Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Biol Sci ; 291(2018): 20232773, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471553

RESUMO

Endemic (small-ranged) species are distributed non-randomly across the globe. Regions of high topography and stable climates have higher endemism than flat, climatically unstable regions. However, it is unclear how these environmental conditions interact with and filter mammalian traits. Here, we characterize the functional traits of highly endemic mammalian assemblages in multiple ways, testing the hypothesis that these assemblages are trait-filtered (less functionally diverse) and dominated by species with traits associated with small range sizes. Compiling trait data for more than 5000 mammal species, we calculated assemblage means and multidimensional functional metrics to evaluate the distribution of traits across each assemblage. We then related these metrics to the endemism of global World Wildlife Fund ecoregions using linear models and phylogenetic fourth-corner regression. Highly endemic mammalian assemblages had small average body masses, low fecundity, short lifespans and specialized habitats. These traits relate to the stable climate and rough topography of endemism hotspots and to mammals' ability to expand their ranges, suggesting that the environmental conditions of endemism hotspots allowed their survival. Furthermore, species living in endemism hotspots clustered near the edges of their communities' functional spaces, indicating that abiotic trait filtering and biotic interactions act in tandem to shape these communities.


Assuntos
Clima , Ecossistema , Animais , Filogenia , Mamíferos , Animais Selvagens
2.
Glob Chang Biol ; 29(9): 2421-2435, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36749035

RESUMO

Endemic species and species with small ranges are ecologically and evolutionarily distinct and are vulnerable to extinction. Determining which abiotic and biotic factors structure patterns of endemism on continents can advance our understanding of global biogeographic processes, but spatial patterns of mammalian endemism have not yet been effectively predicted and reconstructed. Using novel null model techniques, we reconstruct trends in mammalian endemism and describe the isolated and combined effects of physiographic, ecological, and evolutionary factors on endemism. We calculated weighted endemism for global continental ecoregions and compared the spatial distribution of endemism to niche-based, geographic null models of endemism. These null models distribute species randomly across continents, simulating their range sizes from their degree of climatic specialization. They isolate the effects of physiography (topography and climate) and species richness on endemism. We then ran linear and structural models to determine how topography and historical climate stability influence endemism. The highest rates of mammalian endemism were found in topographically rough, climatically stable ecoregions with many species. The null model that isolated physiography did not closely approximate the observed distribution of endemism (r2  = .09), whereas the null model that incorporated both physiography and species richness did (r2  = .59). The linear models demonstrate that topography and climatic stability both influenced endemism values, but that average climatic niche breadth was not highly correlated with endemism. Climate stability and topography both influence weighted endemism in mammals, but the spatial distribution of mammalian endemism is driven by a combination of physiography and species richness. Despite its relationship to individual range size, average climate niche breadth has only a weak influence on endemism. The results highlight the importance of historical biogeographic processes (e.g. centers of speciation) and geography in driving endemism patterns, and disentangle the mechanisms structuring species ranges worldwide.


Assuntos
Biodiversidade , Evolução Biológica , Animais , Mamíferos , Geografia
3.
Glob Chang Biol ; 28(19): 5849-5858, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35795987

RESUMO

The vulnerability of marine biodiversity to accelerated rates of climatic change is poorly understood. By developing a new method for identifying extreme oceanic warming events during Earth's most recent deglaciation, and comparing these to 21st century projections, we show that future rates of ocean warming will disproportionately affect the most speciose marine communities, potentially threatening biodiversity in more than 70% of current-day global hotspots of marine species richness. The persistence of these richest areas of marine biodiversity will require many species to move well beyond the biogeographic realm where they are endemic, at rates of redistribution not previously seen. Our approach for quantifying exposure of biodiversity to past and future rates of oceanic warming provides new context and scalable information for deriving and strengthening conservation actions to safeguard marine biodiversity under climate change.


Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Oceanos e Mares
4.
BMC Evol Biol ; 20(1): 111, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859147

RESUMO

BACKGROUND: The distribution of genetic diversity and the underlying processes are important for conservation planning but are unknown for most species and have not been well studied in many regions. In East Asia, the Sichuan Basin and surrounding mountains constitute an understudied region that exhibits a "ring" of high species richness overlapping the eastern edge of the global biodiversity hotspot Mountains of Southwest China. We examine the distributional history and genetic diversification of the Emei mustache toad Leptobrachium boringii, a typical "ring" element characterized by disjunct ranges in the mountains, by integrating time-calibrated gene tree, genetic variability, individual-level clustering, inference of population splitting and mixing from allele frequencies, and paleoclimatic suitability modeling. RESULTS: The results reveal extensive range dynamics, including secondary contact after long-term isolation via westward dispersal accompanied by variability loss. They allow the proposal of a model that combines recurrent contractions caused by Quaternary climatic changes and some failed expansions under suitable conditions for explaining the shared disjunct distribution pattern. Providing exceptional low-elevation habitats in the hotspot area, the eastern edge harbors both long-term refugial and young immigrant populations. This finding and a synthesis of evidence from other taxa demonstrate that a certain contributor to biodiversity, one that preserves and receives low-elevation elements of the east in this case, can be significant for only a particular part of a hotspot. By clarifying the low variability of these refugial populations, we show that discordant mitochondrial estimates of diversity can be obtained for populations that experienced admixture, which would have unlikely left proportional immigrant alleles for each locus. CONCLUSIONS: Dispersal after long-term isolation can explain much of the spatial distribution of genetic diversity in this species, while secondary contact and long-term persistence do not guarantee a large variation. The model for the formation of disjunct ranges may apply to many other taxa isolated in the mountains surrounding the Sichuan Basin. Furthermore, this study provides insights into the heterogeneous nature of hotspots and discordant variability obtained from genome-wide and mitochondrial data.


Assuntos
Anuros/genética , DNA Mitocondrial , Refúgio de Vida Selvagem , Animais , China , DNA Mitocondrial/genética , Variação Genética , Filogenia
5.
J Hum Evol ; 131: 176-202, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31182201

RESUMO

The influence of climate change on hominin evolution is much debated. Two issues hamper our understanding of this process: the limited hominin fossil record, and incomplete knowledge about hominin spatial occupation of Africa. Here, we analyze the presently known hominin fossil distribution pattern and explore the potential geographic distribution of hominins between ∼4.5 and ∼2.5 Ma. We focus on assessing the relevance of the Coastal Forest of Eastern Africa (CFEA) along the Indian Ocean as a core area for early hominin evolution. Based on biogeographic-phylogeographic data we propose the coastal refuge hypothesis: the CFEA provided a refugium for early hominins in periods of variable climate and strong seasonality during eccentricity maxima. From this refuge, evolved species could disperse inland (e.g. to rift basins) via vegetated humid corridors, whenever onset of stable climate periods with low seasonality during eccentricity minima allowed expansion out of the coastal enclave. We develop a conceptual model in time and space, comparing predictions with climatic and hominin fossil records. The results imply that: 1) between ∼4.5 and 3 Ma, ongoing (mostly anagenetic) hominin evolution occurred in the CFEA, punctuated by inland dispersal events at ∼4.4, 4.2, 3.8, 3.5, and 3.2 Ma; 2) before ∼3 Ma, the Afar Basin was a (sub)core area often connected to and relatively similar to the CFEA, while other inland areas were more or less marginal for early hominin habitation; 3) after ∼3 Ma, Northern Hemisphere Glaciation exerted strong influence by causing latitudinal contraction of the CFEA, leading to habitat fragmentation, isolation of hominin populations and possible cladogenetic evolution. A major challenge for the coastal refuge model is the fact that at present, no (hominin) fossils are known from the CFEA. We consider how this can be explained, and possibly overcome with targeted search efforts. Furthermore we discuss how the model can be tested, e.g. with molecular phylogeography approaches, and used to predict new hominin fossil locations. With this study, we hope to contribute a fresh perspective to the climate-evolution debate, emphasizing the role of climatic stability, length of dry season and vegetation cover to facilitate connectivity between hominin core and marginal habitats.


Assuntos
Distribuição Animal , Mudança Climática , Florestas , Hominidae , África Oriental , Animais , Arqueologia , Paleontologia , Filogeografia
6.
Glob Chang Biol ; 24(3): 1371-1381, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28994170

RESUMO

The current distribution of species, environmental conditions and their interactions represent only one snapshot of a planet that is continuously changing, in part due to human influences. To distinguish human impacts from natural factors, the magnitude and pace of climate shifts, since the Last Glacial Maximum, are often used to determine whether patterns of diversity today are artefacts of past climate change. In the absence of high-temporal resolution palaeoclimate reconstructions, this is generally done by assuming that past climate change occurred at a linear pace between widely spaced (usually, ≥1,000 years) climate snapshots. We show here that this is a flawed assumption because regional climates have changed significantly across decades and centuries during glacial-interglacial cycles, likely causing rapid regional replacement of biota. We demonstrate how recent atmosphere-ocean general circulation model (AOGCM) simulations of the climate of the past 21,000 years can provide credible estimates of the details of climate change on decadal to centennial timescales, showing that these details differ radically from what might be inferred from longer timescale information. High-temporal resolution information can provide more meaningful estimates of the magnitude and pace of climate shifts, the location and timing of drivers of physiological stress, and the extent of novel climates. They also produce new opportunities to directly investigate whether short-term climate variability is more important in shaping biodiversity patterns rather than gradual changes in long-term climatic means. Together, these more accurate measures of past climate instability are likely to bring about a better understanding of the role of palaeoclimatic change and variability in shaping current macroecological patterns in many regions of the world.


Assuntos
Biodiversidade , Mudança Climática , Modelos Teóricos , Animais , Atmosfera , Biota , Plantas , Estresse Fisiológico , Fatores de Tempo
7.
Ecol Lett ; 20(9): 1129-1139, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28704887

RESUMO

While the environmental correlates of global patterns in standing species richness are well understood, it is poorly known which environmental factors promote diversification (speciation minus extinction) in clades. We tested several hypotheses for how geographic and climatic variables should affect diversification using a large dataset of bird sister genera endemic to the New World. We found support for the area, evolutionary speed, environmental predictability and climatic stability hypotheses, but productivity and topographic complexity were rejected as explanations. Genera that had accumulated more species tend to occupy wider niche space, manifested both as occurrence over wider areas and in more habitats. Genera with geographic ranges that have remained more stable in response to glacial-interglacial changes in climate were also more species rich. Since many relevant explanatory variables vary latitudinally, it is crucial to control for latitude when testing alternative mechanistic explanations for geographic variation in diversification among clades.


Assuntos
Evolução Biológica , Aves , Animais , Ecossistema , Geografia , Filogenia
8.
Ann Bot ; 119(2): 279-288, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27578766

RESUMO

BACKGROUND AND AIMS: Earth's climate is dynamic, with strong glacial-interglacial cycles through the Late Quaternary. These climate changes have had major consequences for the distributions of species through time, and may have produced historical legacies in modern ecological patterns. Unstable regions are expected to contain few endemic species, many species with strong dispersal abilities, and to be susceptible to the establishment of exotic species from relatively stable regions. We test these hypotheses with a global dataset of grass species distributions. METHODS: We described global patterns of endemism, variation in the potential for rapid population spread, and exotic establishment in grasses. We then examined relationships of these response variables to a suite of predictor variables describing the mean, seasonality and spatial pattern of current climate and the temperature change velocity from the Last Glacial Maximum to the present. KEY RESULTS: Grass endemism is strongly concentrated in regions with historically stable climates. It also depends on the spatial pattern of current climate, with many endemic species in areas with regionally unusual climates. There was no association between the proportion of annual species (representing potential population spread rates) and climate change velocity. Rather, the proportion of annual species depended very strongly on current temperature. Among relatively stable regions (<10 m year-1), increasing velocity decreased the proportion of species that were exotic, but this pattern reversed for higher-velocity regions (>10 m year-1). Exotic species were most likely to originate from relatively stable regions with climates similar to those found in their exotic range. CONCLUSIONS: Long-term climate stability has important influences on global endemism patterns, largely confirming previous work from other groups. Less well recognized is its role in generating patterns of exotic species establishment. This result provides an important historical context for the conjecture that climate change in the near future may promote species invasions.


Assuntos
Clima , Poaceae , Mudança Climática , Ecossistema
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230012, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583476

RESUMO

The Atlantic meridional overturning circulation (AMOC) has caused significant climate changes over the past 90 000 years. Prior work has hypothesized that these millennial-scale climate variations effected past and contemporary biodiversity, but the effects are understudied. Moreover, few biogeographic models have accounted for uncertainties in palaeoclimatic simulations of millennial-scale variability. We examine whether refuges from millennial-scale climate oscillations have left detectable legacies in the patterns of contemporary species richness in eastern North America. We analyse 13 palaeoclimate estimates from climate simulations and proxy-based reconstructions as predictors for the contemporary richness of amphibians, passerine birds, mammals, reptiles and trees. Results suggest that past climate changes owing to AMOC variations have left weak but detectable imprints on the contemporary richness of mammals and trees. High temperature stability, precipitation increase, and an apparent climate fulcrum in the southeastern United States across millennial-scale climate oscillations aligns with high biodiversity in the region. These findings support the hypothesis that the southeastern United States may have acted as a biodiversity refuge. However, for some taxa, the strength and direction of palaeoclimate-richness relationships varies among different palaeoclimate estimates, pointing to the importance of palaeoclimatic ensembles and the need for caution when basing biogeographic interpretations on individual palaeoclimate simulations. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Mamíferos , Animais , Árvores , Anfíbios , América do Norte , Mudança Climática
10.
Ecol Evol ; 14(6): e11419, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932963

RESUMO

Myotis originated during the Oligocene in Eurasia and has become one of the most diverse bat genera, with over 140 species. In the case of neotropical Myotis, there is a high degree of phenotypic conservatism. This means that the taxonomic and geographic limits of several species are not well understood, which constrains detailed studies on their ecology and evolution and how to effectively protect these species. Similar to other organisms, bats may respond to climate change by moving to different areas, adapting to new conditions, or going extinct. Ecological niche models have become established as an efficient and widely used method for interpolating (and sometimes extrapolating) species' distributions and offer an effective tool for identifying species conservation requirements and forecasting how global environmental changes may affect species distribution. How species respond to climate change is a key point for understanding their vulnerability and designing effective conservation strategies in the future. Thus, here, we assessed the impacts of climate change on the past and future distributions of two phylogenetically related species, Myotis ruber and Myotis keaysi. The results showed that the species are influenced by changes in temperature, and for M. ruber, precipitation also becomes important. Furthermore, M. ruber appears to have been more flexible to decreases in temperature that occurred in the past, which allowed it to expand its areas of environmental suitability, unlike M. keaysi, which decreased and concentrated these areas. However, despite a drastic decrease in the spatial area of environmental suitability of these species in the future, there are areas of potential climate stability that have been maintained since the Pleistocene, indicating where conservation efforts need to be concentrated in the future.

11.
Ecol Lett ; 16(12): 1446-54, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24119177

RESUMO

Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~ 85 000 plant species across the New World. We assess prominent hypothesised range-size controls, finding that plant range sizes are codetermined by habitat area and long- and short-term climate stability. Strong short- and long-term climate instability in large parts of North America, including past glaciations, are associated with broad-ranged species. In contrast, small habitat areas and a stable climate characterise areas with high concentrations of small-ranged species in the Andes, Central America and the Brazilian Atlantic Rainforest region. The joint roles of area and climate stability strengthen concerns over the potential effects of future climate change and habitat loss on biodiversity.


Assuntos
Biodiversidade , Clima , Ecossistema , Plantas/classificação , América Central , Conservação dos Recursos Naturais , Geografia , Modelos Teóricos , América do Norte , América do Sul , Análise Espacial
12.
Plants (Basel) ; 12(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616140

RESUMO

Centaurea subsection Phalolepis has been thoroughly analyzed in previous studies using microsatellites in four centers of speciation: Anatolia, Greece, the Italian Peninsula and the Iberian Peninsula. Evidence suggests a correlation between taxon diversity and mountains. This group constituted a good case study for examining the mountain-geobiodiversity hypothesis (MGH), which explains the possible reasons for the many radiations occurring in mountains across the world. We combined all the datasets and carried out analyses of their genetic structure to confirm the species of subsect. Phalolepis are grouped according to a geographic pattern. We then checked whether climatic fluctuations favored the "species pump" hypothesis in the mountains by using the Climatic Stability Index (CSI). Finally, the relief of the terrain was tested against the rate of allopatric speciation by region by means of Terrain Ruggedness Index and environmental gradients through our new Climate Niche Breadth Index. Our results supported the MGH hypothesis and confirmed that the main triggers, namely altitudinal zonation, climatic oscillations and rugged terrain, must be present for the development of a radiation.

13.
Insects ; 11(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348760

RESUMO

Although many hypotheses have been proposed to understand the mechanisms underlying large-scale richness patterns, the environmental determinants are still poorly understood, particularly in insects. Here, we tested the relative contributions of seven hypotheses previously proposed to explain planthopper richness patterns in China. The richness patterns were visualized at a 1° × 1° grid size, using 14,722 distribution records for 1335 planthoppers. We used ordinary least squares and spatial error simultaneous autoregressive models to examine the relationships between richness and single environmental variables and employed model averaging to assess the environmental variable relative roles. Species richness was unevenly distributed, with high species numbers occurring in the central and southern mountainous areas. The mean annual temperature change since the Last Glacial Maximum was the most important factor for richness patterns, followed by mean annual temperature and net primary productivity. Therefore, historical climate stability, ambient energy, and productivity hypotheses were supported strongly, but orogenic processes and geological isolation may also play a vital role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA