Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38777925

RESUMO

INTRODUCTION: The emergence of multidrug-resistant bacteria and biofilms requires discovering new antimicrobial agents from unexplored environments. OBJECTIVES: This study aims to isolate and characterize a new actinobacterial strain from the Hoggar Mountains in southern Algeria and evaluate its ability to produce bioactive molecules with potential antibacterial and antibiofilm activities. METHODS: A novel halotolerant actinobacterial strain, designated HG-17, was isolated from the Hoggar Mountains, and identified based on phenotypic characterizations, 16S rDNA sequence analysis, and phylogenetic analysis. The antibacterial and antibiofilm activities of the strain were assessed, and the presence of biosynthetic genes (PKS-I and NRPS) was confirmed. Two active compounds, HG-7 and HG-9, were extracted butanol solvent, purified by HPLC, and their chemical structures were elucidated using ESI mass spectrometry and NMR spectroscopy. RESULTS: The strain HG-17 was identified as Streptomyces purpureus NBRC with 98.8% similarity. It exhibited strong activity against multidrug-resistant and biofilm-forming bacteria. The two purified active compounds, HG-7 and HG-9, were identified as cyclo-(d-cis-hydroxyproline-l-phenylalanine) and cyclo-(l-prolone-l-tyrosine), respectively. The minimum inhibitory concentrations (MICs) of HG-7 and HG-9 ranged from 3 to 15 µg/mL, comparable to the MICs of tetracycline (8 to 15 µg/mL). Their minimum biofilm inhibitory concentration (MBIC 50%) showed good inhibition from 48.0 to 52.0% at concentrations of 1 to 7 µg/mL against the tested bacteria. CONCLUSION: This is the first report of cyclo-(d-cis-hydroxyproline-l-phenylalanine) and cyclo-(l-prolone-l-tyrosine) antibiotics from S. purpureus and their anti-multi-drug-resistant and biofilm-forming bacteria. These results indicate that both antibiotics could be used as effective therapeutics to control infections associated with multidrug-resistant bacteria.

2.
Molecules ; 28(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570871

RESUMO

Cyclic dipeptides with two intramolecular peptide bonds forming a six-membered 2,5-diketopiperazine ring are gaining significant attention due to their biological and chemical properties. Small changes in the local geometry of such molecules (from cis to trans) can lead to significant structural differences. This work presents the results of a study of cyclo(l-Cys-d-Cys), a dipeptide comprising two cysteine molecules in opposite chiral configurations, with the functional groups situated at both sides of the diketopiperazine ring. X-ray diffraction (XRD) experiment revealed that the molecule crystallises in the P-1 space group, which includes the centre of inversion. The IR and Raman vibrational spectra of the molecule were acquired and interpreted in terms of the potential energy distribution (PED) according to the results of density functional theory (DFT) calculations. The DFT-assisted analysis of energy frameworks for the hydrogen bond network within molecular crystals was performed to support the interpretation of X-ray structural data. The optimisation of the computational model based on three-molecule geometry sections from the crystallographic structure, selected to appropriately reflect the intermolecular interactions responsible for the formation of 1D molecular tapes in cyclo(l-Cys-d-Cys) crystal, allowed for better correspondence between theoretical and experimental vibrational spectra. This work can be considered the first complete structural characterisation of cyclo(l-Cys-d-Cys), complemented via vibrational spectroscopy results with full band assignment aided with the use of the DFT method.

3.
Mar Drugs ; 20(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35200615

RESUMO

Quorum sensing (QS) can regulate the pathogenicity of bacteria and the production of some virulence factors. It is a promising target for screening to find anti-virulence agents in the coming post-antibiotics era. Cyclo (L-Trp-L-Ser), one variety of cyclic dipeptides (CDPs), isolated from a marine bacterium Rheinheimera aquimaris, exhibited anti-QS activity against Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PAO1. Unlike the CDPs composed of phenylalanine or tyrosine, the anti-QS activity has been widely studied; however, cyclo (L-Trp-L-Ser) and derivatives, containing one tryptophan unit and one non-aromatic amino acid, have not been systematically explored. Herein, the cyclo (L-Trp-L-Ser) and seven derivatives were synthesized and evaluated. All tryptophane-contained CDPs were able to decrease the production of violacein in C.violaceum CV026 and predicted as binding within the same pocket of receptor protein CviR, but in lower binding energy compared with the natural ligand C6HSL. As for P. aeruginosa PAO1, owning more complicated QS systems, these CDPs also exhibited inhibitory effects on pyocyanin production, swimming motility, biofilm formation, and adhesion. These investigations suggested a promising way to keep the tryptophan untouched and make modifications on the non-aromatic unit to increase the anti-QS activity and decrease the cytotoxicity, thus developing a novel CDP-based anti-virulence agent.


Assuntos
Antibacterianos/farmacologia , Dipeptídeos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Triptofano/química , Células A549 , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Chromatiaceae/metabolismo , Chromobacterium/efeitos dos fármacos , Dipeptídeos/química , Dipeptídeos/isolamento & purificação , Humanos , Camundongos , Células NIH 3T3 , Pseudomonas aeruginosa/efeitos dos fármacos , Virulência/efeitos dos fármacos
4.
Molecules ; 26(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34885778

RESUMO

Pyrazines (1,4-diazirines) are an important group of natural products that have tremendous monetary value in the food and fragrance industries and can exhibit a wide range of biological effects including antineoplastic, antidiabetic and antibiotic activities. As part of a project investigating the secondary metabolites present in understudied and chemically rich Actinomycetes, we isolated a series of six pyrazines from a soil-derived Lentzea sp. GA3-008, four of which are new. Here we describe the structures of lentzeacins A-E (1, 3, 5 and 6) along with two known analogues (2 and 4) and the porphyrin zincphyrin. The structures were determined by NMR spectroscopy and HR-ESI-MS. The suite of compounds present in Lentzea sp. includes 2,5-disubstituted pyrazines (compounds 2, 4, and 6) together with the new 2,6-disubstituted isomers (compounds 1, 3 and 5), a chemical class that is uncommon. We used long-read Nanopore sequencing to assemble a draft genome sequence of Lentzea sp. which revealed the presence of 40 biosynthetic gene clusters. Analysis of classical di-modular and single module non-ribosomal peptide synthase genes, and cyclic dipeptide synthases narrows down the possibilities for the biosynthesis of the pyrazines present in this strain.


Assuntos
Actinomycetales/química , Pirazinas/isolamento & purificação , Microbiologia do Solo , Vias Biossintéticas/genética , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Genoma Bacteriano , Família Multigênica , Peptídeo Sintases/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Especificidade por Substrato
5.
Molecules ; 25(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806659

RESUMO

Prenylated natural products have interesting pharmacological properties and prenylation reactions play crucial roles in controlling the activities of biomolecules. They are difficult to synthesize chemically, but enzymatic synthesis production is a desirable pathway. Cyclic dipeptide prenyltransferase catalyzes the regioselective Friedel-Crafts alkylation of tryptophan-containing cyclic dipeptides. This class of enzymes, which belongs to the dimethylallyl tryptophan synthase superfamily, is known to be flexible to aromatic prenyl receptors, while mostly retaining its typical regioselectivity. In this study, seven tryptophan-containing cyclic dipeptides 1a-7a were converted to their C7-regularly prenylated derivatives 1b-7b in the presence of dimethylallyl diphosphate (DMAPP) by using the purified 7-dimethylallyl tryptophan synthase (7-DMATS) as catalyst. The HPLC analysis of the incubation mixture and the NMR analysis of the separated products showed that the stereochemical structure of the substrate had a great influence on their acceptance by 7-DMATS. Determination of the kinetic parameters proved that cyclo-l-Trp-Gly (1a) consisting of a tryptophanyl and glycine was accepted as the best substrate with a KM value of 169.7 µM and a turnover number of 0.1307 s-1. Furthermore, docking studies simulated the prenyl transfer reaction of 7-DMATS and it could be concluded that the highest affinity between 7-DMATS and 1a. Preliminary results have been clearly shown that prenylation at C7 led to a significant increase of the anticancer and antimicrobial activities of the prenylated derivatives 1b-7b in all the activity test experiment, especially the prenylated product 4b.


Assuntos
Alquil e Aril Transferases/química , Anti-Infecciosos , Antineoplásicos , Bactérias/crescimento & desenvolvimento , Dipeptídeos , Neoplasias/tratamento farmacológico , Peptídeos Cíclicos , Prenilação , Células A549 , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Dipeptídeos/síntese química , Dipeptídeos/química , Dipeptídeos/farmacologia , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia
6.
Bioorg Med Chem ; 27(12): 2323-2331, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528685

RESUMO

Microorganisms embedded in a biofilm are significantly more resistant to antimicrobial agents and the defences of the human immune system, than their planktonic counterpart. Consequently, compounds that can inhibit biofilm formation are of great interest for novel therapeutics. In this study, a screening approach was used to identify novel cyclic dipeptides that have anti-biofilm activity against oral pathogens. Five new active compounds were identified that prevent biofilm formation by the cariogenic bacterium Streptococcus mutans and the pathogenic fungus Candida albicans. These compounds also inhibit the adherence of microorganisms to a hydroxylapatite surface. Further investigations were conducted on these compounds to establish the structure-activity relationship, and it was deduced that the common cleft pattern is required for these molecules to act effectively against biofilms.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Dipeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Dipeptídeos/síntese química , Dipeptídeos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia , Relação Estrutura-Atividade
7.
Molecules ; 23(1)2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29351264

RESUMO

Ralstonia solanacearum is a causative agent of bacterial wilt in many important crops throughout the world. How to control bacterial wilt caused by R. solanacearum is a major problem in agriculture. In this study, we aim to isolate the biocontrol agents that have high efficacy in the control of bacterial wilt. Three new bacterial strains with high antimicrobial activity against R. solanacearum GMI1000 were isolated and identified. Our results demonstrated that these bacteria could remarkably inhibit the disease index of host plant infected by R. solanacearum. It was indicated that strain GZ-34 (CCTCC No. M 2016353) showed an excellent protective effect to tomato under greenhouse conditions. Strain GZ-34 was characterized as Escherichia coli based on morphology, biochemistry, and 16S rRNA analysis. We identified that the main antimicrobial compounds produced by E. coli GZ-34 were cyclo(l-Pro-d-Ile) and cyclo(l-Pro-l-Phe) using electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) analysis. The two active compounds also interfered with the expression levels of some pathogenicity-contributors of R. solanacearum. Furthermore, cyclo(l-Pro-l-Phe) effectively inhibited spore formation of Magnaporthe grisea, which is a vital pathogenesis process of the fungal pathogen, suggesting cyclic dipeptides from E. coli are promising potential antimicrobial agents with broad-spectrum activity to kill pathogens or interfere with their pathogenesis.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antibiose , Dipeptídeos/química , Escherichia coli/metabolismo , Peptídeos Cíclicos/química , Ralstonia solanacearum/efeitos dos fármacos , Anti-Infecciosos/isolamento & purificação , Dipeptídeos/isolamento & purificação , Dipeptídeos/farmacologia , Escherichia coli/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Plantas/microbiologia , Microbiologia do Solo , Espectrometria de Massas por Ionização por Electrospray
8.
Crit Rev Food Sci Nutr ; 57(4): 718-742, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25629623

RESUMO

2,5-Diketopiperazines (2,5-DKPs) have been found to occur in a wide range of food and beverages, and display an array of chemesthetic effects (bitter, astringent, metallic, and umami) that can contribute to the taste of a variety of foods. These smallest cyclic peptides also occur as natural products and have been found to display a variety of bioactivities from antibacterial, antifungal, to anthroprotective effects and have the potential to be used in the development of new functional foods. An overview of the synthesis of these small chiral molecules and their molecular properties is presented. The occurrence, taste, and bioactivity of all simple naturally occurring 2,5-DKPs to date have been reviewed and those found in food from yeasts, fungi, and bacteria that have been used in food preparation or contamination, as well as metabolites of sweeteners and antibiotics added to food are also reviewed.


Assuntos
Bebidas/análise , Análise de Alimentos , Piperazinas/química , Piperazinas/farmacologia , Animais , Produtos Biológicos , Fermentação , Humanos
9.
Molecules ; 22(12)2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29168781

RESUMO

Cyclodipeptides, called 2,5-diketopiperazines (2,5-DKPs), are obtained by the condensation of two amino acids. Fungi have been considered to be a rich source of novel and bioactive cyclodipeptides. This review highlights the occurrence, structures and biological activities of the fungal cyclodipeptides with the literature covered up to July 2017. A total of 635 fungal cyclodipeptides belonging to the groups of tryptophan-proline, tryptophan-tryptophan, tryptophan-Xaa, proline-Xaa, non-tryptophan-non-proline, and thio-analogs have been discussed and reviewed. They were mainly isolated from the genera of Aspergillus and Penicillium. More and more cyclodipeptides have been isolated from marine-derived and plant endophytic fungi. Some of them were screened to have cytotoxic, phytotoxic, antimicrobial, insecticidal, vasodilator, radical scavenging, antioxidant, brine shrimp lethal, antiviral, nematicidal, antituberculosis, and enzyme-inhibitory activities to show their potential applications in agriculture, medicinal, and food industry.


Assuntos
Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Fungos/química , Aminoácidos/química , Estrutura Molecular , Prolina/química , Relação Estrutura-Atividade , Triptofano/química
10.
Appl Microbiol Biotechnol ; 100(17): 7651-64, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27188778

RESUMO

The most abundance of anti-Salmonella lactic acid bacteria (LAB) was found in feces of naturally born, exclusively breastfed Thai infants. Six strains of Lactobacillus plantarum and one strain of Lactobacillus paracasei were selected and identified. In the co-cultivation assay, L. plantarum subsp. plantarum I62 showed the strongest and broadest antibacterial activity against Escherichia coli, Shigella sonnei, Salmonella Paratyphi A, and Salmonella Typhimurium SA 2093 under the mimicked proximal colon condition, in which glucose and other nutrients were limited. According to GC-MS analysis, the major antibacterial contribution of organic acids secreted by L. plantarum I62 grown in the presence of glucose was dramatically reduced from 95.8 to 41.9 % under glucose-limited niche. The production of low-pK a acids, such as lactic, 1,2-benzenedicarboxylic, and 3-phenyllactic acids, was remarkably dropped. Surprisingly, higher-pK a acids such as 5-chlorobenzimidazole-2-carboxylic, pyroglutamic, palmitic, and oleic acids were enhanced. Moreover, cyclic dipeptides, ketones, alkanes, alcohols, and miscellaneous compounds, which were pH-independent antibacterial metabolites, became dominant. The electron microscopy strongly supported the synergistic attacks of the multiple antibacterial components targeting outer and cytoplasmic membranes leading to severe leakage and cell disruption of Salmonella Typhimurium. This strain poses to be a potential probiotic candidate for effectively controlling and treating human foodborne bacterial infection.


Assuntos
Antibacterianos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Fezes/microbiologia , Lacticaseibacillus paracasei/metabolismo , Lactobacillus plantarum/metabolismo , Salmonella paratyphi A/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Shigella sonnei/crescimento & desenvolvimento , Técnicas de Tipagem Bacteriana , Técnicas de Cocultura , Humanos , Lactente , Recém-Nascido , Lacticaseibacillus paracasei/classificação , Lactobacillus plantarum/classificação , Viabilidade Microbiana/efeitos dos fármacos , Probióticos/metabolismo , RNA Ribossômico 16S/genética
11.
Nat Prod Res ; : 1-6, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082367

RESUMO

Hormonema sp., an endophytic fungi found in the medicinal plant of Juniperus communis leaves, was reported to possess antimicrobial compounds from its unidentified species. In this study, 21 cyclic dipeptides (1-21) were isolated and identified from H. dematioides. All the 21 isolated cyclic dipeptides were reported for the first time from the genus Hormonema. The antimicrobial activity by the disc diffusion method showed that five compounds including cyclo(Pro-Gly) (9), cyclo(Phe-Ile) (11), cyclo(Ile-Val) (12), cyclo(Val-Ala) (17), and cyclo(Ala-Phe) (20) inhibited the growth of Staphylococcus aureus with inhibition zone diameters ranging from 12 to 30 mm. Further bioassay demonstrated that four cyclic dipeptides (9, 12, 17, and 20) showed significant antibacterial activity against S. aureus with MIC values of 0.04, 0.39, 0.01, and 0.10 µg/mL, respectively, as compared to the positive control (ciprofloxacin, MIC = 0.08 µg/mL). However, none of these cyclic dipeptides showed obvious anti-fungal activity against Candida albicans.

12.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399438

RESUMO

Malaria, Chagas disease, and leishmaniasis are tropical diseases caused by protozoan parasites of the genera Plasmodium, Trypanosoma and Leishmania, respectively. These diseases constitute a major burden on public health in several regions worldwide, mainly affecting low-income populations in economically poor countries. Severe side effects of currently available drug treatments and the emergence of resistant parasites need to be addressed by the development of novel drug candidates. Natural 2,5-Diketopiperazines (2,5-DKPs) constitute N-heterocyclic secondary metabolites with a wide range of biological activities of medicinal interest. Its structural and physicochemical properties make the 2,5-DKP ring a versatile, peptide-like, and stable pharmacophore attractive for synthetic drug design. In the present work, twenty-three novel synthetic 2,5-DKPs, previously synthesized through the versatile Ugi multicomponent reaction, were assayed for their anti-protozoal activities against P. falciparum, T. cruzi, and L. infantum. Some of the 2,5-DKPs have shown promising activities against the target protozoans, with inhibitory concentrations (IC50) ranging from 5.4 to 9.5 µg/mL. The most active compounds also show low cytotoxicity (CC50), affording selectivity indices ≥ 15. Results allowed for observing a clear relationship between the substitution pattern at the aromatic rings of the 2,5-DKPs and their corresponding anti-Plasmodium activity. Finally, calculated drug-like properties of the compounds revealed points for further structure optimization of promising drug candidates.

13.
J Microbiol Biotechnol ; 34(2): 314-329, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38111307

RESUMO

Fifteen cyclic dipeptides (CDPs) containing proline, one cyclo(Phe-Ala) without proline, and a non-peptidyl DL-3-phenyllactic acid were previously identified in the culture filtrates of Lactobacillus plantarum LBP-K10, an isolate from kimchi. In this study, we used Japanese quail (Coturnix japonica) eggs to examine the effects of probiotic supplementation on the antimicrobial CDPs extracted from quail eggs (QE). Eggshell-free QE were obtained from two distinct groups of quails. The first group (K10N) comprised eggs from unsupplemented quails. The second group (K10S) comprised eggs from quails supplemented with Lb. plantarum LBP-K10. The QE samples were extracted using methylene chloride through a liquid-liquid extraction process. The resulting extract was fractionated into 16 parts using semi-preparative high-performance liquid chromatography. Two fractions, Q6 and Q9, were isolated from K10S and identified as cis-cyclo(L-Ser-L-Pro) and cis-cyclo(L-Leu-L-Pro). The Q9 fraction, containing cis-cyclo(L-Leu-L-Pro), has shown significant inhibitory properties against the proliferation of highly pathogenic multidrug-resistant bacteria, as well as human-specific and phytopathogenic fungi. Some of the ten combinations between the remaining fourteen unidentified fractions and two fractions, Q6 and Q9, containing cis-cyclo(L-Ser-L-Pro) and cis-cyclo(L-Leu-L-Pro) respectively, demonstrated a significant increase in activity against multidrug-resistant bacteria only when combined with Q9. The activity was 7.17 times higher compared to a single cis-cyclo(L-Leu-L-Pro). This study presents new findings on the efficacy of proline-containing CDPs in avian eggs. These CDPs provide antimicrobial properties when specific probiotics are supplemented.


Assuntos
Anti-Infecciosos , Lactobacillus plantarum , Probióticos , Animais , Humanos , Coturnix , Lactobacillus plantarum/química , Anti-Infecciosos/farmacologia , Prolina , Suplementos Nutricionais , Dipeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Codorniz
14.
Front Mol Biosci ; 11: 1346598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828395

RESUMO

Introduction: 2,5-diketopiperazines are the simplest forms of cyclic dipeptides (CDPs) and have diverse frameworks with chiral side chains that are useful for drug development. Previous research has investigated the antimicrobial properties of proline-linked CDPs and their combinations in the culture filtrate (CF) of Lactobacillus plantarum LBP-K10 using anion exchange chromatography (AEC). However, the quantity of CDPs showcasing notable anti-influenza virus activity derived from AECs was generally lower than those originating from Lactobacillus CF. Methods: To address this issue, the study aims to propose a more efficient method for isolating CDPs and to introduce the antiviral combinations of CDPs obtained using a new method. The study employed a novel technique entailing high-throughput C18-based solid-phase extraction with a methanol gradient (MeSPE). The MeSPE method involved increasing the methanol concentration from 5% to 50% in 5% increments. Results: The methanol SPE fractions (MeSPEfs) eluted with methanol concentrations between 35% and 45% evinced substantial efficacy in inhibiting the influenza A/H3N2 virus via plaque-forming assay. MeSPEf-45, the 45% MeSPEf, exhibited exceptional efficacy in preventing viral infections in Madin-Darby kidney cells, surpassing both individual CDPs and the entire set of MeSPEfs. To identify the specific antiviral components of MeSPEf-45, all MeSPEfs were further fractionated through preparative high-performance liquid chromatography (prep-HPLC). MeSPEf-45 fractions S8 and S11 presented the highest activity against multidrug-resistant bacteria and influenza A/H3N2 virus among all MeSPEfs, with 11 common fractions. Antiviral fractions S8 and S11 were identified as proline-based CDPs, specifically cis-cyclo(L-Leu-L-Pro) and cis-cyclo(L-Phe-L-Pro), using gas chromatography-mass spectrometry. The combination of MeSPEf-45 fractions S8 and S11 displayed superior antibacterial and anti-influenza virus effects compared to the individual fractions S8 and S11. Discussion: High-throughput MeSPE-derived MeSPEfs and subsequent HPLC-fractionated fractions presents an innovative approach to selectively purify large amounts of potent antimicrobial CDPs from bacterial CF. The findings also show the effectiveness of physiologically bioactive combinations that utilize fractions not containing CDP. This study provides the initial evidence demonstrating the antimicrobial properties of CDPs acquired through high-throughput SPE techniques.

15.
Chembiochem ; 14(15): 2023-8, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24014429

RESUMO

The dimethylallyl transferase AnaPT from Neosartorya fischeri is involved in the biosynthesis of acetylaszonalenin and catalyses the regioselective and stereospecific C3α-prenylation of (R)-benzodiazepinedione in the presence of dimethylallyl diphosphate. This enzyme also converts several tryptophan-containing cyclic dipeptides to C3α-prenylated indolines. In this study, we demonstrate the geranylation of (R)-benzodiazepinedione and five other cyclic dipeptides by AnaPT in the presence of geranyl diphosphate (GPP). Interestingly, structure elucidation by NMR and MS analyses revealed that, with GPP, the geranyl moiety is attached to C-6 or C-7 rather than C-3 of the indole ring of the enzyme products. For (R)-benzodiazepinedione, one dominant C6-geranylated derivative was obtained, whereas the other five substrates yielded both C6- and C7-geranylated products. Neither acceptance of GPP by a dimethylallyl transferase from the dimethylallyltryptophan synthase superfamily, nor the alkylation shift from C-3 to the benzene ring of the indole nucleus has been reported previously.


Assuntos
Dimetilaliltranstransferase/metabolismo , Dipeptídeos/metabolismo , Indóis/metabolismo , Peptídeos Cíclicos/metabolismo , Prenilação , Benzeno/química , Benzeno/metabolismo , Dipeptídeos/química , Difosfatos/metabolismo , Diterpenos/metabolismo , Cinética , Neosartorya/enzimologia , Peptídeos Cíclicos/química
16.
Chemistry ; 19(49): 16615-24, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24281809

RESUMO

Understanding the roles of various parameters in orchestrating the preferential chiral molecular organization in supramolecular self-assembly processes is of great significance in designing novel molecular functional systems. Cyclic dipeptide (CDP) chiral auxiliary-functionalized naphthalenediimides (NCDPs 1-6) have been prepared and their chiral self-assembly properties have been investigated. Detailed photophysical and circular dichroism (CD) studies have unveiled the crucial role of the solvent in the chiral aggregation of these NCDPs. NCDPs 1-3 form supramolecular helical assemblies and exhibit remarkable chiroptical switching behaviour (M- to P-type) depending on the solvent composition of HFIP and DMSO. The strong influence of solvent composition on the supramolecular chirality of NCDPs has been further corroborated by concentration and solid-state thin-film CD studies. The chiroptical switching between supramolecular aggregates of opposite helicity (M and P) has been found to be reversible, and can be achieved through cycles of solvent removal and redissolution in solvent mixtures of specific composition. The control molecular systems (NCDPs 4-6), with an achiral or D-isomer second amino acid in the CDP auxiliary, did not show chiral aggregation properties. The substantial roles of hydrogen bonding and π-π interactions in the assembly of the NCDPs have been validated through nuclear magnetic resonance (NMR), photophysical, and computational studies. Quantum chemical calculations at the ab initio, semiempirical, and density functional theory levels have been performed on model systems to understand the stabilities of the right (P-) and left (M-) handed helical supramolecular assemblies and the nature of the intermolecular interactions. This study emphasizes the role of CDP chiral auxiliaries on the solvent-induced helical assembly and reversible chiroptical switching of naphthalenediimides.


Assuntos
Dipeptídeos/química , Imidas/química , Naftalenos/química , Peptídeos Cíclicos/química , Dicroísmo Circular , Modelos Moleculares , Estrutura Secundária de Proteína , Solventes/química , Estereoisomerismo
17.
Materials (Basel) ; 16(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984357

RESUMO

Nanostructured dipeptide self-assemblies exhibiting quantum confinement are of great interest due to their potential applications in the field of materials science as optoelectronic materials for energy harvesting devices. Cyclic dipeptides are an emerging outstanding group of ring-shaped dipeptides, which, because of multiple interactions, self-assemble in supramolecular structures with different morphologies showing quantum confinement and photoluminescence. Chiral cyclic dipeptides may also display piezoelectricity and pyroelectricity properties with potential applications in new sources of nano energy. Among those, aromatic cyclo-dipeptides containing the amino acid tryptophan are wide-band gap semiconductors displaying the high mechanical rigidity, photoluminescence and piezoelectric properties to be used in power generation. In this work, we report the fabrication of hybrid systems based on chiral cyclo-dipeptide L-Tryptophan-L-Tryptophan incorporated into biopolymer electrospun fibers. The micro/nanofibers contain self-assembled nano-spheres embedded into the polymer matrix, are wide-band gap semiconductors with 4.0 eV band gap energy, and display blue photoluminescence as well as relevant piezoelectric and pyroelectric properties with coefficients as high as 57 CN-1 and 35×10-6 Cm-2K-1, respectively. Therefore, the fabricated hybrid mats are promising systems for future thermal sensing and energy harvesting applications.

18.
Materials (Basel) ; 16(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241316

RESUMO

A polymorph of glycyl-L-alanine HI.H2O is synthesized from chiral cyclo-glycyl-L-alanine dipeptide. The dipeptide is known to show molecular flexibility in different environments, which leads to polymorphism. The crystal structure of the glycyl-L-alanine HI.H2O polymorph is determined at room temperature and indicates that the space group is polar (P21), with two molecules per unit cell and unit cell parameters a = 7.747 Å, b = 6.435 Å, c = 10.941 Å, α = 90°, ß = 107.53(3)°, γ = 90° and V = 520.1(7) Å3. Crystallization in the polar point group 2, with one polar axis parallel to the b axis, allows pyroelectricity and optical second harmonic generation. Thermal melting of the glycyl-L-alanine HI.H2O polymorph starts at 533 K, close to the melting temperature reported for cyclo-glycyl-L-alanine (531 K) and 32 K lower than that reported for linear glycyl-L-alanine dipeptide (563 K), suggesting that although the dipeptide, when crystallized in the polymorphic form, is not anymore in its cyclic form, it keeps a memory of its initial closed chain and therefore shows a thermal memory effect. Here, we report a pyroelectric coefficient as high as 45 µC/m2K occurring at 345 K, one order of magnitude smaller than that of semi-organic ferroelectric triglycine sulphate (TGS) crystal. Moreover, the glycyl-L-alanine HI.H2O polymorph displays a nonlinear optical effective coefficient of 0.14 pm/V, around 14 times smaller than the value from a phase-matched inorganic barium borate (BBO) single crystal. The new polymorph displays an effective piezoelectric coefficient equal to deff=280 pCN-1, when embedded into electrospun polymer fibers, indicating its suitability as an active system for energy harvesting.

19.
Braz J Microbiol ; 54(3): 2219-2226, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531006

RESUMO

Corn contamination with Fusarium verticillioides (Sacc.) Nirenberg is a worldwide problem that affects yield and grain quality resulting in severe economic losses and implications for food safety. Control of F. verticillioides is a challenge, but lactic acid bacteria (LAB) has high potential as a biological control agent. In this study, the antifungal effect of Limosilactobacillus reuteri (formerly Lactobacillus reuteri) LR-92 against F. verticillioides 97L was investigated. Cell-free supernatant (CFS) from L. reuteri showed concentration-dependent fungicidal and fungistatic activity against F. verticillioides 97L. The antifungal compounds from CFS showed heat stability and pH dependence, and antifungal activity was not affected by treatment with proteolytic enzymes. High-performance liquid chromatography analysis indicated that L. reuteri LR-92 produces lactic and acetic acids. After liquid-liquid extraction, electrospray ionization mass spectrometry analysis of the active ethyl acetate fraction containing antifungal compounds revealed the production of 3-phenyllactic acid, cyclo-(L-Pro-L-Leu), cyclo-(L-Pro-L-Phe), and cyclo-(L-Phe-trans-4-OH-L-Pro). L. reuteri LR-92 has potential as a biocontrol agent for F. verticillioides and contributes to food safety.


Assuntos
Fusarium , Limosilactobacillus reuteri , Antifúngicos/farmacologia , Antifúngicos/química , Agentes de Controle Biológico/farmacologia
20.
Curr Med Chem ; 30(9): 1060-1085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35927899

RESUMO

BACKGROUND: 2,5-Diketopiperazines (DKPs), also called cyclic dipeptides, are the simplest peptide derivatives in nature that are formed by the condensation of two amino acids. They are an important category of bioactive substances with various structures. OBJECTIVE: This review focuses on the natural sources, synthetic processes, biological properties and MS fragmentation regularity of simple DKPs, in order to provide a reference for exploring future scientific and therapeutic potentials of these compounds. METHODS: Pertinent information was collected and organized from several electronic scientific databases (e.g., Web of Science, China Knowledge Resource Integrated, ScienceDirect, PubMed, Wanfang Data and Google Scholar), PhD and MS dissertations. There are 107 articles published from the early 20th century to 2021 that were reviewed in this work. RESULTS: DKPs have been obtained from a broad range of natural resources, including fungi, bacteria, plants, and animals, and have been synthesized by chemical and biological methods. DKPs have various pharmacological activities, including anticancer, antibacterial, antithrombotic, neuron protective, analgesic, and other activities. Mass spectrometry is the most common method for the structural analysis of DKPs. DKPs can be quickly screened and identified by MS according to the mass spectrum fragmentation pattern. CONCLUSION: As a category of relatively unexplored compounds, DKPs have been demonstrated to have various bioactivities, especially with antitumor and antibacterial activities. However, the existing research on DKPs is still in the early stage, and their application in drug development needs to be further studied.


Assuntos
Antibacterianos , Dicetopiperazinas , Animais , Dicetopiperazinas/química , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacologia , Antibacterianos/farmacologia , Fungos/metabolismo , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA