Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.748
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37385248

RESUMO

Certain cancer types afflict female and male patients disproportionately. The reasons include differences in male/female physiology, effect of sex hormones, risk behavior, environmental exposures, and genetics of the sex chromosomes X and Y. Loss of Y (LOY) is common in peripheral blood cells in aging men, and this phenomenon is associated with several diseases. However, the frequency and role of LOY in tumors is little understood. Here, we present a comprehensive catalog of LOY in >5,000 primary tumors from male patients in the TCGA. We show that LOY rates vary by tumor type and provide evidence for LOY being either a passenger or driver event depending on context. LOY in uveal melanoma specifically is associated with age and survival and is an independent predictor of poor outcome. LOY creates common dependencies on DDX3X and EIF1AX in male cell lines, suggesting that LOY generates unique vulnerabilities that could be therapeutically exploited.

2.
Cell ; 185(22): 4233-4248.e27, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36306736

RESUMO

The human genome contains hundreds of thousands of regions harboring copy-number variants (CNV). However, the phenotypic effects of most such polymorphisms are unknown because only larger CNVs have been ascertainable from SNP-array data generated by large biobanks. We developed a computational approach leveraging haplotype sharing in biobank cohorts to more sensitively detect CNVs. Applied to UK Biobank, this approach accounted for approximately half of all rare gene inactivation events produced by genomic structural variation. This CNV call set enabled a detailed analysis of associations between CNVs and 56 quantitative traits, identifying 269 independent associations (p < 5 × 10-8) likely to be causally driven by CNVs. Putative target genes were identifiable for nearly half of the loci, enabling insights into dosage sensitivity of these genes and uncovering several gene-trait relationships. These results demonstrate the ability of haplotype-informed analysis to provide insights into the genetic basis of human complex traits.


Assuntos
Herança Multifatorial , Locos de Características Quantitativas , Humanos , Variações do Número de Cópias de DNA , Fenótipo , Genoma Humano , Polimorfismo de Nucleotídeo Único/genética
3.
Cell ; 185(23): 4409-4427.e18, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368308

RESUMO

Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the ∼85% of the ASD population that remain idiopathic.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Variações do Número de Cópias de DNA/genética , Genômica
4.
Cell ; 185(16): 3041-3055.e25, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35917817

RESUMO

Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.


Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Variações do Número de Cópias de DNA/genética , Dosagem de Genes , Haploinsuficiência/genética , Humanos
5.
Cell ; 184(13): 3542-3558.e16, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34051138

RESUMO

Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.


Assuntos
Ecótipo , Variação Genética , Genoma de Planta , Oryza/genética , Adaptação Fisiológica/genética , Agricultura , Domesticação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Estrutural do Genoma , Anotação de Sequência Molecular , Fenótipo
6.
Cell ; 184(24): 5970-5984.e18, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34793701

RESUMO

Numerous DNA double-strand breaks (DSBs) arise during meiosis to initiate homologous recombination. These DSBs are usually repaired faithfully, but here, we uncover a distinct type of mutational event in which deletions form via joining of ends from two closely spaced DSBs (double cuts) within a single hotspot or at adjacent hotspots on the same or different chromatids. Deletions occur in normal meiosis but are much more frequent when DSB formation is dysregulated in the absence of the ATM kinase. Events between chromosome homologs point to multi-chromatid damage and aborted gap repair. Some deletions contain DNA from other hotspots, indicating that double cutting at distant sites creates substrates for insertional mutagenesis. End joining at double cuts can also yield tandem duplications or extrachromosomal circles. Our findings highlight the importance of DSB regulation and reveal a previously hidden potential for meiotic mutagenesis that is likely to affect human health and genome evolution.


Assuntos
Deleção de Genes , Duplicação Gênica , Células Germinativas/metabolismo , Recombinação Genética/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Cromátides/metabolismo , Cromossomos de Mamíferos/genética , Cruzamentos Genéticos , Quebras de DNA de Cadeia Dupla , DNA Circular/genética , Feminino , Genoma , Haplótipos/genética , Recombinação Homóloga/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mutagênese Insercional/genética , Mutação/genética
7.
Cell ; 182(1): 145-161.e23, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553272

RESUMO

Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving the extent, diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV genome, along with 14 new reference assemblies, revealed large-scale intermixing of diverse genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of SV-gene pairs exhibit subtle and significant expression changes, which could broadly influence quantitative trait variation. By combining quantitative genetics with genome editing, we show how multiple SVs that changed gene dosage and expression levels modified fruit flavor, size, and production. In the last example, higher order epistasis among four SVs affecting three related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our findings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread importance and utility in crop improvement.


Assuntos
Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Variação Estrutural do Genoma , Solanum lycopersicum/genética , Alelos , Sistema Enzimático do Citocromo P-450/genética , Ecótipo , Epistasia Genética , Frutas/genética , Duplicação Gênica , Genoma de Planta , Genótipo , Endogamia , Anotação de Sequência Molecular , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética
8.
Cell ; 182(4): 933-946.e14, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32780992

RESUMO

Methanol, being electron rich and derivable from methane or CO2, is a potentially renewable one-carbon (C1) feedstock for microorganisms. Although the ribulose monophosphate (RuMP) cycle used by methylotrophs to assimilate methanol differs from the typical sugar metabolism by only three enzymes, turning a non-methylotrophic organism to a synthetic methylotroph that grows to a high cell density has been challenging. Here we reprogrammed E. coli using metabolic robustness criteria followed by laboratory evolution to establish a strain that can efficiently utilize methanol as the sole carbon source. This synthetic methylotroph alleviated a so far uncharacterized hurdle, DNA-protein crosslinking (DPC), by insertion sequence (IS)-mediated copy number variations (CNVs) and balanced the metabolic flux by mutations. Being capable of growing at a rate comparable with natural methylotrophs in a wide range of methanol concentrations, this synthetic methylotrophic strain illustrates genome editing and evolution for microbial tropism changes and expands the scope of biological C1 conversion.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica , Metanol/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Ácido Cítrico/genética , Variações do Número de Cópias de DNA , Evolução Molecular Direcionada , Escherichia coli/genética , Formaldeído/metabolismo , Glicólise , Mutagênese , Ribosemonofosfatos/metabolismo
9.
Cell ; 179(5): 1207-1221.e22, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730858

RESUMO

Accurate measurement of clonal genotypes, mutational processes, and replication states from individual tumor-cell genomes will facilitate improved understanding of tumor evolution. We have developed DLP+, a scalable single-cell whole-genome sequencing platform implemented using commodity instruments, image-based object recognition, and open source computational methods. Using DLP+, we have generated a resource of 51,926 single-cell genomes and matched cell images from diverse cell types including cell lines, xenografts, and diagnostic samples with limited material. From this resource we have defined variation in mitotic mis-segregation rates across tissue types and genotypes. Analysis of matched genomic and image measurements revealed correlations between cellular morphology and genome ploidy states. Aggregation of cells sharing copy number profiles allowed for calculation of single-nucleotide resolution clonal genotypes and inference of clonal phylogenies and avoided the limitations of bulk deconvolution. Finally, joint analysis over the above features defined clone-specific chromosomal aneuploidy in polyclonal populations.


Assuntos
Replicação do DNA/genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Célula Única , Aneuploidia , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Forma Celular , Sobrevivência Celular , Cromossomos Humanos/genética , Células Clonais , Elementos de DNA Transponíveis/genética , Diploide , Feminino , Genótipo , Humanos , Masculino , Camundongos , Mutação/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética
10.
Cell ; 172(5): 924-936.e11, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474920

RESUMO

Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified eleven individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (Pumilio1-associated developmental disability, ataxia, and seizure; PADDAS). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (Pumilio1-related cerebellar ataxia, PRCA). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.


Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Haploinsuficiência/genética , Mutação/genética , Proteínas de Ligação a RNA/genética , Convulsões/genética , Adolescente , Adulto , Idade de Início , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Evolução Molecular , Feminino , Deleção de Genes , Células HEK293 , Humanos , Lactente , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Estabilidade Proteica , Convulsões/diagnóstico por imagem
11.
Cell ; 172(1-2): 205-217.e12, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29307488

RESUMO

Ductal carcinoma in situ (DCIS) is an early-stage breast cancer that infrequently progresses to invasive ductal carcinoma (IDC). Genomic evolution has been difficult to delineate during invasion due to intratumor heterogeneity and the low number of tumor cells in the ducts. To overcome these challenges, we developed Topographic Single Cell Sequencing (TSCS) to measure genomic copy number profiles of single tumor cells while preserving their spatial context in tissue sections. We applied TSCS to 1,293 single cells from 10 synchronous patients with both DCIS and IDC regions in addition to exome sequencing. Our data reveal a direct genomic lineage between in situ and invasive tumor subpopulations and further show that most mutations and copy number aberrations evolved within the ducts prior to invasion. These results support a multiclonal invasion model, in which one or more clones escape the ducts and migrate into the adjacent tissues to establish the invasive carcinomas.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Evolução Clonal , Adulto , Idoso , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Movimento Celular , Exoma , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Invasividade Neoplásica , Análise de Sequência de DNA , Análise de Célula Única
12.
Cell ; 173(4): 879-893.e13, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681456

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype that frequently develops resistance to chemotherapy. An unresolved question is whether resistance is caused by the selection of rare pre-existing clones or alternatively through the acquisition of new genomic aberrations. To investigate this question, we applied single-cell DNA and RNA sequencing in addition to bulk exome sequencing to profile longitudinal samples from 20 TNBC patients during neoadjuvant chemotherapy (NAC). Deep-exome sequencing identified 10 patients in which NAC led to clonal extinction and 10 patients in which clones persisted after treatment. In 8 patients, we performed a more detailed study using single-cell DNA sequencing to analyze 900 cells and single-cell RNA sequencing to analyze 6,862 cells. Our data showed that resistant genotypes were pre-existing and adaptively selected by NAC, while transcriptional profiles were acquired by reprogramming in response to chemotherapy in TNBC patients.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Estudos de Casos e Controles , Análise por Conglomerados , Variações do Número de Cópias de DNA , Exoma/genética , Feminino , Frequência do Gene , Genótipo , Humanos , Terapia Neoadjuvante , Análise de Sequência de DNA , Análise de Sequência de RNA , Análise de Célula Única , Análise de Sobrevida , Transcriptoma , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
13.
Immunity ; 56(1): 193-206.e7, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36574772

RESUMO

The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , COVID-19/genética , Anticorpos Antivirais , Polimorfismo Genético , Anticorpos Neutralizantes , Células Germinativas
14.
Cell ; 171(6): 1259-1271.e11, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29107330

RESUMO

Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. VIDEO ABSTRACT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Antígenos HLA/genética , Neoplasias Pulmonares/imunologia , Evasão Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Apresentação de Antígeno , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Estudos de Coortes , Feminino , Antígenos HLA/imunologia , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único
15.
Cell ; 167(2): 397-404.e9, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27667683

RESUMO

Antibody blockade of the inhibitory CTLA-4 pathway has led to clinical benefit in a subset of patients with metastatic melanoma. Anti-CTLA-4 enhances T cell responses, including production of IFN-γ, which is a critical cytokine for host immune responses. However, the role of IFN-γ signaling in tumor cells in the setting of anti-CTLA-4 therapy remains unknown. Here, we demonstrate that patients identified as non-responders to anti-CTLA-4 (ipilimumab) have tumors with genomic defects in IFN-γ pathway genes. Furthermore, mice bearing melanoma tumors with knockdown of IFN-γ receptor 1 (IFNGR1) have impaired tumor rejection upon anti-CTLA-4 therapy. These data highlight that loss of the IFN-γ signaling pathway is associated with primary resistance to anti-CTLA-4 therapy. Our findings demonstrate the importance of tumor genomic data, especially IFN-γ related genes, as prognostic information for patients selected to receive treatment with immune checkpoint therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Interferon gama/genética , Melanoma/tratamento farmacológico , Receptores de Interferon/genética , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Citocinas/imunologia , Técnicas de Silenciamento de Genes , Humanos , Ipilimumab , Melanoma/genética , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Cutâneas/genética , Linfócitos T/imunologia , Receptor de Interferon gama
16.
Cell ; 167(3): 803-815.e21, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27720452

RESUMO

Do young and old protein molecules have the same probability to be degraded? We addressed this question using metabolic pulse-chase labeling and quantitative mass spectrometry to obtain degradation profiles for thousands of proteins. We find that >10% of proteins are degraded non-exponentially. Specifically, proteins are less stable in the first few hours of their life and stabilize with age. Degradation profiles are conserved and similar in two cell types. Many non-exponentially degraded (NED) proteins are subunits of complexes that are produced in super-stoichiometric amounts relative to their exponentially degraded (ED) counterparts. Within complexes, NED proteins have larger interaction interfaces and assemble earlier than ED subunits. Amplifying genes encoding NED proteins increases their initial degradation. Consistently, decay profiles can predict protein level attenuation in aneuploid cells. Together, our data show that non-exponential degradation is common, conserved, and has important consequences for complex formation and regulation of protein abundance.


Assuntos
Estabilidade Proteica , Proteínas/metabolismo , Proteólise , Alanina/análogos & derivados , Alanina/química , Aneuploidia , Linhagem Celular , Química Click , Amplificação de Genes , Humanos , Cinética , Cadeias de Markov , Complexo de Endopeptidases do Proteassoma/química , Biossíntese de Proteínas , Proteínas/química , Proteínas/genética , Proteoma , Ubiquitina/química
17.
Annu Rev Microbiol ; 77: 341-361, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307856

RESUMO

Fungal species have dynamic genomes and often exhibit genomic plasticity in response to stress. This genome plasticity often comes with phenotypic consequences that affect fitness and resistance to stress. Fungal pathogens exhibit genome plasticity in both clinical and agricultural settings and often during adaptation to antifungal drugs, posing significant challenges to human health. Therefore, it is important to understand the rates, mechanisms, and impact of large genomic changes. This review addresses the prevalence of polyploidy, aneuploidy, and copy number variation across diverse fungal species, with special attention to prominent fungal pathogens and model species. We also explore the relationship between environmental stress and rates of genomic changes and highlight the mechanisms underlying genotypic and phenotypic changes. A comprehensive understanding of these dynamic fungal genomes is needed to identify novel solutions for the increase in antifungal drug resistance.


Assuntos
Aneuploidia , Variações do Número de Cópias de DNA , Humanos , Poliploidia , Genômica , Genoma Fúngico
18.
Mol Cell ; 80(3): 541-553.e5, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33068522

RESUMO

To address how genetic variation alters gene expression in complex cell mixtures, we developed direct nuclear tagmentation and RNA sequencing (DNTR-seq), which enables whole-genome and mRNA sequencing jointly in single cells. DNTR-seq readily identified minor subclones within leukemia patients. In a large-scale DNA damage screen, DNTR-seq was used to detect regions under purifying selection and identified genes where mRNA abundance was resistant to copy-number alteration, suggesting strong genetic compensation. mRNA sequencing (mRNA-seq) quality equals RNA-only methods, and the low positional bias of genomic libraries allowed detection of sub-megabase aberrations at ultra-low coverage. Each cell library is individually addressable and can be re-sequenced at increased depth, allowing multi-tiered study designs. Additionally, the direct tagmentation protocol enables coverage-independent estimation of ploidy, which can be used to identify cell singlets. Thus, DNTR-seq directly links each cell's state to its corresponding genome at scale, enabling routine analysis of heterogeneous tumors and other complex tissues.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Sequência de Bases/genética , Linhagem Celular Tumoral , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA/genética , RNA Mensageiro/genética , Análise de Sequência de DNA/métodos
19.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565148

RESUMO

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Exoma , Doenças Raras , Humanos , Variações do Número de Cópias de DNA/genética , Doenças Raras/genética , Doenças Raras/diagnóstico , Exoma/genética , Masculino , Feminino , Estudos de Coortes , Testes Genéticos/métodos
20.
Am J Hum Genet ; 111(2): 242-258, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211585

RESUMO

Tumor mutational burden (TMB), the total number of somatic mutations in the tumor, and copy number burden (CNB), the corresponding measure of aneuploidy, are established fundamental somatic features and emerging biomarkers for immunotherapy. However, the genetic and non-genetic influences on TMB/CNB and, critically, the manner by which they influence patient outcomes remain poorly understood. Here, we present a large germline-somatic study of TMB/CNB with >23,000 individuals across 17 cancer types, of which 12,000 also have extensive clinical, treatment, and overall survival (OS) measurements available. We report dozens of clinical associations with TMB/CNB, observing older age and male sex to have a strong effect on TMB and weaker impact on CNB. We additionally identified significant germline influences on TMB/CNB, including fine-scale European ancestry and germline polygenic risk scores (PRSs) for smoking, tanning, white blood cell counts, and educational attainment. We quantify the causal effect of exposures on somatic mutational processes using Mendelian randomization. Many of the identified features associated with TMB/CNB were additionally associated with OS for individuals treated at a single tertiary cancer center. For individuals receiving immunotherapy, we observed a complex relationship between PRSs for educational attainment, self-reported college attainment, TMB, and survival, suggesting that the influence of this biomarker may be substantially modified by socioeconomic status. While the accumulation of somatic alterations is a stochastic process, our work demonstrates that it can be shaped by host characteristics including germline genetics.


Assuntos
Neoplasias , Humanos , Masculino , Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Imunoterapia , Biomarcadores Tumorais/genética , Células Germinativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA