Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Apoptosis ; 29(7-8): 1198-1210, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38553612

RESUMO

A number of studies have confirmed that Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ)-transcriptional enhanced associate domain (TEAD) activity is the driver of cancer development. However, the role and mechanism of the YAP/TAZ-TEAD pathway in cervical intraepithelial neoplasia (CIN) remain to be clarified. Therefore, this study was designed to observe the effect of YAP/TAZ-TEAD activity on the development of CIN and provide new ideas for the diagnosis and treatment of CIN. Firstly, cervical tissues were collected from CIN patients in different stages [CIN grade 1 (CIN1) tissue, CIN grade 2/3 (CIN 2/3) and squamous cell carcinoma (SCC)] and healthy volunteers. Next, the expression levels of YAP, TAZ and TEAD in cervical tissues and cells were observed by immunohistochemistry, qRT-PCR and western blot. Besides, Z172 and Z183 cells were transfected with siRNA-YAP/TAZ (si-YAP/TAZ) and YAP/TAZ overexpression vector (YAP-5SA). Also, Z172 cells were co-transfected with YAP-5SA and si-TEAD2/4. Subsequently, the stemness characteristics, glycolysis level and malignant transformation of cells in each group were observed by sphere-formation assay, commercial kit, MTT, Transwell, scratch experiment, xenotransplantation and western blot.The expression of YAP, TAZ and TEAD increased significantly in cervical cancer tissue and cell line at the stage of CIN2/3 and SCC. When YAP/TAZ was knocked down, the stemness characteristics, glycolysis level and malignant transformation of cancer cells were notably inhibited; while activating YAP/TAZ exhibited a completely opposite result. In addition, activating YAP/TAZ and knocking down the TEAD expression at the same time significant weakened the effect of activated YAP/TAZ signal on precancerous cells and reduced inhibitory effect of knocking down TEAD alone. YAP/TAZ-TEAD signal activates the characteristics and Warburg effect of cancer stem cells, thereby promoting the malignant transformation of CIN.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transformação Celular Neoplásica , Células-Tronco Neoplásicas , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Proteínas de Sinalização YAP , Humanos , Feminino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Displasia do Colo do Útero/patologia , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/metabolismo , Animais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição de Domínio TEA/metabolismo , Linhagem Celular Tumoral , Camundongos , Efeito Warburg em Oncologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proliferação de Células/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia
2.
BMC Cancer ; 24(1): 229, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373978

RESUMO

Transcriptional Co-Activator with PDZ-Binding Motif (TAZ, also known as WWTR1) is a downstream effector of the Hippo pathway, involved in the regulation of organ regeneration and cell differentiation in processes such as development and regeneration. TAZ has been shown to play a tumor-promoting role in various cancers. Currently, many studies focus on the role of TAZ in the process of mitophagy. However, the molecular mechanism and biological function of TAZ in renal clear cell carcinoma (KIRC) are still unclear. Therefore, we systematically analyzed the mRNA expression profile and clinical data of KIRC in The Cancer Genome Atlas (TCGA) dataset. We found that TAZ expression was significantly upregulated in KIRC compared with normal kidney tissue and was closely associated with poor prognosis of patients. Combined with the joint analysis of 36 mitophagy genes, it was found that TAZ was significantly negatively correlated with the positive regulators of mitophagy. Finally, our results confirmed that high expression of TAZ in KIRC inhibits mitophagy and promotes KIRC cell proliferation. In conclusion, our findings reveal the important role of TAZ in KIRC and have the potential to be a new target for KIRC therapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Mitofagia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proliferação de Células/genética , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Mitofagia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética
3.
Front Mol Neurosci ; 17: 1408949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165717

RESUMO

cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.

4.
Behav Brain Res ; 465: 114972, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38552744

RESUMO

The hippocampal salt-inducible kinase 2 (SIK2)-CREB-regulated transcription co-activator 1 (CRTC1) system has been demonstrated to participate in not only the pathogenesis of depression but also the antidepressant mechanisms of several antidepressant medications including fluoxetine, paroxetine, and mirtazapine. Like fluoxetine, paroxetine is also a widely used selective serotonin (5-HT) reuptake inhibitor (SSRI). Recent studies have indicated that paroxetine also modulates several pharmacological targets other than the 5-HT system. Here, we speculate that paroxetine regulates the hippocampal SIK2-CRTC1 system. Chronic stress models of depression, various behavioral tests, western blotting, co-immunoprecipitation, quantitative real-time reverse transcription PCR, and genetic knockdown were used together in the present study. Our results show that the antidepressant actions of paroxetine in mice models of depression were accompanied by its preventing effects against chronic stress on hippocampal SIK2, CRTC1, and CRTC1-CREB binding. In contrast, genetic knockdown of hippocampal CRTC1 notably abrogated the antidepressant effects of paroxetine in mice. In summary, regulating hippocampal SIK2 and CRTC1 participates in the antidepressant mechanism of paroxetine, extending the knowledge of its pharmacological targets.


Assuntos
Fluoxetina , Paroxetina , Animais , Camundongos , Antidepressivos/farmacologia , Fluoxetina/farmacologia , Hipocampo/metabolismo , Paroxetina/farmacologia , Serotonina/metabolismo
5.
BMC Pharmacol Toxicol ; 25(1): 7, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173037

RESUMO

BACKGROUND: To comprehend the influences of fenofibrate on hepatic lipid accumulation and mitochondrial function-related signaling pathways in mice with non-alcoholic fatty liver disease (NAFLD) secondary to high-fat diets together with free fatty acids-influenced HepG2 cells model. MATERIALS AND METHODS: A random allocation of male 6-week C57BL/6J mice into three groups was done, including controls, model (14 weeks of a high-fat diet), and fenofibrate [similar to the model one with administered 0.04 g/(kg.d) fenofibrate by gavage at 11 weeks for 4 weeks] groups, which contained 10 mice each. This study verified NAFLD pathogenesis via mitochondrial functions in hepatic pathological abnormalities, liver index and weight, body weight, serum biochemical indexes, oxidative stress indicators, mitochondrial function indexes, and related signaling pathways. The effect of fenofibrate intervention was investigated in NAFLD model mice. In vitro, four groups based on HepG2 cells were generated, including controls, the FFA model (1.5 mmol/L FFA incubation for 24 h), LV-PGC-1α intervention (similar to the FFA model one after PPARGC1A lentivirus transfection), and LV control intervention (similar to the FFA model one after negative control lentivirus transfection) groups. The study investigated the mechanism of PGC-1α related to lipid decomposition and mitochondrial biosynthesis by Oil red O staining, colorimetry and western blot. RESULTS: In vivo experiments, a high-fat diet achieved remarkable changes regarding liver weight, liver index, serum biochemical indicators, oxidative stress indicators, liver pathological changes, mitochondrial function indicators, and body weight of the NAFLD model mice while fenofibrate improved the objective indicators. In the HepG2 cells model, the lipid accumulation increased significantly within the FFA model group, together with aggravated hepatocytic damage and boosted oxidative stress levels. Moreover, FFA induced excessive mitosis into fragmented in mitochondrial morphology, ATP content in cells decreased, mtDNA replication fold decreased, the expression of lipid decomposition protein PPARα reduced, mitochondrial biosynthesis related protein PGC-1α, NRF-1 and TFAM decreased. PGC-1α overexpression inhibited lipid deposition by improving mitochondrial biosynthesis and lipid decomposition. CONCLUSION: Fenofibrate up-regulated PPARα/PGC-1α signaling pathway, promoted mitochondrial ß-oxidation, reduced oxidative stress damage and lipid accumulation of liver. PGC-1α overexpression enhanced mitochondrial biosynthesis and ATP production, and reduced HepG2 intracellular accumulation of lipids and oxidative stress.


Assuntos
Fenofibrato , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , PPAR alfa/genética , PPAR alfa/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Mitocôndrias/metabolismo , Transdução de Sinais , Peso Corporal , Lipídeos , Trifosfato de Adenosina/metabolismo , Dieta Hiperlipídica/efeitos adversos
6.
Int J Oncol ; 65(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38873993

RESUMO

Genes encoding subunits of SWI/SNF (BAF) chromatin­remodeling complexes are recurrently mutated in a broad array of tumor types, and among the subunits, ARID1A is the most frequent target with mutations. In the present study, it was reported that ARID1A inhibits the epithelial­mesenchymal transition (EMT) and stemness of ovarian cancer cells, accompanied by reduced cell viability, migration and colony formation, suggesting that ARID1A acts as a tumor suppressor in ovarian cancer. Mechanistically, ARID1A exerts its inhibitory effects on ovarian cancer cells by activating the Hippo signaling pathway. Conversely, the overexpression of a gain­of­function transcriptional co­activator with PDZ­binding motif (TAZ) mutant (TAZ­Ser89) effectively reverses the effects induced by ARID1A. In addition, activation of Hippo signaling apparently upregulates ARID1A protein expression, whereas ectopic expression of TAZ­Ser89 results in the markedly decreased ARID1A levels, indicating a feedback of ARID1A­TAZ in regulating ovarian cancer cell EMT and stemness. Thus, the present study uncovered the role of ARID1A through the Hippo/TAZ pathway in modulating EMT and stemness of ovarian cancer cells, and providing with evidence that TAZ inhibitors could effectively prevent initiation and metastasis of ovarian cancer cases where ARID1A is lost or mutated.


Assuntos
Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fatores de Transcrição , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Movimento Celular , Proliferação de Células , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
7.
Neuromolecular Med ; 26(1): 9, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568291

RESUMO

Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson's disease (PD). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent enhancement of the expression of the 20S proteasome core particles (20S CPs) and regulatory particles (RPs) increases proteasome activity, which can promote α-syn clearance in PD. Activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) may reduce oxidative stress by strongly inducing Nrf2 gene expression. In the present study, tetramethylpyrazine nitrone (TBN), a potent-free radical scavenger, promoted α-syn clearance by the ubiquitin-proteasome system (UPS) in cell models overexpressing the human A53T mutant α-syn. In the α-syn transgenic mice model, TBN improved motor impairment, decreased the products of oxidative damage, and down-regulated the α-syn level in the serum. TBN consistently up-regulated PGC-1α and Nrf2 expression in tested models of PD. Additionally, TBN similarly enhanced the proteasome 20S subunit beta 8 (Psmb8) expression, which is linked to chymotrypsin-like proteasome activity. Furthermore, TBN increased the mRNA levels of both the 11S RPs subunits Pa28αß and a proteasome chaperone, known as the proteasome maturation protein (Pomp). Interestingly, specific siRNA targeting of Nrf2 blocked TBN's effects on Psmb8, Pa28αß, Pomp expression, and α-syn clearance. In conclusion, TBN promotes the clearance of α-syn via Nrf2-mediated UPS activation, and it may serve as a potentially disease-modifying therapeutic agent for PD.


Assuntos
Fator 2 Relacionado a NF-E2 , Complexo de Endopeptidases do Proteassoma , Pirazinas , Humanos , Animais , Camundongos , Fator 2 Relacionado a NF-E2/genética , alfa-Sinucleína/genética , Camundongos Transgênicos , Ubiquitinas
8.
Curr Eye Res ; 49(5): 524-532, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38305219

RESUMO

PURPOSE: Diabetic retinopathy (DR) is a major cause of irreversible blindness in the working-age population. Neovascularization is an important hallmark of advanced DR. There is evidence that Yes-associated protein (YAP)/transcriptional co-activator with a PDZ binding domain (TAZ) plays an important role in angiogenesis and that its activity is regulated by vascular endothelial growth factor (VEGF). Therefore, the aim of this study was to investigate the effect of YAP/TAZ-VEGF crosstalk on the angiogenic capacity of human retinal microvascular endothelial cells (hRECs) in a high-glucose environment. METHODS: The expression of YAP and TAZ of hRECs under normal conditions, hypertonic conditions and high glucose were observed. YAP overexpression (OE-YAP), YAP silencing (sh-YAP), VEGF overexpression (OE-VEGF) and VEGF silencing (sh-VEGF) plasmids were constructed. Cell counting kit-8 assay was performed to detect cells proliferation ability, transwell assay to detect cells migration ability, and tube formation assay to detect tube formation ability. The protein expression of YAP, TAZ, VEGF, matrix metalloproteinase (MMP)-8, MMP-13, vessel endothelium (VE)-cadherin and alpha smooth muscle actin (α-SMA) was measured by western blot. RESULTS: The proliferation of hRECs was significantly higher in the high glucose group compared with the normal group, as well as the protein expression of YAP and TAZ (p < 0.01). YAP and VEGF promoted the proliferation, migration and tube formation of hRECs in the high glucose environment (p < 0.01), and increased the expression of TAZ, VEGF, MMP-8, MMP-13 and α-SMA while reducing the expression of VE-cadherin (p < 0.01). Knockdown of YAP effectively reversed the above promoting effects of OE-VEGF (p < 0.01) and overexpression of YAP significantly reversed the inhibition effects of sh-VEGF on above cell function (p < 0.01). CONCLUSION: In a high-glucose environment, YAP/TAZ can significantly promote the proliferation, migration and tube formation ability of hRECs, and the mechanism may be related to the regulation of VEGF expression.


Assuntos
Angiogênese , Retinopatia Diabética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Fator A de Crescimento do Endotélio Vascular , Proteínas de Sinalização YAP , Humanos , Angiogênese/metabolismo , Proliferação de Células , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Retina/metabolismo , Retina/patologia
9.
Genet. mol. biol ; 31(2): 409-415, 2008. graf
Artigo em Inglês | LILACS | ID: lil-484975

RESUMO

Transcriptional activation (TA) mediated by the effect of thyroid hormones on target genes requires co-activator proteins such as the early region 1A (E1A) associated 300 kDa binding protein (p300) and the cAMP response element binding protein (CREB) binding protein (CBP), known as the p300/CBP complex, which acetylate histones 3 and 4 to allow transcriptional machinery access to the target gene promoter. Little is known on the role of p300 in thyroid hormone receptor (TR) mediated TA but the E1A-like inhibitor of differentiation 1 (EID1), an inhibitor of p300 histone acetyltransferase (HAT), is a functional homolog of E1A and may inhibit myogenic differentiation factor D (MyoD) transcriptional activity and reduces muscle cell differentiation. We evaluated the influence of EID1 on TR-mediated transcriptional activity using transfection and mammalian two-hybrid studies to show that EID1 may partially reduces TA activity of the TR receptor, probably due to p300 blockage since EID1 mutants cannot reduce TR-mediated TA. The EID1 does not affect the function of p160 co-activator proteins (160 kDa proteins of steroid receptor co-activators) and is functionally independent of co-repressor proteins or TR binding. Summarizing, EID1 reduces TR-mediated transcriptional activity by blocking p300 and may play an important role in thyroid receptor activity in muscle and other tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA