA-D1. This raises the possibility of an association between such rare disorders. Practical management of APL in the setting of FA-D1 is discussed with an overview of current evidence and knowledge gaps.


Assuntos
Anemia de Fanconi , Leucemia Promielocítica Aguda , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/terapia , Anemia de Fanconi/complicações , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/diagnóstico , Masculino , Pré-Escolar , Proteína BRCA2/genética , Predisposição Genética para Doença
12.
J Biomed Sci ; 31(1): 74, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014450

RESUMO

BACKGROUND: Prostate cancer (PrCa) is the most frequently diagnosed cancer in men. Variants in known moderate- to high-penetrance genes explain less than 5% of the cases arising at early-onset (< 56 years) and/or with familial aggregation of the disease. Considering that BubR1 is an essential component of the mitotic spindle assembly checkpoint, we hypothesized that monoallelic BUB1B variants could be sufficient to fuel chromosomal instability (CIN), potentially triggering (prostate) carcinogenesis. METHODS: To unveil BUB1B as a new PrCa predisposing gene, we performed targeted next-generation sequencing in germline DNA from 462 early-onset/familial PrCa patients and 1,416 cancer patients fulfilling criteria for genetic testing for other hereditary cancer syndromes. To explore the pan-cancer role of BUB1B, we used in silico BubR1 molecular modeling, in vitro gene-editing, and ex vivo patients' tumors and peripheral blood lymphocytes. RESULTS: Rare BUB1B variants were found in ~ 1.9% of the early-onset/familial PrCa cases and in ~ 0.6% of other cancer patients fulfilling criteria for hereditary disease. We further show that BUB1B variants lead to decreased BubR1 expression and/or stability, which promotes increased premature chromatid separation and, consequently, triggers CIN, driving resistance to Taxol-based therapies. CONCLUSIONS: Our study shows that different BUB1B variants may uncover a trigger for CIN-driven carcinogenesis, supporting the role of BUB1B as a (pan)-cancer predisposing gene with potential impact on genetic counseling and treatment decision-making.


Assuntos
Instabilidade Cromossômica , Predisposição Genética para Doença , Neoplasias da Próstata , Proteínas Serina-Treonina Quinases , Humanos , Masculino , Neoplasias da Próstata/genética , Proteínas Serina-Treonina Quinases/genética , Pessoa de Meia-Idade , Mutação em Linhagem Germinativa , Adulto , Proteínas de Ciclo Celular
13.
Am J Med Genet A ; : e63709, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801192

RESUMO

Osteopathia Striata with Cranial Sclerosis (OSCS) is a rare genetic condition primarily characterized by metaphyseal striations of long bones, bone sclerosis, macrocephaly, and other congenital anomalies. It is caused by pathogenic variants in AMER1, a tumor suppressor and a WNT signaling repressor gene with key roles in tissue regeneration, neurodevelopment, tumorigenesis, and other developmental processes. While somatic AMER1 pathogenic variants have frequently been identified in several tumor types (e.g., Wilms tumor and colorectal cancer), whether OSCS (i.e., with AMER1 germline variants) is a tumor predisposition syndrome is not clear, with only nine cases reported with tumors. We here report the first case of neuroblastoma diagnosed in a male child with OSCS, review all previously reported tumors diagnosed in individuals with OSCS, and discuss potential tumorigenic mechanisms of AMER1. Our report adds to the accumulating evidence suggesting OSCS is a tumor predisposition condition, highlighting the importance of maintaining a high index of suspicion for the associated tumors when evaluating patients with OSCS. Importantly, Wilms tumor stands out as the most commonly observed tumor in OSCS patients, underscoring the need for regular surveillance.

14.
Am J Med Genet A ; : e63812, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990105

RESUMO

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by pathogenic variants in FBN1, with a hitherto unknown association with cancer. Here, we present two females with MFS who developed pediatric neuroblastoma. Patient 1 presented with neonatal MFS and developed an adrenal neuroblastoma with unfavorable tumor genetics at 10 months of age. Whole genome sequencing revealed a germline de novo missense FBN1 variant (NP_000129.3:p.(Asp1322Asn)), resulting in intron 32 inclusion and exon 32 retention. Patient 2 was diagnosed with classic MFS, caused by a germline de novo frameshift variant in FBN1 (NP_000129.3:p.(Cys805Ter)). At 18 years, she developed high-risk neuroblastoma with a somatic ALK pathogenic variant (NP_004295.2:p.(Arg1275Gln)). We identified 32 reported cases of MFS with cancer in PubMed, yet none with neuroblastoma. Among patients, we observed an early cancer onset and high frequency of MFS complications. We also queried cancer databases for somatic FBN1 variants, finding 49 alterations reported in PeCan, and variants in 2% of patients in cBioPortal. In conclusion, we report the first two patients with MFS and neuroblastoma and highlight an early age at cancer diagnosis in reported patients with MFS. Further epidemiological and functional studies are needed to clarify the growing evidence linking MFS and cancer.

15.
Am J Med Genet A ; 194(6): e63528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38169111

RESUMO

Somatic variants in the NOTCH pathway regulator FBXW7 are frequently seen in a variety of malignancies. Heterozygous loss-of-function germline variants in FBXW7 have recently been described as causative for a neurodevelopmental syndrome. Independently, FBXW7 was also considered as a susceptibility gene for Wilms tumor due to a few observations of heterozygous germline variants in patients with Wilms tumor. Whether the same FBXW7 variants are implicated in both, neurodevelopmental delay and Wilms tumor formation, remained unclear. By clinical testing, we now observed a patient with neurodevelopmental delay due to a de novo constitutional mosaic FBXW7 splice site pathogenic variant who developed Wilms tumor. In the tumor, we identified a second hit frameshift variant in FBXW7. Immunohistochemical staining was consistent with mosaic loss of FBXW7 protein expression in the tumor. Our data support the role of constitutional FBXW7 pathogenic variants in both, neurodevelopmental disorder and the etiology of Wilms tumor. Therefore, Wilms tumor screening should be considered in individuals with constitutional or germline pathogenic variants in FBXW7 and associated neurodevelopmental syndrome.


Assuntos
Proteína 7 com Repetições F-Box-WD , Predisposição Genética para Doença , Tumor de Wilms , Humanos , Masculino , Proteína 7 com Repetições F-Box-WD/genética , Mutação da Fase de Leitura/genética , Mutação em Linhagem Germinativa/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Tumor de Wilms/genética , Tumor de Wilms/patologia , Criança
16.
Am J Med Genet A ; : e63777, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822599

RESUMO

Beckwith-Wiedemann spectrum (BWSp) is caused by genetic and epigenetic alterations on chromosome 11 that regulate cell growth and division. Considering the diverse phenotypic landscape in BWSp, the characterization of the CDKN1C molecular subtype remains relatively limited. Here, we investigate the role of CDKN1C in the broader BWSp phenotype. Notably, patients with CDKN1C variants appear to exhibit a different tumor risk than other BWSp molecular subtypes. We performed a comprehensive literature review using the search term "CDKN1C Beckwith" to identify 113 cases of patients with molecularly confirmed CDKN1C-BWSp. We then assessed the genotype and phenotype in a novel cohort of patients with CDKN1C-BWSp enrolled in the BWS Research Registry. Cardinal and suggestive features were evaluated for all patients reported, and tumor risk was established based on available reports. The most common phenotypes included macroglossia, omphalocele, and ear creases/pits. Tumor types reported from the literature included neuroblastoma, acute lymphocytic leukemia, superficial spreading melanoma, and intratubular germ cell neoplasia. Overall, this study identifies unique features associated with CDKN1C variants in BWSp, enabling more accurate clinical management. The absence of Wilms tumor and hepatoblastoma suggests that screening for these tumors may not be necessary, while the neuroblastoma risk warrants appropriate screening recommendations.

17.
Am J Med Genet A ; 194(6): e63496, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38282294

RESUMO

In 2002, heterozygous suppressor of fused variants (SUFU+/-) in the germline were described to have a tumor suppressor role in the development of pediatric medulloblastoma (MB). Other neoplasms associated with pathologic germline SUFU+/- variants have also been described among patients with basal cell nevus syndrome (BCNS; BCNS is also known as Gorlin syndrome, nevoid basal cell carcinoma [BCC] syndrome or Gorlin-Goltz syndrome; OMIM 109400), an autosomal-dominant cancer predisposition syndrome. The phenotype of patients with germline SUFU+/- variants is very poorly characterized due to a paucity of large studies with long-term follow-up. As such, there is a clinical need to better characterize the spectrum of neoplasms among patients with germline SUFU+/- variants so that clinicians can provide accurate counseling and optimize tumor surveillance strategies. The objective of this study is to perform a scoping review to map the evidence on the rate of medulloblastoma and to describe the spectrum of other neoplasms among patients with germline SUFU+/- variants. A review of all published literature in PubMed (MEDLINE), EMBASE, Cochrane, and Web of Science were searched from the beginning of each respective database until October 9, 2021. Studies of pediatric and adult patients with a confirmed germline SUFU+/- variant who were evaluated for the presence of any neoplasm (benign or malignant) were included. There were 176 patients (N = 30 studies) identified with a confirmed germline SUFU+/- variant who met inclusion criteria. Data were extracted from two cohort studies, two case-control studies, 18 case series, and eight case reports. The median age at diagnosis of a germline SUFU+/- variant was 4.5 years where 44.4% identified as female and 13.4% of variants were de novo. There were 34 different neoplasms (benign and malignant) documented among patients with confirmed germline SUFU+/- variants, and the most common were medulloblastoma (N = 59 patients), BCC (N = 21 patients), and meningioma (N = 19 patients). The median age at medulloblastoma diagnosis was 1.42 years (range 0.083-3; interquartile range 1.2). When data were available for these three most frequent neoplasms (N = 95 patients), 31 patients (32.6%) had neither MB, BCC nor meningioma; 51 patients (53.7%) had one of medulloblastoma or BCC or meningioma; eight patients (8.4%) had two of medulloblastoma or BCC or meningioma, and five patients (5.3%) had medulloblastoma and BCC and meningioma. This is the first study to synthesize the data on the frequency and spectrum of neoplasms specifically among patients with a confirmed germline SUFU+/- variant. This scoping review is a necessary step forward in optimizing evidence-based tumor surveillance strategies for medulloblastoma and estimating the risk of other neoplasms that could impact patient outcomes.


Assuntos
Mutação em Linhagem Germinativa , Heterozigoto , Meduloblastoma , Proteínas Repressoras , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Mutação em Linhagem Germinativa/genética , Predisposição Genética para Doença , Síndrome do Nevo Basocelular/genética , Síndrome do Nevo Basocelular/patologia , Masculino , Feminino , Criança
18.
Psychooncology ; 33(1): e6279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282231

RESUMO

OBJECTIVE: Cancer predisposition syndromes are being more frequently recognized in the etiology of pediatric oncology and genetic-related technologies are evolving rapidly, leading to an increasing availability of genetic testing for families. This systematic review assessed the psychological impact of genetic testing on children and parents in the context of childhood cancer. METHODS: Searches were performed using three databases (Web of Science, Pubmed and Embase) to identify relevant empirical studies. Following Cochrane guidelines, we screened 3838 articles and identified 18 eligible studies, representing the perspectives of children and/or parents. RESULTS: The included studies described the impact of genetic testing in different contexts (e.g. predictive testing and diagnostic testing) and in different subgroups, (e.g. carriers and non-carriers). Overall, the studies did not identify clinically-relevant long-term increases in negative emotions (depression, anxiety, distress, uncertainty, guilt) as a result of genetic testing. Negative emotions were typically time-limited and generally occurred in families with particular characteristics (e.g. those with a history of multiple cancer diagnoses, families receiving an unfavorable result for one child and a favorable result in siblings, and those with pre-existing mental health difficulties). Positive emotions (hopefulness, relief and peace of mind) were also reported. Knowing their genetic risk status appeared to help to foster empowerment among families, regardless of the result and any associated emotions. CONCLUSIONS: Genetic testing in pediatric oncology does not appear to cause significant additional harm and can lead to positive outcomes. Clinicians need to be especially attentive when counseling families at increased risk of distress.


Assuntos
Testes Genéticos , Neoplasias , Criança , Humanos , Neoplasias/psicologia , Emoções , Ansiedade , Oncologia
19.
J Am Acad Dermatol ; 91(2): 265-272, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38513832

RESUMO

BACKGROUND: Prior studies have estimated a small number of individuals with melanoma (2%-2.5%) have germline cancer predisposition, yet a recent twin study suggested melanoma has the highest hereditability among cancers. OBJECTIVE: To determine the incidence of hereditary melanoma and characterize the spectrum of cancer predisposition genes that may increase the risk of melanoma. METHODS: Four hundred individuals with melanoma and personal or family history of cancers underwent germline testing of >80 cancer predisposition genes. Comparative analysis of germline data was performed on 3 additional oncologic and dermatologic data sets. RESULTS: Germline pathogenic/likely pathogenic (P/LP) variants were identified in 15.3% (61) individuals with melanoma. Most variants (41, 67%) involved genes considered unrelated to melanoma (BLM, BRIP1, CHEK2, MLH1, MSH2, PMS2, RAD51C). A third (20, 33%) were in genes previously associated with familial melanoma (BAP1, BRCA2, CDKN2A, MITF, TP53). Nearly half (30, 46.9%) of P/LP variants were in homologous repair deficiency genes. Validation cohorts demonstrated P/LP rates of 10.6% from an unselected oncologic cohort, 15.8% from a selected commercial testing cohort, and 14.5% from a highly selected dermatologic study. LIMITATIONS: Cohorts with varying degrees of selection, some retrospective. CONCLUSION: Germline predisposition in individuals with melanoma is common, with clinically actionable findings diagnosed in 10.6% to 15.8%.


Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/epidemiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Testes Genéticos , Adulto Jovem , Incidência
20.
Curr Treat Options Oncol ; 25(6): 769-783, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713268

RESUMO

OPINION STATEMENT: Pathogenic germline variants in the setting of several associated cancer predisposition syndromes (CPS) may lead to the development of sarcoma. We would consider testing for a CPS in patients with a strong family history of cancer, multiple primary malignancies, and/or pediatric/adolescent/young adult patients diagnosed with other malignancies strongly associated with CPS. When a CPS is diagnosed in a patient with sarcoma, additional treatment considerations and imaging options for those patients are required. This applies particularly to the use of radiation therapy, ionizing radiation with diagnostic imaging, and the use of alkylating chemotherapy. As data and guidelines are currently lacking for many of these scenarios, we have adopted a shared decision-making process with patients and their families. If the best chance for cure in a patient with CPS requires utilization of radiation therapy or alkylating chemotherapy, we discuss the risks with the patient but do not omit these modalities. However, if there are treatment options that yield equivalent survival rates, yet avoid these modalities, we elect for those options. Considering staging imaging and post-therapy evaluation for sarcoma recurrence, we avoid surveillance techniques that utilize ionizing radiation when possible but do not completely omit them when their use is indicated.


Assuntos
Predisposição Genética para Doença , Sarcoma , Humanos , Sarcoma/diagnóstico , Sarcoma/terapia , Sarcoma/genética , Sarcoma/etiologia , Mutação em Linhagem Germinativa , Testes Genéticos , Gerenciamento Clínico , Tomada de Decisão Clínica , Terapia Combinada/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA