RESUMO
Several infectious diseases are transmitted and spread by mosquitoes, and millions of people die annually from them. The mosquito, Culex pipiens is a responsible for the emergence of various Virus in Egypt. So, we devote our work to evaluate the larvicidal efficacy against C. pipiens of some new heterocyclic compounds containing chlorine motifs. The implementation was emanated from using 2-cyano-N'-(2-(2,4-dichlorophenoxy)acetyl)acetohydrazide (3) as scaffold to synthesize some new heterocyclic compounds. The structures of the synthesized compounds were interpreted scrupulously by spectroscopic and elemental analyses. Thereafter, the larvicidal activity against C. pipiens of thirteen synthesized compounds was estimated. Noteworthy, cyanoacetohydrazide derivative 3 and 3-iminobenzochromene derivative 12 showed a fabulous potent efficacy with LC50 equal to 3.2 and 3.5â ppm against C. pipiens, respectively, and are worth being further evaluated in the field of pest control.
Assuntos
Culex , Compostos Heterocíclicos , Hidrazinas , Inseticidas , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/química , Larva , Compostos Heterocíclicos/farmacologia , Extratos Vegetais/químicaRESUMO
The possibility of cyanoacetohydrazide usage as a novel derivatizing agent is demonstrated in the presented article, and a comparison with hydroxylamine as the most commonly used reagent is provided. Optimal conditions for steroid derivatization with cyanoacetohydrazide are provided. According to the collected data, the maximum yield of derivatives was observed at pH 2.8 within 70 min at 40 °C with 5 ng/mL limit of detection for all investigated analytes. It was shown that cyanoacetohydrazide derivatives produces both syn- and anti-forms as well as hydroxylamine, and their ratios were evaluated and shown in presented work. An efficiency enchantment from two to up to five times was achieved with a novel derivatization reagent. Its applicability for qualitative analysis of steroids in urine was presented at real samples. Additionally, the reproducible fragmentation of the derivatizing agent in collision-induced dissociation offers opportunities for simplified non-targeted steroidomic screening. Furthermore, cyanoacetohydrazide increases ionization efficiency in positive mode, which can eliminate the need for redundant high-resolution instrument runs required for both positive and negative mode analyses.
Assuntos
Esteroides , Humanos , Esteroides/urina , Esteroides/química , Cromatografia Líquida de Alta Pressão/métodos , Hidrazinas/química , Espectrometria de Massas em Tandem/métodos , Limite de DetecçãoRESUMO
Two new categories of fused pyridines include 2H-thiazolo[3,2-a]pyridine-6-carbohydrazides and 2H-oxazolo[3,2-a]pyridine-6-carbohydrazides have been successfully synthesized via five-component cascade reactions using 9-fluorenone, cyanoacetohydrazide, 1,1-bis(methylthio)-2-nitroethene, aromatic aldehydes and cysteamine hydrochloride or ethanol amine as starting materials. This new approach involves a subsequence of key steps: N,S-acetal or N,O-acetal formation, Knoevenagel condensation, Michael addition, tautomerization and N-cyclization. It also has some advantages, such as convenience of operation, tolerance of a wide diversity of functional groups, use of green solvent and ease of purification by washing the crude products with ethanol.
Assuntos
Acetais , Piridinas , Estrutura Molecular , EtanolRESUMO
N'-[(4-Chloro-2-oxo-2H-chromen-3-yl)methylene]-2-cyanoacetohydrazide (3) was synthesized in excellent yield from the condensation of 4-Chloro-2-oxo-2H-chromene-3-carbaldehyde with cyanoacetohydrazide. Compound 3 was utilized as a building block to synthesize novel coumarin and heterocycle-fused coumarin derivatives. The chemical structures of all the new coumarin compounds were identified by spectral analyses. Some of the new coumarins compounds were screened in human cancer cell lines (HEPG-2, MCF-7, HCT-116 and PC-3) to learn about their cytotoxic effects in addition to the study of their DNA damage and antioxidant activity. Three of these compounds exhibited remarkable antioxidant and anti-proliferative activities. Moreover, they have the capability to protect DNA from damage induced by bleomycin. Molecular docking, DFT and molecular electrostatic potential studies were performed on the compounds inâ vitro.
Assuntos
Antineoplásicos , Antioxidantes , Humanos , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Linhagem Celular , Cumarínicos/química , Antineoplásicos/química , Relação Estrutura-AtividadeRESUMO
Piperidinium spirooxindoline-pyridineolate has been prepared via one-pot multicomponent reaction of isatin, malononitrile, cyanoacetohydrazide, and piperidine in water or ethanol medium at room temperature. In addition, the synthesis of two indole-substituted 2-pyridones from indole-3-carbaldehyde, malononitrile, and cyanoacetohydrazide in the presence of piperidine is described.
Assuntos
Etanol , Piridonas , Indóis , Piperidinas , ÁguaRESUMO
A new class of multi-functional triazole hexahydroquinoline carbohydrazide named 2-amino-7,7-dimethyl-5-oxo-4-phenyl-1-(4H-1,2,4-triazol-3-yl)-1,4,5,6,7,8-hexahydroquinoline-3-carbohydrazide has been synthesized by a novel multi-component process involving the reaction of dimedone, 3-amino-1,2,4-triazole, various benzaldehyde with cyanoacetohydrazide under mild conditions in the stoichiometric melt and chloroform in sequence. The simple one-pot process, straight product isolation without applying tedious purification procedures, progression of the reaction without using any catalyst, the application of diverse aldehydes causing a high molecular diversity, the existence of several nitrogen atoms in the product structure, and the possibility of creating multiple hydrogen bonding in the final compound are attractive specifications of the present strategy.
RESUMO
A one-pot, multi-component protocol for the synthesis of a new class of functionalized quinoline carbohydrazide derivatives via reaction of various anilines, dimedone, aromatic aldehydes, and cyanoacetohydrazide is described. The reactions are completed in the presence of catalytic amount of piperidine, respectively, in melt conditions and then in ethanol/water (1:1) as green solvent at 80 °C. Mild conditions, green medium, short reaction times, simple workup and purification process with no chromatographic technique, and good yields are the main advantages of this method.
Assuntos
Hidrazinas/química , Hidrazinas/síntese química , Catálise , Técnicas de Química Sintética , Química VerdeRESUMO
A (pyridazinyl)acetate derivative was reacted with thiosemicarbazide and hydrazine hydrate to yield spiropyridazinone and acetohydrazide derivatives, respectively. The acetohydrazide derivative was used as a starting material for synthesizing some new heterocyclic compounds such as oxoindolinylidene, dimethylpyrazolyl, methylpyrazolyl, oxopyrazolyl, cyanoacetylacetohydrazide and oxadiazolylacetonitrile derivatives. The behavior of the cyanoacetylacetohydrazide and oxadiazolylacetonitrile derivatives towards nitrogen and carbon nucleophiles was investigated. The assigned structures of the prepared compounds were elucidated by spectral methods (IR, ¹H-NMR (13)C-NMR and mass spectroscopy). Some of the newly prepared compounds were tested in vitro against a panel of four human tumor cell lines, namely hepatocellular carcinoma (liver) HePG-2, colon cancer HCT-116, human prostate cancer PC3, and mammary gland breast MCF-7. Also they were tested as antioxidants. Almost all of the tested compounds showed satisfactory activity.
Assuntos
Acetonitrilas/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/farmacologia , Hidrazinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Carbono/química , Avaliação Pré-Clínica de Medicamentos , Células HCT116 , Células Hep G2 , Compostos Heterocíclicos/química , Humanos , Células MCF-7 , Estrutura Molecular , Nitrogênio/químicaRESUMO
BACKGROUND: Pyridines have been reported to possess various pharmacological activities. RESULTS: Sodium 3-oxo-3-(2-oxo-2H-chromen-3-yl)prop-1-en-1-olate (2) and sodium 3-oxo-3-(3-oxo-3H-benzo[f]chromen-2-yl)prop-1-en-1-olate (7) were prepared and reacted with 2-cyano-N'-(1-aryl(heteryl)ethylidene)acetohydrazides 3a-d to produce 2-oxo-1,2-dihydropyridine-3-carbonitrile derivatives 5a-d and 9a-d, respectively, in good yields. Also, 3a-d reacted with sodium (2-oxocyclopentylidene)methanolate (11a) or sodium (2-oxocyclohexylidene) methanolate (11b) to yield 2-oxo-tetrahydro-1H-cyclopenta[b]pyridine-3-carbonitriles 13a-d and 2-oxo-hexahydroquinoline-3-carbonitriles 13e-h, respectively. The mechanisms that account for the formation of the products are discussed. Additionally, the structures of all the newly synthesized products are confirmed, based on elemental analysis and spectral data. Several of the newly synthesized compounds are evaluated for their antitumor activity against HEPG2 and their structure activity relationship (SAR) was studied. CONCLUSIONS: The results revealed that the pyridine derivatives 5c and 5d (IC50 = 1.46, 7.08 µM, respectively) have promising antitumor activity against liver carcinoma cell line (HEPG2), compared to the reference drug, doxorubicin.
RESUMO
The present research describes the synthesis of novel 5-benzoyl-N-substituted-amino- and 5-benzoyl-N-sulfonylamino-4-alkylsulfanyl-2-pyridones 5a-c and 6a-c via the reaction of 2-benzoyl-3,3-bis(alkylthio)acrylonitriles 2a-c with N-cyanoacetohydrazide 3 and cyanoaceto-N-phenylsulfonylhydrazide 4, respectively. Also, the reactivity of the compounds 5a-c toward hydrazine hydrate to give product 1H-pyrazolo[4,3-c]pyridine derivative 7 was studied. In addition, the reactivity of the 2a-c toward 1-cyanoacetyl-4 arylidenesemicarbazides 8a-c afforded 3,5-dihydro[1,2,4]triazolo[1,5-a]pyridine-6-carbonitrile derivatives (12-14)a-c, which reacted with hydrazine hydrate to give 3H-pyrazolo[4,3-c][1,2,4]triazolo[1,5-a]pyridine-6-carbonitrile derivatives 15a-c. The structures of the new products were characterized based on 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, infrared, mass-spectroscopy, and elemental analyses. The products were screened in vitro for their antibacterial and antifungal activity properties.
Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/farmacologia , Piridonas/síntese química , Piridonas/farmacologia , Antibacterianos/química , Antifúngicos/química , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridonas/química , Staphylococcus aureus/efeitos dos fármacosRESUMO
Herein we report synthesis of new steroidal oxadiazinanones from steroidal ketones. After characterization by spectral and analytical data, the interaction studies of compounds (4-6) with DNA were carried out by UV-vis, fluorescence spectroscopy and gel electrophoresis. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 1.8×10(4) M(-1), 2.2×10(4) M(-1) and 2.6×10(4) M(-1), respectively, indicating the higher binding affinity of compound 6 towards DNA. Gel electrophoresis showed the concentration dependent cleavage activity of compound 6 alone or in presence of Cu (II) causes the nicking of supercoiled pBR322 and it seems to follow the mechanistic pathway involving generation of hydroxyl radicals that are responsible for initiating DNA strand scission. Molecular simulations suggest that compounds binds through minor groove of DNA. MTT assay depicted promising anticancer activity of compound 5 and 6 particularly against HL-60 and MCF-7. The apoptotic degradation of DNA was analyzed by agarose gel electrophoresis and visualized by ethidium bromide staining (comet assay). The results revealed that compound 6 has better prospectus to act as cancer chemotherapeutic candidate which warrants further in vivo anticancer investigations.