Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445466

RESUMO

To optimize the anti-tumor efficacy of combination therapy with paclitaxel (PTX) and imatinib (IMN), we used coaxial electrospray to prepare sequential-release core-shell microparticles composed of a PTX-loaded sodium hyaluronate outer layer and an IMN-loaded PLGA core. The morphology, size distribution, drug loading, differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), in vitro release, PLGA degradation, cellular growth inhibition, in vivo vaginal retention, anti-tumor efficacy, and local irritation in a murine orthotopic cervicovaginal tumor model after vaginal administration were characterized. The results show that such core-shell microparticles were of spherical appearance, with an average size of 14.65 µm and a significant drug-loading ratio (2.36% for PTX, 19.5% for IMN, w/w), which might benefit cytotoxicity against cervical-cancer-related TC-1 cells. The DSC curves indicate changes in the phase state of PTX and IMN after encapsulation in microparticles. The FTIR spectra show that drug and excipients are compatible with each other. The release profiles show sequential characteristics in that PTX was almost completely released in 1 h and IMN was continuously released for 7 days. These core-shell microparticles showed synergistic inhibition in the growth of TC-1 cells. Such microparticles exhibited prolonged intravaginal residence, a >90% tumor inhibitory rate, and minimal mucosal irritation after intravaginal administration. All results suggest that such microparticles potentially provide a non-invasive local chemotherapeutic delivery system for the treatment of cervical cancer by the sequential release of PTX and IMN.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Microesferas , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Mesilato de Imatinib/administração & dosagem , Camundongos , Paclitaxel/administração & dosagem , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biotechnol Bioeng ; 114(12): 2931-2946, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28832946

RESUMO

Triple negative breast cancer (TNBC) is an aggressive sub-type of breast cancer that rarely responds to conventional chemotherapy. Therefore, novel agents or new routes need to be developed to improve treatment efficacy and diminish severe side-effects of anti-cancer agents in TNBC patients. This study explores a novel localized co-delivery platform with potential application against TNBC. Uniform core-shell microparticles encapsulating cisplatin (Cis-DDP) and paclitaxel (PTX) are fabricated using coaxial electrohydrodynamic atomization technique and subsequently are embedded into an injectable hydrogel. The hydrogel provides an additional diffusion barrier against Cis-DDP and confines premature release of drugs. In addition, the hydrogel can provide a versatile tool for retaining particles in the tumor resected cavity during the injection following debulking surgery and prevent surgical site infection due to its inherent antibacterial properties. The combination of Cis-DDP and PTX demonstrates a synergistic effect against MDA-MB-231 cell line assigned to three different mechanisms of action, including denaturation of DNA strands, stabilization of microtubules, and amplification of intracellular reactive oxygen species (ROS) and activation of caspase-3 pathways. The results show a significant accumulation of mitochondrial ROS insults in cells upon treatment that consequently causes programmed cells death. The performance of microparticles/hydrogel carrier is evaluated against three-dimensional MDA-MB-231 (breast cancer) 3D spheroids, where a superior efficacy and a greater reduction in spheroid growth are observed over 14 days, as compared with free-drug treatment. Overall, drug-loaded core-shell microparticles embedded into injectable hydrogel provides a promising strategy to treat aggressive cancers and a modular platform for a broad range of localized multidrug therapies customizable to the cancer type.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Cápsulas/química , Preparações de Ação Retardada/administração & dosagem , Hidrogéis/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/química , Preparações de Ação Retardada/química , Difusão , Humanos , Injeções , Paclitaxel/administração & dosagem , Paclitaxel/química , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/patologia
3.
Front Nutr ; 9: 879757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495914

RESUMO

The purpose of this study was to slow down the digestibility of starch granules by encapsulating it in zein shells. Drop of the preformed swollen corn starch (CS) granule suspension into thermal-treated zein ethanolic solution enables antisolvent precipitation of thermal-treated zein on the surface of the preformed swollen CS granules, leading to the formation of core-shell starch/zein microparticles. Confocal laser scanning microscopy images showed that the preformed swollen CS granules were coated by thermal-treated zein shells with a thickness of 0.48-0.95 µm. The volume average particle diameter of core-shell starch/zein microparticles was 14.70 µm and reached 18.59-30.98 µm after crosslinking by transglutaminase. The results of X-ray diffraction and Fourier transform infrared spectroscopy demonstrated that an interaction occurred between the preformed swollen CS granules and the thermal-treated zein. The results for thermodynamic characteristics, pasting properties, and swelling power indicated that the compact network structure of core-shell starch/zein microparticles crosslinked by transglutaminase could improve starch granule thermal stability and resistance to shearing forces. Compared to native CS, the peak gelatinization temperatures of core-shell starch/zein microparticles increased significantly (p < 0.05), with a maximum value of 76.64°C. The breakdown values and the swelling power at 95°C of core-shell starch/zein microparticles significantly (p < 0.05) decreased by 52.83-85.66% and 0.11-0.28%, respectively. The in vitro digestibility test showed that the contents of slowly digestible starch and resistant starch in the core-shell starch/zein microparticles increased to ∼42.66 and ∼34.75%, respectively, compared to those of native CS (9.56 and 2.48%, respectively). Our research supports the application of food-grade core-shell starch/zein microparticles to formulate low-digestibility food products.

4.
Adv Colloid Interface Sci ; 299: 102568, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34896747

RESUMO

Core-shell microparticles, composed of solid, liquid, or gas bubbles surrounded by a protective shell, are gaining considerable attention as intelligent and versatile carriers that show great potential in biomedical fields. In this review, an overview is given of recent developments in design and applications of biodegradable core-shell systems. Several emerging methodologies including self-assembly, gas-shearing, and coaxial electrospray are discussed and microfluidics technology is emphasized in detail. Furthermore, the characteristics of core-shell microparticles in artificial cells, drug release and cell culture applications are discussed and the superiority of these advanced multi-core microparticles for the generation of artificial cells is highlighted. Finally, the respective developing orientations and limitations inherent to these systems are addressed. It is hoped that this review can inspire researchers to propel the development of this field with new ideas.

5.
Colloids Surf B Biointerfaces ; 217: 112618, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35738076

RESUMO

Drug depot systems have traditionally relied on the spontaneous dissolution and diffusion of drugs or prodrugs from a reservoir with constant exposure to the surrounding physiological fluids. While this is appropriate for clinical scenarios that require constant plasma concentration of the drug over time, there are also situations where multiple bursts of the drug at well-defined time intervals are preferred. This work presents a drug depot system that enables repeated on-demand release of antibiotics in precise doses, controlled by an external radiofrequency magnetic field. The remotely controlled depot system consists of composite microcapsules with a core-shell structure. The core contains micronized drug particles embedded in a low-melting hydrophobic matrix. The shell is formed by a hydrogel with immobilised magnetic nanoparticles that facilitate local heat dissipation after exposure to a radiofrequency magnetic field. When the melting point of the core material is locally exceeded, the embedded drug particles are mobilised and their surface is exposed to the external aqueous phase. It is shown that drug release can be controlled in an on/off manner by a chosen sequence and duration of radiofrequency pulses. The capacity of the depot system is shown to be significantly higher than that of purely diffusion-controlled systems containing a pre-dissolved drug. The functionality of the depot system is demonstrated in vitro for the specific case of norfloxacin acting on E. coli.


Assuntos
Antibacterianos , Nanopartículas , Liberação Controlada de Fármacos , Escherichia coli , Hidrogéis/química , Nanopartículas/química
6.
J Appl Polym Sci ; 138(25)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36091476

RESUMO

Injectable sensors can significantly improve the volume of critical biomedical information emerging from the human body in response to injury or disease. Optical oxygen sensors with rapid response times can be achieved by incorporating oxygen-sensitive luminescent molecules within polymeric matrices with suitably high surface area to volume ratios. In this work, electrospraying utilizes these advances to produce conveniently injectable, oxygen sensing particles made up of a core-shell polysulfone-polysulfone structure containing a phosphorescent oxygen-sensitive palladium porphyrin species within the core. Particle morphology is highly dependent on solvent identity and electrospraying parameters; DMF offers the best potential for the creation of uniform, sub-micron particles. Total internal reflection fluorescence (TIRF) microscopy confirms the existence of both core-shell structure and oxygen sensitivity. The dissolved oxygen response time is rapid (<0.30 s), ideal for continuous real-time monitoring of oxygen concentration. The incorporation of Pluronic F-127 surfactant enables efficient dispersion; selection of an appropriate electrospraying solvent (DMF) yields particles readily injected even through a <100 µm diameter needle.

7.
Mater Sci Eng C Mater Biol Appl ; 122: 111831, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641884

RESUMO

The management of respiratory diseases relies on the daily administration of multiple active pharmaceutical ingredients (APIs), leading to a lack of patient compliance and impaired quality of life. The frequency and dosage of the APIs result in increased side effects that further worsens the overall patient condition. Here, the manufacture of polymer-polymer core-shell microparticles for the sequential delivery of multiple APIs by inhalation delivery is reported. The microparticles, composed of biodegradable polymers silk fibroin (shell) and poly(L-lactic acid) (core), incorporating ciprofloxacin in the silk layer and ibuprofen (PLLA core) as the antibiotic and anti-inflammatory model APIs, respectively. The polymer-polymer core-shell structure and the spatial distribution of the APIs have been characterized using cutting-edge synchrotron macro ATR-FTIR technique, which was correlated with the respective API sequential release profiles. The APIs microparticles had a suitable size and aerosol properties for inhalation therapies (≤4.94 ± 0.21µm), with low cytotoxicity and immunogenicity in healthy lung epithelial cells. The APIs compartmentalization obtained by the microparticles not only could inhibit potential actives interactions but can provide modulation of the APIs release profiles via an inhalable single administration.


Assuntos
Polímeros , Qualidade de Vida , Administração por Inalação , Ciprofloxacina , Humanos , Ibuprofeno , Tamanho da Partícula
8.
Int J Biol Macromol ; 154: 1347-1355, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760023

RESUMO

Core-shell microparticles based on food-grade biopolymers are of particular interest for biological components delivery owing to their unique controlled release property. Here, we introduce a method to fabricate calcium-binding casein phosphopeptides (CPP)-loaded core-shell microparticles for oral calcium delivery, based on ionic gelation interactions between chitosan oligosaccharides (COS) and tripolyphosphate (TPP). The fabrication method, textural properties, calcium binding capacity, pH-dependent stability, thermal properties, intermolecular forces, morphology characterizations, the controlled calcium release and calcium absorption properties in vitro and vivo of core-shell microparticles were studied. The results showed that COS was successfully crosslinked through TPP while CPP-Ca was incorporated in it, and microparticles showed appropriate textural properties, calcium-loaded capacity, and thermal properties. Morphology observations showed the core structures were successfully coated with outer-layer COS shell. Additionally, the calcium release and absorption studies in vitro and in vivo exhibited CPP-Ca-loaded microparticles could achieve controlled calcium release and sustained calcium uptake. Therefore, the fabricated CPP-Ca-loaded core-shell microparticles could function as promising calcium supplements for enhancing calcium bioavailability.


Assuntos
Cálcio/química , Caseínas/química , Quitosana/química , Portadores de Fármacos/química , Microesferas , Oligossacarídeos/química , Fosfopeptídeos/química , Animais , Cálcio/metabolismo , Caseínas/metabolismo , Preparações de Ação Retardada , Concentração de Íons de Hidrogênio , Ratos
9.
Talanta ; 211: 120723, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070617

RESUMO

Core-shell SiO2@CIM-80(Al) microspheres were synthesized, characterized, and used as novel sorbent in a dispersive miniaturized solid-phase extraction (D-µSPE) method for the determination of fourteen polycyclic aromatic hydrocarbons (PAHs) in wastewaters by ultra-high performance liquid chromatography coupled to a fluorescence detector (UHPLC-FD). A Doehlert experimental design permitted to optimize the main parameters affecting the microextraction procedure, intending the obtaining of a simple approach. Optimized extraction conditions include 13 mg of SiO2@CIM-80(Al) microparticles (~2 mg CIM-80(Al)), 2.5 min of extraction time, 0.125 mL of acetonitrile (ACN) as desorption solvent and 0.5 min of desorption time. The entire method showed adequate analytical performance with limits of detection down to 5 ng L-1, and inter-day precision lower than 14.1% for a concentration level of 0.5 µg L-1. The extraction capability of SiO2@CIM-80(Al) microspheres was compared to that obtained with commercially available silica microspheres and the neat MOF CIM-80(Al), demonstrating the advantages of the use of MOF core-shell sorbents in D-µSPE.

10.
Mater Sci Eng C Mater Biol Appl ; 102: 113-123, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31146981

RESUMO

Ovarian cancer is one of the most lethal gynecologic malignancies due to its rapid proliferation, frequent acquisition of chemoresistance, and widespread metastasis within the peritoneal cavity. Intraperitoneal (IP) chemotherapy has demonstrated significant anti-cancer potential but its broad clinical application is hindered by several drug delivery limitations. Herein, we engineer paclitaxel (PTX) laden hybrid microparticles (PTX-Hyb-MPs) for improved delivery of chemotherapy in ovarian cancer. The PTX-Hyb-MPs are comprised of a lipid-coated shell of poly (lactic acid-co-glycolic acid) (PLGA) encapsulating hydrophobic PTX. A co-axial electrohydrodynamic (CEH) process is used for one-step and scalable production of the PTX-Hyb-MP agent with controlled particles size, uniform size distribution, tunable thickness, and high encapsulation rate (92.17 ±â€¯6.9%). The multi-layered structure of the PTX-Hyb-MPs is verified by transmission electron microscopy and confocal fluorescence microscopy. The effect of lipid coating on the enhancement of particle interactions with cancer cells is studied by flow cytometry and confocal fluorescence microscopy. The anti-cancer effect of the PTX-Hyb-MPs is evaluated in SKOV-3 ovarian cancer cells in vitro and a cancer xenograft model in vivo, in comparison with conventional drug delivery methods. Our studies reveal that the PTX-Hyb-MP agent can be potentially used for locoregional treatment of ovarian cancer and other tissue malignancies with sustained drug release, tunable release profiles, enhanced drug uptake, and reduced systemic toxicity.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Microesferas , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Feminino , Humanos , Camundongos Nus , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Tamanho da Partícula
11.
J Colloid Interface Sci ; 538: 709-719, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30503239

RESUMO

Four types of core-shell materials with magnetic Fe3O4 microparticles as the core were prepared through different approaches using dopamine, glucose, tetrabutyl orthotitanate (TBOT), and tetraethyl orthosilicate (TEOS) as the shell precursor, respectively. CeO2 nanoparticles (NPs) was successfully immobilized onto these supports to fabricate efficient catalysts for the tandem catalytic synthesis of imines from benzyl alcohols and anilines at low temperature under air atmosphere. The as-prepared catalysts were detailedly characterized by TEM, EDX, XRD, FT-IR, XPS VSM, ICP, and CO2-TPD. Interestingly, these prepared catalysts showed higher catalytic activity than reported CeO2 catalysts. Most attractively, the catalyst with a shell ofnitrogen-doped-carbon derived from dopamine exhibited the best catalytic property, and outstanding stability and recyclability in the cycle experiment. According to the XPS and CO2-TPD characterization, the enhanced performance of Fe3O4@CN@CeO2 composites can be attributed to two reasons as follows: (1) the immobilization of CeO2 improved its alkalinity at low reaction temperature, and alkalinity is beneficial to promote the oxidation of alcohols to benzaldehyde, which is the rate-determining step for this tandem reaction; (2) the doped nitrogen generated Lewis basic site could satisfactorily stabilize Ce3+/Ce4+ pair of CeO2, which determined the catalytic activity and stability of CeO2 based catalysts for this tandem reaction. Moreover, the prepared catalysts could be facilely recovered from the reaction mixture with an external magnet. This work may provide a useful strategy for constructing CeO2 based catalysts for green and sustainable catalysis.

12.
Acta Biomater ; 56: 91-101, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013102

RESUMO

Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. STATEMENT OF SIGNIFICANCE: Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic core-shell heparin-PEG microparticles presented here overcome this limitation by sequestering proteins through a PEG-based shell onto a protein-protective heparin core, temporarily isolating bound proteins from the cellular microenvironment, and re-delivering proteins only after degradation of the PEG-based shell. Thus, these core-shell microparticles have potential to be a novel tool to harness and isolate proteins produced in the cellular environment and then control when proteins are re-introduced for the most effective tissue regeneration and repair.


Assuntos
Fosfatase Alcalina/química , Proteína Morfogenética Óssea 2/química , Heparina/química , Polietilenoglicóis/química , Linhagem Celular , Preparações de Ação Retardada/química , Humanos
13.
Adv Colloid Interface Sci ; 249: 346-362, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28473052

RESUMO

According to the US Food and Drug Administration and the European Food Safety Authority, amorphous forms of silica and silicates are generally recognized to be safe as oral delivery ingredients in amounts up to 1500mg per day. Silica is used in the formulation of solid dosage forms, e.g. tablets, as glidant or lubricant. The synthesis of silica-based materials depends on the payload nature, drug, macromolecule or cell, and on the target release (active or passive). In the literature, most of the examples deal with the encapsulation of drugs in mesoporous silica nanoparticles. Still to date limited reports concerning the delivery of encapsulated macromolecules and cells have been reported in the field of oral delivery, despite the multiple promising examples demonstrating the compatibility of the sol-gel route with biological entities, likewise the interest of silica as an oral carrier. Silica diatoms appear as an elegant, cost-effective and promising alternative to synthetic sol-gel-based materials. This review reports the latest advances silica-based systems and discusses the potential benefits and drawbacks of using silica for oral delivery of drugs, macromolecules or cells.


Assuntos
Diatomáceas/química , Portadores de Fármacos , Composição de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silício/química , Administração Oral , Animais , Disponibilidade Biológica , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mesalamina/química , Mesalamina/metabolismo , Porosidade , Prednisona/química , Prednisona/metabolismo , Ratos , Solubilidade
14.
J Colloid Interface Sci ; 442: 39-48, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25521550

RESUMO

We describe the influence of microgel packing on colloidal-phase mediated heteroaggregation using poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) microgels with 1% mol or 5% mol N,N'-methylenebis(acrylamide) cross-linker. This system is uniquely designed to interrogate the influence of microgel structure and stiffness on microgel deformation at a curved interface by elminating the necessity of electrostatic charge pairing. Microgel monomer and cross-linker content is expected to influence deformation at a curved interface. Microgel deformation and swelling were characterized via atomic force microscopy (AFM) and viscometry. A systematic study of colloidal-phase mediated heteroaggregation was performed at varied effective volume fractions with all microgel compositions. Scanning electron microscopy (SEM) and qNano pore translocation experiments were used to asses the microgel coverage on the resultant raspberry-like particles (RLPs). Results reveal that microgel composition has a strong influence on the efficiency (as determined by microgel coverage) of RLP fabrication. The compositional effects appear to be related to the degree of microgel spreading/deformation at the interface, which is coupled to the influence of packing on assembly fidelity. These findings are widely applicable to systems where microgel deformation occurs at a curved interface. We also demonstrate that qNano pore translocation experiments can be used as a high-throughput method to analyze RLP microgel coverage.


Assuntos
Resinas Acrílicas/química , Coloides/química , Géis/química , Metacrilatos/química , Reagentes de Ligações Cruzadas/química , Propriedades de Superfície , Temperatura
15.
J Control Release ; 205: 70-82, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25483422

RESUMO

As cancer takes its toll on human health and well-being, standard treatment techniques such as chemotherapy and radiotherapy often fall short of ideal solutions. In particular, adverse side effects due to excess dosage and collateral damage to healthy cells as well as poor patient compliance due to multiple administrations continue to pose challenges in cancer treatment. Thus, the development of appropriately engineered drug delivery systems (DDS) for effective, controlled and sustained delivery of drugs is of interest for patient treatment. Moreover, the physiopathological characteristics of tumors play an essential role in the success of cancer treatment. Here, we present an overview of the application of double-walled microparticles for local drug delivery with particular focus on the electrohydrodynamic atomization (EHDA) technique and its fabrication challenges. The review highlights the importance of a combination of experimental data and computational simulations for the design of an optimal delivery system.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos , Neoplasias/tratamento farmacológico , Polímeros/química , Tecnologia Farmacêutica/métodos , Aerossóis , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Linhagem Celular Tumoral , Química Farmacêutica , Preparações de Ação Retardada , Desenho de Equipamento , Humanos , Camundongos , Modelos Químicos , Modelos Estatísticos , Simulação de Dinâmica Molecular , Nebulizadores e Vaporizadores , Neoplasias/metabolismo , Neoplasias/patologia , Tamanho da Partícula , Tecnologia Farmacêutica/instrumentação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA