Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(30): e2407584121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38976766

RESUMO

Dingoes are culturally and ecologically important free-living canids whose ancestors arrived in Australia over 3,000 B.P., likely transported by seafaring people. However, the early history of dingoes in Australia-including the number of founding populations and their routes of introduction-remains uncertain. This uncertainty arises partly from the complex and poorly understood relationship between modern dingoes and New Guinea singing dogs, and suspicions that post-Colonial hybridization has introduced recent domestic dog ancestry into the genomes of many wild dingo populations. In this study, we analyzed genome-wide data from nine ancient dingo specimens ranging in age from 400 to 2,746 y old, predating the introduction of domestic dogs to Australia by European colonists. We uncovered evidence that the continent-wide population structure observed in modern dingo populations had already emerged several thousand years ago. We also detected excess allele sharing between New Guinea singing dogs and ancient dingoes from coastal New South Wales (NSW) compared to ancient dingoes from southern Australia, irrespective of any post-Colonial hybrid ancestry in the genomes of modern individuals. Our results are consistent with several demographic scenarios, including a scenario where the ancestry of dingoes from the east coast of Australia results from at least two waves of migration from source populations with varying affinities to New Guinea singing dogs. We also contribute to the growing body of evidence that modern dingoes derive little genomic ancestry from post-Colonial hybridization with other domestic dog lineages, instead descending primarily from ancient canids introduced to Sahul thousands of years ago.


Assuntos
Genoma , Animais , Austrália , Cães/genética , Lobos/genética , DNA Antigo/análise , Genética Populacional
2.
Network ; : 1-27, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775271

RESUMO

Nowadays, Deep Learning (DL) techniques are being used to automate the identification and diagnosis of plant diseases, thereby enhancing global food security and enabling non-experts to detect these diseases. Among many DL techniques, a Deep Encoder-Decoder Cascaded Network (DEDCNet) model can precisely segment diseased areas from the leaf images to differentiate and classify multiple diseases. On the other hand, the model training depends on the appropriate selection of hyperparameters. Also, this network structure has weak robustness with different parameters. Hence, in this manuscript, an Optimized DEDCNet (ODEDCNet) model is proposed for improved leaf disease image segmentation. To choose the best DEDCNet hyperparameters, a brand-new Dingo Optimization Algorithm (DOA) is included in this model. The DOA depends on the foraging nature of dingoes, which comprises exploration and exploitation phases. In exploration, it attains many predictable decisions in the search area, whereas exploitation enables exploring the best decisions in a provided area. The segmentation accuracy is used as the fitness value of each dingo for hyperparameter selection. By configuring the chosen hyperparameters, the DEDCNet is trained to segment the leaf disease regions. The segmented images are further given to the pre-trained Convolutional Neural Networks (CNNs) followed by the Support Vector Machine (SVM) for classifying leaf diseases. ODEDCNet performs exceptionally well on the PlantVillage and Betel Leaf Image datasets, attaining an astounding 97.33% accuracy on the former and 97.42% accuracy on the latter. Both datasets achieve noteworthy recall, F-score, Dice coefficient, and precision values: the Betel Leaf Image dataset shows values of 97.4%, 97.29%, 97.35%, and 0.9897; the PlantVillage dataset shows values of 97.5%, 97.42%, 97.46%, and 0.9901, all completed in remarkably short processing times of 0.07 and 0.06 seconds, respectively. The achieved outcomes are evaluated with the contemporary optimization algorithms using the considered datasets to comprehend the efficiency of DOA.

3.
Mol Ecol ; 32(15): 4133-4150, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246949

RESUMO

Admixture between species is a cause for concern in wildlife management. Canids are particularly vulnerable to interspecific hybridisation, and genetic admixture has shaped their evolutionary history. Microsatellite DNA testing, relying on a small number of genetic markers and geographically restricted reference populations, has identified extensive domestic dog admixture in Australian dingoes and driven conservation management policy. But there exists a concern that geographic variation in dingo genotypes could confound ancestry analyses that use a small number of genetic markers. Here, we apply genome-wide single-nucleotide polymorphism (SNP) genotyping to a set of 402 wild and captive dingoes collected from across Australia and then carry out comparisons to domestic dogs. We then perform ancestry modelling and biogeographic analyses to characterise population structure in dingoes and investigate the extent of admixture between dingoes and dogs in different regions of the continent. We show that there are at least five distinct dingo populations across Australia. We observed limited evidence of dog admixture in wild dingoes. Our work challenges previous reports regarding the occurrence and extent of dog admixture in dingoes, as our ancestry analyses show that previous assessments severely overestimate the degree of domestic dog admixture in dingo populations, particularly in south-eastern Australia. These findings strongly support the use of genome-wide SNP genotyping as a refined method for wildlife managers and policymakers to assess and inform dingo management policy and legislation moving forwards.


Assuntos
Cães , Animais , Animais Selvagens/genética , Austrália , Marcadores Genéticos , Genoma/genética , Genótipo
4.
Anim Cogn ; 24(5): 907-922, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33754284

RESUMO

Communication between dogs and humans is a topic of growing interest, and the "unsolvable task" is a common method used to measure human-directed communication. In this task, dogs learn how to solve a problem to obtain a reward. After a fixed number of trials, the reward becomes impossible to access, arguably leading to communicative attempts from the dog. Although useful to observe dogs' communicative behaviors in a fairly naturalistic situation, the methodology varies among studies regarding apparatus, number of trials, and other factors. The proxies used, for instance, gaze duration or frequency of gaze alternation, also vary, and there are discrepancies and a debate regarding what the task actually measures. Therefore, in this study, we reviewed the usage of the unsolvable task in canids of the genus Canis, searching Web of Science and Scopus for the terms "dog*", "Canis", "dingo*", "wolf" or "wolves" in the title and "unsolvable task" or "impossible task" in the topic. We included thirty-five studies in this review and discussed their different methodologies and proxies, such as different apparatuses, number of solvable trials, and different interpretations of "looking back", pointing out how they can affect results and hinder comparisons. Lastly, we used current data to propose strategies to homogenize the use of this important paradigm, with an ethogram of possible behaviors and their interpretation and a predefined set of methodological aspects for future research.


Assuntos
Comportamento Animal , Lobos , Animais , Cognição , Comunicação , Cães , Humanos , Resolução de Problemas
5.
Conserv Biol ; 33(5): 1002-1013, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30734367

RESUMO

Questions around how to conserve nature are increasingly leading to dissonance in conservation planning and action. While science can assist in unraveling the nature of conservation challenges, conservation responses rely heavily on normative positions and constructs to order actions, aid interpretations, and provide motivation. However, problems can arise when norms are mistaken for science or when they stymy scientific rigor. To highlight these potential pitfalls, we used the ethics-based tool of argument analysis to assess a controversial conservation intervention, the Pelorus Island Goat Control Program. The program proponents' argument for restorative justice was unsound because it relied on weak logical construction overly entrenched in normative assumptions. Overreliance on normative constructs, particularly the invocation of tragedy, creates a sense of urgency that can subvert scientific and ethical integrity, obscure values and assumptions, and increase the propensity for flawed logic. This example demonstrates how the same constructs that drive biodiversity conservation can also drive poor decision making, spur public backlash, and justify poor animal welfare outcomes. To provide clarity, a decision-making flowchart we devised demonstrates how values, norms, and ethics influence one another. We recommend practitioners follow 3 key points to improve decision making: be aware of values, as well as normative constructs and ethical theories that those values inform; be mindful of overreliance on either normative constructs or ethics when deciding action is justified; and be logically sound and transparent when building justifications. We also recommend 5 key attributes that practitioners should be attentive to when making conservation decisions: clarity, transparency, scientific integrity, adaptiveness, and compassion. Greater attention to the role of norms in decision making will improve conservation outcomes and garner greater public support for actions.


Advertencias contra el Énfasis Excesivo de los Constructos Normativos en la Toma de Decisiones de Conservación Resumen Cada vez más, las dudas en torno a cómo conservar la naturaleza llevan a la disonancia en la acción y planeación de la conservación. Mientras que la ciencia puede asistir en el entendimiento de la naturaleza de los retos de conservación, las respuestas de conservación dependen enormemente de posiciones y constructos normativos para ordenar acciones, apoyar a las interpretaciones y proporcionar motivación. Sin embargo, pueden surgir problemas cuando se confunde a las normas con la ciencia o cuando obstaculizan el rigor científico. Con el objetivo de resaltar estos potenciales inconvenientes, usamos el análisis de argumentos, una herramienta basada en la ética, para evaluar una controversial intervención de conservación: el Programa de Control de Cabras en Isla Pelorus. El argumento de justicia restaurativa de quienes propusieron el programa era irracional pues dependía de una débil construcción lógica demasiado arraigada en suposiciones normativas. La sobredependencia de constructos normativos, particularmente la invocación de la tragedia, genera una sensación de urgencia que puede subvertir la integridad científica y ética, oscurecer los valores y las suposiciones e incrementar la tendencia hacia la lógica defectuosa. Este ejemplo demuestra cómo los mismos constructos que guían la conservación de la biodiversidad también pueden llevar a una toma pobre de decisiones, incitar a respuestas negativas del público y a justificar los malos resultados de bienestar animal. Para proporcionar claridad, diseñamos un diagrama de flujo de toma de decisiones que demuestra cómo los valores, las normas y la ética influyen unas sobre las otras. Les recomendamos a los practicantes que sigan tres puntos clave para mejorar la toma de decisiones: tener conciencia de los valores, así como de los constructos normativos y las teorías éticas a las que esos valores informan; estar consciente de la sobredependencia tanto de los constructos normativos como de la ética cuando se decide si una acción está justificada; y ser racional y transparente de manera lógica cuando se construyan las justificaciones. También recomendamos cinco atributos clave a los cuales los practicantes deben estar atentos cuando se toman decisiones de conservación: claridad, transparencia, integridad científica, adaptabilidad y compasión. Una mayor atención al papel de las normas en la toma de decisiones mejorará los resultados de conservación y acumulará un mayor respaldo del público para las acciones.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Tomada de Decisões , Princípios Morais
6.
J Anim Ecol ; 86(1): 147-157, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27918070

RESUMO

The abundance of shrubs has increased throughout Earth's arid lands. This 'shrub encroachment' has been linked to livestock grazing, fire-suppression and elevated atmospheric CO2 concentrations facilitating shrub recruitment. Apex predators initiate trophic cascades which can influence the abundance of many species across multiple trophic levels within ecosystems. Extirpation of apex predators is linked inextricably to pastoralism, but has not been considered as a factor contributing to shrub encroachment. Here, we ask if trophic cascades triggered by the extirpation of Australia's largest terrestrial predator, the dingo (Canis dingo), could be a driver of shrub encroachment in the Strzelecki Desert, Australia. We use aerial photographs spanning a 51-year period to compare shrub cover between areas where dingoes are historically rare and common. We then quantify contemporary patterns of shrub, shrub seedling and mammal abundances, and use structural equation modelling to compare competing trophic cascade hypotheses to explain how dingoes could influence shrub recruitment. Finally, we track the fate of seedlings of an encroaching shrub, hopbush (Dodonaea viscosa angustissima), during a period optimal for seedling recruitment, and quantify removal rates of hopbush seeds by rodents from enriched seed patches. Shrub cover was 26-48% greater in areas where dingoes were rare than common. Our structural equation modelling supported the hypothesis that dingo removal facilitates shrub encroachment by triggering a four level trophic cascade. According to this model, increased mesopredator abundance in the absence of dingoes results in suppressed abundance of consumers of shrub seeds and seedlings, rodents and rabbits respectively. In turn, suppressed abundances of rodents and rabbits in the absence of dingoes relaxed a recruitment bottleneck for shrubs. The results of our SEM were supported by results showing that rates of hopbush seedling survival and seed removal were 1·7 times greater and 2·1 times lower in areas where dingoes were rare than common. Our study provides evidence linking the suppression of an apex predator to the historic encroachment of shrubs. We contend that trophic cascades induced by apex predator extirpation may be an overlooked driver of shrub encroachment.


Assuntos
Cães , Cadeia Alimentar , Magnoliopsida/fisiologia , Dispersão Vegetal , Comportamento Predatório , Animais , Ecossistema , Mamíferos/fisiologia , Sapindaceae/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Austrália do Sul
7.
Conserv Biol ; 31(2): 376-384, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27478092

RESUMO

Introducing a new or extirpated species to an ecosystem is risky, and managers need quantitative methods that can predict the consequences for the recipient ecosystem. Proponents of keystone predator reintroductions commonly argue that the presence of the predator will restore ecosystem function, but this has not always been the case, and mathematical modeling has an important role to play in predicting how reintroductions will likely play out. We devised an ensemble modeling method that integrates species interaction networks and dynamic community simulations and used it to describe the range of plausible consequences of 2 keystone-predator reintroductions: wolves (Canis lupus) to Yellowstone National Park and dingoes (Canis dingo) to a national park in Australia. Although previous methods for predicting ecosystem responses to such interventions focused on predicting changes around a given equilibrium, we used Lotka-Volterra equations to predict changing abundances through time. We applied our method to interaction networks for wolves in Yellowstone National Park and for dingoes in Australia. Our model replicated the observed dynamics in Yellowstone National Park and produced a larger range of potential outcomes for the dingo network. However, we also found that changes in small vertebrates or invertebrates gave a good indication about the potential future state of the system. Our method allowed us to predict when the systems were far from equilibrium. Our results showed that the method can also be used to predict which species may increase or decrease following a reintroduction and can identify species that are important to monitor (i.e., species whose changes in abundance give extra insight into broad changes in the system). Ensemble ecosystem modeling can also be applied to assess the ecosystem-wide implications of other types of interventions including assisted migration, biocontrol, and invasive species eradication.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Lobos , Animais , Austrália , Espécies em Perigo de Extinção , Invertebrados , Modelos Teóricos , Parques Recreativos , Dinâmica Populacional , Comportamento Predatório , Estados Unidos
8.
Genetica ; 144(5): 553-565, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27640201

RESUMO

How and when dingoes arrived in Oceania poses a fascinating question for scientists with interest in the historical movements of humans and dogs. The dingo holds a unique position as top terrestrial predator of Australia and exists in a wild state. In the first geographical survey of genetic diversity in the dingo using whole mitochondrial genomes, we analysed 16,428 bp in 25 individuals from five separate populations. We also investigated 13 nuclear loci to compare with the mitochondrial population history patterns. Phylogenetic analyses based upon mitochondrial DNA and nuclear DNA support the hypothesis that there are at least two distinct populations of dingo, one of which occurs in the northwest and the other in the southeast of the continent. Conservative molecular dating based upon mitochondrial DNA suggest that the lineages split approximately 8300 years before present, likely outside Australia but within Oceania. The close relationship between dingoes and New Guinea Singing Dogs suggests that plausibly dingoes spread into Australia via the land bridge between Papua New Guinea and Australia although seafaring introductions cannot be rejected. The geographical distribution of these divergent lineages suggests there were multiple independent dingo immigrations. Importantly, the observation of multiple dingo populations suggests the need for revision of existing conservation and management programs that treat dingoes as a single homogeneous population.


Assuntos
Genoma Mitocondrial , Genoma , Lobos/genética , Animais , Austrália , Teorema de Bayes , Análise por Conglomerados , Evolução Molecular , Genética Populacional , Oceania , Filogenia , Lobos/classificação
9.
Oecologia ; 182(4): 1007-1018, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27660202

RESUMO

Dogs (Canis familiaris) can transmit pathogens to other domestic animals, humans and wildlife. Both domestic and wild-living dogs are ubiquitous within mainland Australian landscapes, but their interactions are mostly unquantified. Consequently, the probability of pathogen transfer among wild-living and domestic dogs is unknown. To address this knowledge deficit, we established 65 camera trap stations, deployed for 26,151 camera trap nights, to quantify domestic and wild-living dog activity during 2 years across eight sites in north-east New South Wales, Australia. Wild-living dogs were detected on camera traps at all sites, and domestic dogs recorded at all but one. No contacts between domestic and wild-living dogs were recorded, and limited temporal overlap in activity was observed (32 %); domestic dogs were predominantly active during the day and wild-living dogs mainly during the night. Contact rates between wild-living and between domestic dogs, respectively, varied between sites and over time (range 0.003-0.56 contacts per camera trap night). Contact among wild-living dogs occurred mainly within social groupings, and peaked when young were present. However, pup emergence occurred throughout the year within and between sites and consequently, no overall annual cycle in contact rates could be established. Due to infrequent interactions between domestic and wild-living dogs, there are likely limited opportunities for pathogen transmission that require direct contact. In contrast, extensive spatial overlap of wild and domestic dogs could facilitate the spread of pathogens that do not require direct contact, some of which may be important zoonoses.


Assuntos
Animais Selvagens , Doenças do Cão , Animais , Austrália , Cães , Humanos , New South Wales
10.
Sensors (Basel) ; 16(1)2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26784196

RESUMO

Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.


Assuntos
Animais Selvagens/fisiologia , Inteligência Artificial , Monitoramento Ambiental/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Gravação em Vídeo/instrumentação , Aeronaves , Algoritmos , Animais , Espécies em Perigo de Extinção , Monitoramento Ambiental/métodos , Desenho de Equipamento , Florestas , Sistemas de Informação Geográfica/instrumentação , Humanos , Espécies Introduzidas , Interface Usuário-Computador , Gravação em Vídeo/métodos
11.
Proc Biol Sci ; 282(1799): 20141251, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25473006

RESUMO

Colman et al. (2014 Proc. R. Soc. B 281, 20133094. (doi:10.1098/rspb.2013.3094)) recently argued that observed positive relationships between dingoes and small mammals were a result of top-down processes whereby lethal dingo control reduced dingoes and increased mesopredators and herbivores, which then suppressed small mammals. Here, I show that the prerequisite negative effects of dingo control on dingoes were not shown, and that the same positive relationships observed may simply represent well-known bottom-up processes whereby more generalist predators are found in places with more of their preferred prey. Identification of top-predator control-induced trophic cascades first requires demonstration of some actual effect of control on predators, typically possible only through manipulative experiments with the ability to identify cause and effect.


Assuntos
Biodiversidade , Comportamento Predatório , Lobos , Animais
12.
Mol Ecol ; 24(22): 5643-56, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26514639

RESUMO

Hybridization between domesticated animals and their wild counterparts can disrupt adaptive gene combinations, reduce genetic diversity, extinguish wild populations and change ecosystem function. The dingo is a free-ranging dog that is an iconic apex predator and distributed throughout most of mainland Australia. Dingoes readily hybridize with domestic dogs, and in many Australian jurisdictions, distinct management strategies are dictated by hybrid status. Yet, the magnitude and spatial extent of domestic dog-dingo hybridization is poorly characterized. To address this, we performed a continent-wide analysis of hybridization throughout Australia based on 24 locus microsatellite DNA genotypes from 3637 free-ranging dogs. Although 46% of all free-ranging dogs were classified as pure dingoes, all regions exhibited some hybridization, and the magnitude varied substantially. The southeast of Australia was highly admixed, with 99% of animals being hybrids or feral domestic dogs, whereas only 13% of the animals from remote central Australia were hybrids. Almost all free-ranging dogs had some dingo ancestry, indicating that domestic dogs could have poor survivorship in nonurban Australian environments. Overall, wild pure dingoes remain the dominant predator over most of Australia, but the speed and extent to which hybridization has occurred in the approximately 220 years since the first introduction of domestic dogs indicate that the process may soon threaten the persistence of pure dingoes.


Assuntos
Canidae/genética , Cães/genética , Genética Populacional , Hibridização Genética , Animais , Austrália , Teorema de Bayes , Análise por Conglomerados , Conservação dos Recursos Naturais , Genótipo , Repetições de Microssatélites , Análise de Sequência de DNA
13.
Oecologia ; 179(4): 1033-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26296332

RESUMO

Apex predators can impact smaller predators via lethal effects that occur through direct killing, and non-lethal effects that arise when fear-induced behavioural and physiological changes reduce the fitness of smaller predators. A general outcome of asymmetrical competition between co-existing predator species is that larger predators tend to suppress the abundances of smaller predators. Here, we investigate interference effects that an apex predator, the dingo (Canis dingo), has on the acquisition of food and water by the smaller red fox (Vulpes vulpes), by exposing free-ranging foxes to the odour of dingoes and conspecifics in an arid environment. Using giving-up densities we show that foxes foraged more apprehensively at predator-odour treatments than unscented controls, but their food intake did not differ between dingo- and fox-odour treatments. Using video analysis of fox behaviour at experimental water stations we show that foxes spent more time engaged in exploration behaviour at stations scented with fox odour and spent more time drinking at water stations scented with dingo odour. Our results provide support for the idea that dingo odour exerts a stronger interference effect on foxes than conspecific odour, but suggest that the odours of both larger dingoes and unfamiliar conspecifics curtailed foxes' acquisition of food resources.


Assuntos
Comportamento Competitivo/fisiologia , Raposas/fisiologia , Odorantes , Comportamento Predatório/fisiologia , Lobos/fisiologia , Animais , Austrália , Comportamento de Ingestão de Líquido/fisiologia , Medo , Comportamento Alimentar/fisiologia , Cadeia Alimentar
14.
Proc Biol Sci ; 281(1782): 20133094, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24619441

RESUMO

Disruption to species-interaction networks caused by irruptions of herbivores and mesopredators following extirpation of apex predators is a global driver of ecosystem reorganization and biodiversity loss. Most studies of apex predators' ecological roles focus on effects arising from their interactions with herbivores or mesopredators in isolation, but rarely consider how the effects of herbivores and mesopredators interact. Here, we provide evidence that multiple cascade pathways induced by lethal control of an apex predator, the dingo, drive unintended shifts in forest ecosystem structure. We compared mammal assemblages and understorey structure at seven sites in southern Australia. Each site comprised an area where dingoes were poisoned and an area without control. The effects of dingo control on mammals scaled with body size. Activity of herbivorous macropods, arboreal mammals and a mesopredator, the red fox, were greater, but understorey vegetation sparser and abundances of small mammals lower, where dingoes were controlled. Structural equation modelling suggested that both predation by foxes and depletion of understorey vegetation by macropods were related to small mammal decline at poisoned sites. Our study suggests that apex predators' suppressive effects on herbivores and mesopredators occur simultaneously and should be considered in tandem in order to appreciate the extent of apex predators' indirect effects.


Assuntos
Biodiversidade , Comportamento Predatório , Lobos , Animais , Austrália , Conservação dos Recursos Naturais , Cadeia Alimentar , Florestas , Herbivoria , Mamíferos
15.
Sci Rep ; 14(1): 10799, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734717

RESUMO

Liquefaction is a devastating consequence of earthquakes that occurs in loose, saturated soil deposits, resulting in catastrophic ground failure. Accurate prediction of such geotechnical parameter is crucial for mitigating hazards, assessing risks, and advancing geotechnical engineering. This study introduces a novel predictive model that combines Extreme Learning Machine (ELM) with Dingo Optimization Algorithm (DOA) to estimate strain energy-based liquefaction resistance. The hybrid model (ELM-DOA) is compared with the classical ELM, Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means (ANFIS-FCM model), and Sub-clustering (ANFIS-Sub model). Also, two data pre-processing scenarios are employed, namely traditional linear and non-linear normalization. The results demonstrate that non-linear normalization significantly enhances the prediction performance of all models by approximately 25% compared to linear normalization. Furthermore, the ELM-DOA model achieves the most accurate predictions, exhibiting the lowest root mean square error (484.286 J/m3), mean absolute percentage error (24.900%), mean absolute error (404.416 J/m3), and the highest correlation of determination (0.935). Additionally, a Graphical User Interface (GUI) has been developed, specifically tailored for the ELM-DOA model, to assist engineers and researchers in maximizing the utilization of this predictive model. The GUI provides a user-friendly platform for easy input of data and accessing the model's predictions, enhancing its practical applicability. Overall, the results strongly support the proposed hybrid model with GUI serving as an effective tool for assessing soil liquefaction resistance in geotechnical engineering, aiding in predicting and mitigating liquefaction hazards.

16.
Genome Biol Evol ; 16(7)2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38913571

RESUMO

Dingoes come from an ancient canid lineage that originated in East Asia around 8,000 to 11,000 years BP. As Australia's largest terrestrial predator, dingoes play an important ecological role. A small, protected population exists on a world heritage listed offshore island, K'gari (formerly Fraser Island). Concern regarding the persistence of dingoes on K'gari has risen due to their low genetic diversity and elevated inbreeding levels. However, whole-genome sequence data is lacking from this population. Here, we include five new whole-genome sequences of K'gari dingoes. We analyze a total of 18 whole-genome sequences of dingoes sampled from mainland Australia and K'gari to assess the genomic consequences of their demographic histories. Long (>1 Mb) runs of homozygosity (ROHs)-indicators of inbreeding-are elevated in all sampled dingoes. However, K'gari dingoes showed significantly higher levels of very long ROH (>5 Mb), providing genomic evidence for small population size, isolation, inbreeding, and a strong founder effect. Our results suggest that, despite current levels of inbreeding, the K'gari population is purging strongly deleterious mutations, which, in the absence of further reductions in population size, may facilitate the persistence of small populations despite low genetic diversity and isolation. However, there may be little to no purging of mildly deleterious alleles, which may have important long-term consequences, and should be considered by conservation and management programs.


Assuntos
Endogamia , Ilhas , Animais , Austrália , Efeito Fundador , Variação Genética , Isolamento Reprodutivo , Genética Populacional , Homozigoto , Genoma
17.
Ecol Evol ; 14(8): e70211, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39206457

RESUMO

Scavenging on carrion is critical and often fiercely competitive for a range of vertebrate species, from native apex predators to invasive species and even reptiles. Within Australia, a notable reptilian scavenger is the lace monitor (Varanus varius). In this study, we quantified lace monitor activity at carcasses and compared their use of the resource to common co-occurring predators that also scavenge; the invasive red fox (Vulpes vulpes) and a native apex predator, the dingo (Canis dingo). To do so, we deployed 80 macropod carcasses equally across seasons (summer and winter) and habitats (open and closed canopy) in a temperate bioregion and monitored vertebrate scavenging with camera traps. Lace monitor activity (visitation at carcass sites inclusive of both non-scavenging and scavenging events) was 1.67 times higher in summer than in winter, but it did not differ across closed and open habitats. Monitor activity occurred earlier after carcass deployment at sites deployed in summer than winter (1.47-fold earlier), and at carcasses in open than closed habitats (0.22-fold earlier). Lace monitors initially discovered carcass sites faster in summer than winter and before both red foxes and dingoes in summer. The species was active diurnally in both summer and winter, differing from the red fox, which was strictly a nocturnal scavenger and the dingo, which was significantly more active at night across both seasons. Finally, we found that lace monitor activity at carcass sites decreased slightly with higher rates of activity for dingoes (0.04-fold decrease as dingo activity increased), but not with red fox activity. Our results have implications for understanding lace monitor foraging and scavenging and highlight the value of monitoring carcasses to provide important insights into the behaviour of varanid lizards that scavenge.

18.
Ecol Evol ; 14(5): e11404, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38779530

RESUMO

Canid species are highly adaptable, including to urban and peri-urban areas, where they can come into close contact with people. Understanding the mechanisms of wild canid population persistence in these areas is key to managing any negative impacts. The resource dispersion hypothesis predicts that animal density increases and home range size decreases as resource concentration increases, and may help to explain how canids are distributed in environments with an urban-natural gradient. In Australia, dingoes have adapted to human presence, sometimes living in close proximity to towns. Using a targeted camera trap survey and spatial capture-recapture models, we estimated spatial variation in the population density and detection rates of dingoes on Worimi Country in the Great Lakes region of the NSW coast. We tested whether dingo home range and population densities varied across a gradient of human population density, in a mixed-use landscape including, urban, peri-urban, and National Park environs. We found human population density to be a strong driver of dingo density (ranging from 0.025 to 0.433 dingoes/km2 across the natural-urban gradient), and to have a negative effect on dingo home range size. The spatial scale parameter changed depending on survey period, being smaller in the peak tourism period, when human population increases in the area, than in adjacent survey periods, potentially indicating reduced home range size when additional resources are available. Our study highlights the potential value of managing anthropogenic resource availability to manage carnivore densities and potential risk of human-carnivore interactions.

19.
Ecol Evol ; 13(9): e10525, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37732287

RESUMO

Dingoes arrived in Australia during the mid-Holocene and are the top-order terrestrial predator on the continent. Although dingoes subsequently spread across the continent, the initial founding population(s) could have been small. We investigated this hypothesis by sequencing the whole genomes of three dingoes and also obtaining the genome data from nine additional dingoes and 56 canines, including wolves, village dogs and breed dogs, and examined the signatures of bottlenecks and founder effects. We found that the nucleotide diversity of dingoes was low, 36% less than highly inbred breed dogs and 3.3 times lower than wolves. The number of runs of homozygosity (RoH) segments in dingoes was 1.6-4.7 times higher than in other canines. While examining deleterious mutational load, we observed that dingoes carried elevated ratios of nonsynonymous-to-synonymous diversities, significantly higher numbers of homozygous deleterious Single Nucleotide Variants (SNVs), and increased numbers of loss of function SNVs, compared to breed dogs, village dogs, and wolves. Our findings can be explained by bottlenecks and founder effects during the establishment of dingoes in mainland Australia. These findings highlight the need for conservation-based management of dingoes and the need for wildlife managers to be cognisant of these findings when considering the use of lethal control measures across the landscape.

20.
Animals (Basel) ; 13(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36670744

RESUMO

Humans and dingoes (Canis familiaris (dingo)) share the environment of K'gari, and conflict inevitably occurs between the two species, particularly over food. Dingo attacks on humans have occurred, and some have been serious and even fatal in outcome. Wildlife feeding may cause animals to develop unnatural and potentially dangerous behaviours towards conspecifics and humans on a relatively frequent basis. Food-based attraction has been implicated in the development of human-directed aggression in the dingo population of K'gari. Supplemental feeding, whether intentional or accidental, alters wildlife foraging behaviours and may have consequences at the population and ecosystem levels. Management strategies such as education programs, prohibition of inappropriate human behaviours (compliance) and fencing of garbage dumps have each been implemented to stop the intentional or inadvertent feeding of dingoes by people. However, there has been no formal assessment of the effectiveness of these interventions at reducing food-related dingo-human incidents over time. We collated and analysed 7791 unique reports of dingo-human interactions on K'gari between 1990 and 2020, inclusive of 1307 food-related reports, including the severity of these interactions. These data showed clear seasonal peaks in the percentage of food-related dingo-human interactions, corresponding with biologically significant breeding periods in autumn and weaning and dispersing in spring. Trends in serious food-related incidents remained stable overtime. Less serious food-related incidents declined, suggesting that management efforts were successful. However, these efforts appear to have reached the limits of their effectiveness. Further innovations are required to reduce serious incidents involving the relatively few dingoes and people still experiencing conflict, and thereby provide protection to both species on K'gari.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA