Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 787
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(17): 4751-4769.e25, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39089252

RESUMO

The Duffy antigen receptor is a seven-transmembrane (7TM) protein expressed primarily at the surface of red blood cells and displays strikingly promiscuous binding to multiple inflammatory and homeostatic chemokines. It serves as the basis of the Duffy blood group system in humans and also acts as the primary attachment site for malarial parasite Plasmodium vivax and pore-forming toxins secreted by Staphylococcus aureus. Here, we comprehensively profile transducer coupling of this receptor, discover potential non-canonical signaling pathways, and determine the cryoelectron microscopy (cryo-EM) structure in complex with the chemokine CCL7. The structure reveals a distinct binding mode of chemokines, as reflected by relatively superficial binding and a partially formed orthosteric binding pocket. We also observe a dramatic shortening of TM5 and 6 on the intracellular side, which precludes the formation of the docking site for canonical signal transducers, thereby providing a possible explanation for the distinct pharmacological and functional phenotype of this receptor.


Assuntos
Microscopia Crioeletrônica , Sistema do Grupo Sanguíneo Duffy , Receptores de Superfície Celular , Humanos , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/química , Sistema do Grupo Sanguíneo Duffy/metabolismo , Sistema do Grupo Sanguíneo Duffy/química , Transdução de Sinais , Sítios de Ligação , Quimiocinas/metabolismo , Quimiocinas/química , Ligação Proteica
2.
Cell ; 180(3): 471-489.e22, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004464

RESUMO

Broadly neutralizing antibodies (bNAbs) represent a promising approach to prevent and treat HIV-1 infection. However, viral escape through mutation of the HIV-1 envelope glycoprotein (Env) limits clinical applications. Here we describe 1-18, a new VH1-46-encoded CD4 binding site (CD4bs) bNAb with outstanding breadth (97%) and potency (GeoMean IC50 = 0.048 µg/mL). Notably, 1-18 is not susceptible to typical CD4bs escape mutations and effectively overcomes HIV-1 resistance to other CD4bs bNAbs. Moreover, mutational antigenic profiling uncovered restricted pathways of HIV-1 escape. Of most promise for therapeutic use, even 1-18 alone fully suppressed viremia in HIV-1-infected humanized mice without selecting for resistant viral variants. A 2.5-Å cryo-EM structure of a 1-18-BG505SOSIP.664 Env complex revealed that these characteristics are likely facilitated by a heavy-chain insertion and increased inter-protomer contacts. The ability of 1-18 to effectively restrict HIV-1 escape pathways provides a new option to successfully prevent and treat HIV-1 infection.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Monoclonais/imunologia , Sítios de Ligação , Antígenos CD4/metabolismo , Células CHO , Estudos de Coortes , Cricetulus , Epitopos/imunologia , Feminino , Células HEK293 , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Mutação , Ligação Proteica/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
3.
Immunity ; 56(11): 2602-2620.e10, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967532

RESUMO

Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.


Assuntos
Citomegalovirus , Proteínas do Envelope Viral , Recém-Nascido , Humanos , Glicoproteínas de Membrana , Anticorpos Neutralizantes , Células B de Memória , Anticorpos Antivirais , Análise de Célula Única
4.
Mol Cell ; 83(18): 3283-3302.e5, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738963

RESUMO

Nuclear pore complexes (NPCs) direct the nucleocytoplasmic transport of macromolecules. Here, we provide a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryogenic electron microscopy and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. We resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring reveals an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution.


Assuntos
Poro Nuclear , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Membrana Transportadoras
5.
Annu Rev Genet ; 55: 633-659, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34555285

RESUMO

Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics-genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations-has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences.


Assuntos
Genômica , Museus , Biodiversidade , Evolução Biológica , Reprodutibilidade dos Testes
6.
Proc Natl Acad Sci U S A ; 121(1): e2310727120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38150499

RESUMO

Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Šand harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.


Assuntos
Proteína Fosfatase 2 , Proteína Fosfatase 2/metabolismo , Jordânia , Fosforilação , Mutação , Holoenzimas/genética , Holoenzimas/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(41): e2410995121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39361653

RESUMO

Approximately two-thirds of the estimated one-billion metric tons of methane produced annually by methanogens is derived from the cleavage of acetate. Acetate is broken down by a Ni-Fe-S-containing A-cluster within the enzyme acetyl-CoA synthase (ACS) to carbon monoxide (CO) and a methyl group (CH3+). The methyl group ultimately forms the greenhouse gas methane, whereas CO is converted to the greenhouse gas carbon dioxide (CO2) by a Ni-Fe-S-containing C-cluster within the enzyme carbon monoxide dehydrogenase (CODH). Although structures have been solved of CODH/ACS from acetogens, which use these enzymes to make acetate from CO2, no structure of a CODH/ACS from a methanogen has been reported. In this work, we use cryo-electron microscopy to reveal the structure of a methanogenic CODH and CODH/ACS from Methanosarcina thermophila (MetCODH/ACS). We find that the N-terminal domain of acetogenic ACS, which is missing in all methanogens, is replaced by a domain of CODH. This CODH domain provides a channel for CO to travel between the two catalytic Ni-Fe-S clusters. It generates the binding surface for ACS and creates a remarkably similar CO alcove above the A-cluster using residues from CODH rather than ACS. Comparison of our MetCODH/ACS structure with our MetCODH structure reveals a molecular mechanism to restrict gas flow from the CO channel when ACS departs, preventing CO escape into the cell. Overall, these long-awaited structures of a methanogenic CODH/ACS reveal striking functional similarities to their acetogenic counterparts despite a substantial difference in domain organization.


Assuntos
Acetato-CoA Ligase , Aldeído Oxirredutases , Microscopia Crioeletrônica , Metano , Methanosarcina , Complexos Multienzimáticos , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/química , Microscopia Crioeletrônica/métodos , Methanosarcina/enzimologia , Methanosarcina/metabolismo , Metano/metabolismo , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/ultraestrutura , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/química , Acetato-CoA Ligase/genética , Monóxido de Carbono/metabolismo , Modelos Moleculares
8.
Proc Natl Acad Sci U S A ; 121(8): e2301053120, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346186

RESUMO

While low-temperature Nuclear Magnetic Resonance (NMR) holds great promise for the analysis of unstable samples and for sensitizing NMR detection, spectral broadening in frozen protein samples is a common experimental challenge. One hypothesis explaining the additional linewidth is that a variety of conformations are in rapid equilibrium at room temperature and become frozen, creating an inhomogeneous distribution at cryogenic temperatures. Here, we investigate conformational heterogeneity by measuring the backbone torsion angle (Ψ) in Escherichia coli Dihydrofolate Reductase (DHFR) at 105 K. Motivated by the particularly broad N chemical shift distribution in this and other examples, we modified an established NCCN Ψ experiment to correlate the chemical shift of Ni+1 to Ψi. With selective 15N and 13C enrichment of Ile, only the unique I60-I61 pair was expected to be detected in 13C'-15N correlation spectrum. For this unique amide, we detected three different conformation basins based on dispersed chemical shifts. Backbone torsion angles Ψ were determined for each basin: 114 ± 7° for the major peak and 150 ± 8° and 164 ± 16° for the minor peaks as contrasted with 118° for the X-ray crystal structure (and 118° to 130° for various previously reported structures). These studies support the hypothesis that inhomogeneous distributions of protein backbone torsion angles contribute to the lineshape broadening in low-temperature NMR spectra.


Assuntos
Temperatura Baixa , Proteínas , Temperatura , Espectroscopia de Ressonância Magnética , Conformação Proteica , Proteínas/química , Ressonância Magnética Nuclear Biomolecular
9.
Proc Natl Acad Sci U S A ; 121(25): e2320052121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870056

RESUMO

Adiabatic decompression of paraquadrupolar materials has significant potential as a cryogenic cooling technology. We focus on TmVO[Formula: see text], an archetypal material that undergoes a continuous phase transition to a ferroquadrupole-ordered state at 2.15 K. Above the phase transition, each Tm ion contributes an entropy of [Formula: see text] due to the degeneracy of the crystal electric field groundstate. Owing to the large magnetoelastic coupling, which is a prerequisite for a material to undergo a phase transition via the cooperative Jahn-Teller effect, this level splitting, and hence the entropy, can be readily tuned by externally induced strain. Using a dynamic technique in which the strain is rapidly oscillated, we measure the adiabatic elastocaloric response of single-crystal TmVO[Formula: see text], and thus experimentally obtain the entropy landscape as a function of strain and temperature. The measurement confirms the suitability of this class of materials for cryogenic cooling applications and provides insight into the dynamic quadrupole strain susceptibility.

10.
Proc Natl Acad Sci U S A ; 121(11): e2318320121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457518

RESUMO

Coordinated carbon and nitrogen metabolism is crucial for bacteria living in the fluctuating environments. Intracellular carbon and nitrogen homeostasis is maintained by a sophisticated network, in which the widespread signaling protein PII acts as a major regulatory hub. In cyanobacteria, PII was proposed to regulate the nitrate uptake by an ABC (ATP-binding cassette)-type nitrate transporter NrtABCD, in which the nucleotide-binding domain of NrtC is fused with a C-terminal regulatory domain (CRD). Here, we solved three cryoelectron microscopy structures of NrtBCD, bound to nitrate, ATP, and PII, respectively. Structural and biochemical analyses enable us to identify the key residues that form a hydrophobic and a hydrophilic cavity along the substrate translocation channel. The core structure of PII, but not the canonical T-loop, binds to NrtC and stabilizes the CRD, making it visible in the complex structure, narrows the substrate translocation channel in NrtB, and ultimately locks NrtBCD at an inhibited inward-facing conformation. Based on these results and previous reports, we propose a putative transport cycle driven by NrtABCD, which is allosterically inhibited by PII in response to the cellular level of 2-oxoglutarate. Our findings provide a distinct regulatory mechanism of ABC transporter via asymmetrically binding to a signaling protein.


Assuntos
Cianobactérias , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Alostérica , Microscopia Crioeletrônica , Cianobactérias/metabolismo , Trifosfato de Adenosina/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo
11.
Trends Biochem Sci ; 47(2): 106-116, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34823974

RESUMO

Cryogenic electron microscopy (cryoEM) uses images of frozen hydrated biological specimens to produce macromolecular structures, opening up previously inaccessible levels of biological organization to high-resolution structural analysis. CryoEM has the potential for broad impact in biomedical research, including basic cell, molecular, and structural biology, and increasingly in drug discovery and vaccine development. Recent advances have led to the expansion of molecular and cellular structure determination at an exponential rate. National and regional centers have emerged to support this growth by increasing the accessibility of cryoEM throughout the biomedical research community. Through cooperation and synergy, these centers form a network of resources that accelerate the adoption of best practices for access and training and establish sustainable workflows to build future research capacity.


Assuntos
Microscopia Crioeletrônica , Microscopia Crioeletrônica/métodos , Estrutura Molecular
12.
Proc Natl Acad Sci U S A ; 120(11): e2218831120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893281

RESUMO

Fibrils formed by the 42-residue amyloid-ß peptide (Aß42), a main component of amyloid deposits in Alzheimer's disease (AD), are known to be polymorphic, i.e., to contain multiple possible molecular structures. Previous studies of Aß42 fibrils, including fibrils prepared entirely in vitro or extracted from brain tissue and using solid-state NMR (ssNMR) or cryogenic electron microscopy (cryo-EM) methods, have found polymorphs with differences in amino acid sidechain orientations, lengths of structurally ordered segments, and contacts between cross-ß subunit pairs within a single filament. Despite these differences, Aß42 molecules adopt a common S-shaped conformation in all previously described high-resolution Aß42 fibril structures. Here we report two cryo-EM-based structures of Aß42 fibrils that are qualitatively different, in samples derived from AD brain tissue by seeded growth. In type A fibrils, residues 12 to 42 adopt a ν-shaped conformation, with both intra-subunit and intersubunit hydrophobic contacts to form a compact core. In type B fibrils, residues 2 to 42 adopt an υ-shaped conformation, with only intersubunit contacts and internal pores. Type A and type B fibrils have opposite helical handedness. Cryo-EM density maps and molecular dynamics simulations indicate intersubunit K16-A42 salt bridges in type B fibrils and partially occupied K28-A42 salt bridges in type A fibrils. The coexistence of two predominant polymorphs, with differences in N-terminal dynamics, is supported by ssNMR data, as is faithful propagation of structures from first-generation to second-generation brain-seeded Aß42 fibril samples. These results demonstrate that Aß42 fibrils can exhibit a greater range of structural variations than seen in previous studies.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Espectroscopia de Ressonância Magnética , Encéfalo/metabolismo , Conformação Molecular , Amiloide/química , Fragmentos de Peptídeos/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(28): e2220477120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399405

RESUMO

In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps. Here, we isolated and interrogated interprotein energy transfer by embedding two variants of the primary antenna protein from purple bacteria, light-harvesting complex 2 (LH2), together into a near-native membrane disc, known as a nanodisc. We integrated ultrafast transient absorption spectroscopy, quantum dynamics simulations, and cryogenic electron microscopy to determine interprotein energy transfer timescales. By varying the diameter of the nanodiscs, we replicated a range of distances between the proteins. The closest distance possible between neighboring LH2, which is the most common in native membranes, is 25 Šand resulted in a timescale of 5.7 ps. Larger distances of 28 to 31 Šresulted in timescales of 10 to 14 ps. Corresponding simulations showed that the fast energy transfer steps between closely spaced LH2 increase transport distances by ∼15%. Overall, our results introduce a framework for well-controlled studies of interprotein energy transfer dynamics and suggest that protein pairs serve as the primary pathway for the efficient transport of solar energy.


Assuntos
Complexos de Proteínas Captadores de Luz , Proteobactérias , Proteobactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Análise Espectral , Transferência de Energia
14.
J Virol ; 98(10): e0064024, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39329471

RESUMO

Arenaviruses exist globally and can cause hemorrhagic fever and neurological diseases, exemplified by the zoonotic pathogen lymphocytic choriomeningitis virus (LCMV). The structures of individual LCMV proteins or their fragments have been reported, but the architectural organization and the nucleocapsid assembly mechanism remain elusive. Importantly, the in situ structure of the arenavirus fusion protein complex (glycoprotein complex, GPC) as present on the virion prior to fusion, particularly with its integral stable signal peptide (SSP), has not been shown, hindering efforts such as structure-based vaccine design. Here, we have determined the in situ structure of LCMV proteins and their architectural organization in the virion by cryogenic electron tomography. The tomograms reveal the global distribution of GPC, matrix protein Z, and the contact points between the viral envelope and nucleocapsid. Subtomogram averaging yielded the in situ structure of the mature GPC with its transmembrane domain intact, revealing the GP2-SSP interface and the endodomain of GP2. The number of RNA-dependent RNA polymerase L molecules packaged within each virion varies, adding new perspectives to the infection mechanism. Together, these results delineate the structural organization of LCMV and offer new insights into its mechanism of LCMV maturation, egress, and cell entry. IMPORTANCE: The impact of COVID-19 on public health has highlighted the importance of understanding zoonotic pathogens. Lymphocytic choriomeningitis virus (LCMV) is a rodent-borne human pathogen that causes hemorrhagic fever. Herein, we describe the in situ structure of LCMV proteins and their architectural organization on the viral envelope and around the nucleocapsid. The virion structure reveals the distribution of the surface glycoprotein complex (GPC) and the contact points between the viral envelope and the underlying matrix protein, as well as the association with the nucleocapsid. The morphology and sizes of virions, as well as the number of RNA polymerase L inside each virion vary greatly, highlighting the fast-changing nature of LCMV. A comparison between the in situ GPC trimeric structure and prior ectodomain structures identifies the transmembrane and endo domains of GPC and key interactions among its subunits. The work provides new insights into LCMV assembly and informs future structure-guided vaccine design.


Assuntos
Vírus da Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/ultraestrutura , Animais , Humanos , Vírion/metabolismo , Vírion/ultraestrutura , Microscopia Crioeletrônica , Proteínas Virais de Fusão/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Nucleocapsídeo/metabolismo , Nucleocapsídeo/ultraestrutura , Nucleocapsídeo/química , Tomografia com Microscopia Eletrônica , Coriomeningite Linfocítica/virologia , Modelos Moleculares
15.
J Virol ; 98(7): e0036824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38940586

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne pathogen responsible for an acute musculoskeletal disease in humans. Replication of the viral RNA genome occurs in specialized membranous replication organelles (ROs) or spherules, which contain the viral replication complex. Initially generated by RNA synthesis-associated plasma membrane deformation, alphavirus ROs are generally rapidly endocytosed to produce type I cytopathic vacuoles (CPV-I), from which nascent RNAs are extruded for cytoplasmic translation. By contrast, CHIKV ROs are poorly internalized, raising the question of their fate and functionality at the late stage of infection. Here, using in situ cryogenic-electron microscopy approaches, we investigate the outcome of CHIKV ROs and associated replication machinery in infected human cells. We evidence the late persistence of CHIKV ROs at the plasma membrane with a crowned protein complex at the spherule neck similar to the recently resolved replication complex. The unexpectedly heterogeneous and large diameter of these compartments suggests a continuous, dynamic growth of these organelles beyond the replication of a single RNA genome. Ultrastructural analysis of surrounding cytoplasmic regions supports that outgrown CHIKV ROs remain dynamically active in viral RNA synthesis and export to the cell cytosol for protein translation. Interestingly, rare ROs with a homogeneous diameter are also marginally internalized in CPV-I near honeycomb-like arrangements of unknown function, which are absent in uninfected controls, thereby suggesting a temporal regulation of this internalization. Altogether, this study sheds new light on the dynamic pattern of CHIKV ROs and associated viral replication at the interface with cell membranes in infected cells.IMPORTANCEThe Chikungunya virus (CHIKV) is a positive-stranded RNA virus that requires specialized membranous replication organelles (ROs) for its genome replication. Our knowledge of this viral cycle stage is still incomplete, notably regarding the fate and functional dynamics of CHIKV ROs in infected cells. Here, we show that CHIKV ROs are maintained at the plasma membrane beyond the first viral cycle, continuing to grow and be dynamically active both in viral RNA replication and in its export to the cell cytosol, where translation occurs in proximity to ROs. This contrasts with the homogeneous diameter of ROs during internalization in cytoplasmic vacuoles, which are often associated with honeycomb-like arrangements of unknown function, suggesting a regulated mechanism. This study sheds new light on the dynamics and fate of CHIKV ROs in human cells and, consequently, on our understanding of the Chikungunya viral cycle.


Assuntos
Vírus Chikungunya , RNA Viral , Replicação Viral , Vírus Chikungunya/fisiologia , Humanos , RNA Viral/metabolismo , RNA Viral/genética , Febre de Chikungunya/virologia , Compartimentos de Replicação Viral/metabolismo , Organelas/virologia , Organelas/ultraestrutura , Organelas/metabolismo , Membrana Celular/virologia , Membrana Celular/metabolismo , Linhagem Celular , Microscopia Crioeletrônica , Animais , Genoma Viral
16.
Proc Natl Acad Sci U S A ; 119(16): e2119467119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35363556

RESUMO

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available COVID-19 vaccines and monoclonal antibody therapies due to structural and dynamic changes of the viral spike glycoprotein (S). The heptad repeat 1 (HR1) and heptad repeat 2 (HR2) domains of S drive virus­host membrane fusion by assembly into a six-helix bundle, resulting in delivery of viral RNA into the host cell. We surveyed mutations of currently reported SARS-CoV-2 variants and selected eight mutations, including Q954H, N969K, and L981F from the Omicron variant, in the postfusion HR1HR2 bundle for functional and structural studies. We designed a molecular scaffold to determine cryogenic electron microscopy (cryo-EM) structures of HR1HR2 at 2.2­3.8 Å resolution by linking the trimeric N termini of four HR1 fragments to four trimeric C termini of the Dps4 dodecamer from Nostoc punctiforme. This molecular scaffold enables efficient sample preparation and structure determination of the HR1HR2 bundle and its mutants by single-particle cryo-EM. Our structure of the wild-type HR1HR2 bundle resolves uncertainties in previously determined structures. The mutant structures reveal side-chain positions of the mutations and their primarily local effects on the interactions between HR1 and HR2. These mutations do not alter the global architecture of the postfusion HR1HR2 bundle, suggesting that the interfaces between HR1 and HR2 are good targets for developing antiviral inhibitors that should be efficacious against all known variants of SARS-CoV-2 to date. We also note that this work paves the way for similar studies in more distantly related viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Sequência Conservada , Humanos , Domínios Proteicos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
17.
Nano Lett ; 24(29): 8859-8865, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38981024

RESUMO

Cryogenic temperatures are crucial for the operation of semiconductor quantum electronic devices, yet the heating effects induced by microwave or laser signals used for quantum state manipulation can lead to significant temperature variations at the nanoscale. Therefore, probing the temperature of individual devices in working conditions and understanding the thermodynamics are paramount for designing and operating large-scale quantum computing systems. In this study, we demonstrate high-sensitivity fast thermometry in a silicon nanotransistor at cryogenic temperatures using RF reflectometry. Through this method, we explore the thermodynamic processes of the nanotransistor during and after a laser pulse and determine the dominant heat dissipation channels in the few-kelvin temperature range. These insights are important to understand thermal budgets in quantum circuits, with our techniques being compatible with microwave and laser radiation, offering a versatile approach for studying other quantum electronic devices in working conditions.

18.
Nano Lett ; 24(34): 10409-10417, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39158012

RESUMO

The ability to freeze and stabilize reaction intermediates in their metastable states and obtain their structural and chemical information with high spatial resolution is critical to advance materials technologies such as catalysis and batteries. Here, we develop an electrified operando-freezing methodology to preserve these metastable states under electrochemical reaction conditions for cryogenic electron microscopy (cryo-EM) imaging and spectroscopy. Using Cu catalysts for CO2 reduction as a model system, we observe restructuring of the Cu catalyst in a CO2 atmosphere while the same catalyst remains intact in air at the nanometer scale. Furthermore, we discover the existence of a single valence Cu (1+) state and C-O bonding at the electrified liquid-solid interface of the operando-frozen samples, which are key reaction intermediates that traditional ex situ measurements fail to detect. This work highlights our novel technique to study the local structure and chemistry of electrified liquid-solid interfaces, with broad impact beyond catalysis.

19.
Nano Lett ; 24(22): 6714-6721, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781452

RESUMO

The cycle stability of lithium metal anode (LMA) largely depends on solid-electrolyte interphase (SEI). Electrolyte engineering is a common strategy to adjust SEI properties, yet understanding its impact is challenging due to limited knowledge on ultrafine SEI structures. Herein, using cryogenic transmission electron microscopy, we reveal the atomic-level SEI structure of LMA in ether-based electrolytes, focusing on the role of LiNO3 additives in SEI modulation at different temperature (25 and 50 °C). Poor cycle stability of LMA in the baseline electrolyte without LiNO3 additives stems from the Li2CO3-rich mosaic-type SEI. Increased LiNO3 content and elevated operating temperature enhance cyclic performance by forming bilayer or multilayer SEI structures via preferential LiNO3 decomposition, but may thicken the SEI, leading to reduced initial Coulombic efficiency and increased overpotential. The optimal SEI features a multilayer structure with Li2O-rich inner layer and closely packed grains in the outer layer, minimizing electrolyte decomposition or corrosion.

20.
Nano Lett ; 24(5): 1531-1538, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38286029

RESUMO

Two-dimensional (2D) van der Waals magnets comprise rich physics that can be exploited for spintronic applications. We investigate the interplay between spin-phonon coupling and spin textures in a 2D van der Waals magnet by combining magneto-Raman spectroscopy with cryogenic Lorentz transmission electron microscopy. We find that when stable skyrmion bubbles are formed in the 2D magnet, a field-dependent Raman shift can be observed, and this shift is absent for the 2D magnet prepared in its ferromagnetic state. Correlating these observations with numerical simulations that take into account field-dependent magnetic textures and spin--phonon coupling in the 2D magnet, we associate the Raman shift to field-induced modulations of the skyrmion bubbles and derive the existence of inhomogeneity in the skyrmion textures over the film thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA