RESUMO
It is a huge challenge to increase the photoluminescence (PL) of lead-free halide perovskites, and understanding the mechanism behind exciton dynamics can provide a valuable solution. Herein, we achieved enhanced broad-band emission at ambient conditions in Cs2AgInCl6 by tuning self-trapped excitons (STEs) through Al3+ doping. Cryogenic measurements showed an inhomogeneous nature of STE emission due to the presence of defect states and is subject to thermal quenching. An increased Huang-Rhys factor (S-factor) resulted in better electron-phonon coupling and high-density STE states post Al3+ doping. Femtosecond transient absorption (fs-TA) results provided insights into the distribution dynamics of excitons, which occurs through gradient energy levels from free excitons (FE) to STEs, where each STE state potentially possesses higher quantized energy states. Overall, this study aims to comprehend the origins of self-trapping and decay of STEs in Cs2AgInCl6:Al3+ and emphasizes the potential of compositional engineering to mitigate self-trapping in this material.
RESUMO
Double perovskite (DP) oxides are promising electrode materials for symmetric solid oxide cells (SSOCs) due to their excellent electrochemical activity and stability. B-site cation doping in DP oxides affects the reversibility of phase transformation and exsolution, which plays a crucial role in the catalyst recovery. Yet, few studies have been conducted on this topic. In this study, the Sr2Fe1.5-xCoxMo0.5O6-δ (CSFM, x = 0, 0.1, 0.3, 0.5) DP system demonstrates modulated exsolution and phase transformation reversibility by manipulating the oxygen vacancy concentration. The correlation between Co-doping level and oxygen vacancy concentration is investigated to optimize the exsolution and phase transformation properties. Sr2Fe1.2Co0.3Mo0.5O6-δ (3CSFM) exhibits reversible transformation between DP and Ruddlesden-Popper phases with a high density of exsolved CoFe nanoparticles under redox atmospheres. The quasi-symmetric cell with 3CSFM shows a peak power density of 1.27 W cm-2 at 850 °C in H2 fuel cell mode and a current density of 2.33 A cm-2 at 1.6 V and 800 °C in H2O electrolysis mode. The 3CSFM electrode exhibits robust stability during continuous operation for ≈700 h. These results demonstrate the significant role of B-site doping in designing DP materials capable of dynamic phase transformation in diverse environments.
RESUMO
Although the atmospheric stability of lead-free inorganic double perovskite (DP) solar cells (PSCs) looks promising, their further development is hampered by inadequate film quality and non-radiative carrier recombination at the interfaces. Herein, the incorporation of a newly developed intriguing class of 2D material Ti3C2Tx MXene nanosheets with the photo-absorbing Cu2AgBiI6 (CABI) active layer of a fully inorganic solar cell is reported. The highly conductive Ti3C2Tx nanosheets work as a multi-functional additive by tuning the band gap, reducing the non-radiative carrier recombination, and inhibiting carrier accumulation. In addition, the presence of Ti3C2Tx MXene increases the surface free energy of the perovskite film, which elevates the energy barrier for nucleation and realizes a highly crystalline CABI perovskite film. Primarily, the MXene modification accelerates the charge extraction and transport at the interfaces of the active layer, utilizing energy level alignment with the charge transport layers. Consequently, the photo-conversion efficiency (PCE) of the device with MXene is substantially enhanced to 1.50%. Moreover, the 2D Ti3C2Tx nanosheets increased the long-term stability of the devices by retaining 70% of the initial PCE after 1680 h. With regard to relieving the severe carrier recombination at the interfaces, this work sets a new paradigm toward imminent solar energy conversion.
RESUMO
A Lanthanum ion (La3+) incorporation strategy is implemented to modify Ba2Bi2O6-based double perovskite photoelectrodes. X-ray diffraction (XRD) characterization shows that highly crystalline Ba2La0.4Bi1.6O6 double perovskites with the space group I2/m are successfully prepared. UV-vis absorption spectra and the Tauc-plot reveal an optical band gap Eg ≈1.57 ± 0.01 eV. A thickness dependence of the photoelectrodes photoelectrochemical (PEC) performance shows that the submicron (≈1 µm) 4-times spin-coated thin film photoelectrode displays strong p-type conductivity, which delivers an encouraging photocurrent density of 0.88 mA cm-2 at 0.25 VRHE under AM 1.5G illumination. 10-times coated and 20-times coated medium thick (125.8-197 µm) photoelectrodes that exhibit moderate p-type conductivity, show further enhanced photocurrent densities of 1.5 mA cm-2 at 0 VRHE. In contrast, charge recombination centers existing in a standard thick pellet (≈500 µm) Ba2La0.4Bi1.6O6 photoelectrode can quench photo-generated charge carriers and greatly undermine PEC activities. The approach to doping at the Bi(III) sites contrasts with earlier efforts that focus on doping at the Bi(V) sites and thus paves the way for further tailoring a family of novel promising photocathode materials for efficient solar-water conversion devices.
RESUMO
The low-toxic and environmentally friendly 2D lead-free perovskite has made significant progress in the exploration of "green" X-ray detectors. However, the gap in detection performance between them and their lead-based analogues remains a matter of concern that cannot be ignored. To reduce this gap, shortening the interlayer spacing to accelerate the migration and collection of X-ray carriers is a promising strategy. Herein, a Dion-Jacobson (DJ) lead-free double perovskite (4-AP)2AgBiBr8 (1, 4-AP = 4-amidinopyridine) with an ultra-narrow interlayer spacing of 3.0 Å, is constructed by utilizing π-conjugated aromatic spacers. Strikingly, the subsequent enhanced carrier transport and increased crystal density lead to X-ray detectors based on bulk single crystals of 1 with a high sensitivity of 1117.3 µC Gy-1 cm-2, superior to the vast majority of similar double perovskites. In particular, the tight connection of the inorganic layers by the divalent cations enhances structural rigidity and stability, further endowing 1 detector with ultralow dark current drift (3.06 × 10-8 nA cm-1 s-1 V-1, 80 V), excellent multiple cycles switching X-ray irradiation stability, as well as long-term environmental stability (maintains over 94% photoresponse after 90 days). This work brings lead-free double perovskites one step closer to realizing efficient practical green applications.
RESUMO
Lead-free layered double perovskite nanocrystals (NCs), i.e., Cs4M(II)M(III)2Cl12, have recently attracted increasing attention for potential optoelectronic applications due to their low toxicity, direct bandgap nature, and high structural stability. However, the low photoluminescence quantum yield (PLQY, <1%) or even no observed emissions at room temperature have severely blocked the further development of this type of lead-free halide perovskites. Herein, two new layered perovskites, Cs4CoIn2Cl12 (CCoI) and Cs4ZnIn2Cl12 (CZnI), are successfully synthesized at the nanoscale based on previously reported Cs4CuIn2Cl12 (CCuI) NCs, by tuning the M(II) site with different transition metal ions for lattice tailoring. Benefiting from the formation of more self-trapped excitons (STEs) in the distorted lattices, CCoI and CZnI NCs exhibit significantly strengthened STE emissions toward white light compared to the case of almost non-emissive CCuI NCs, by achieving PLQYs of 4.3% and 11.4% respectively. The theoretical and experimental results hint that CCoI and CZnI NCs possess much lower lattice deformation energies than that of reference CCuI NCs, which are favorable for the recombination of as-formed STEs in a radiative way. This work proposes an effective strategy of lattice engineering to boost the photoluminescent properties of lead-free layered double perovskites for their future warm white light-emitting applications.
RESUMO
Double perovskite oxides are key players as electrocatalytic oxygen catalysts in alkaline media. In this study, we synthesized B-site doped NdBaCoaFe2-aO5+δ (a= 1.0, 1.4, 1.6, 1.8) electrocatalysts, systematically to probe their bifunctionality and assess their performance in zinc-air batteries as air cathodes. X-ray photoelectron spectroscopy analysis reveals a correlation between iron reduction and increased oxygen vacancy content, influencing electrocatalyst bifunctionality by lowering the work function. The electrocatalyst with highest cobalt content, NdBaCo1.8Fe0.2O5+δ exhibited a bifunctional index of 0.95 V, outperforming other synthesized electrocatalysts. Remarkably, NdBaCo1.8Fe0.2O5+δ, demonstrated facilitated charge transfer rate in oxygen evolution reaction with four-electron oxygen reduction reaction process. As an air cathode in a zinc-air battery, NdBaCo1.8Fe0.2O5+δ demonstrated superior performance characteristics, including maximum capacity of 428.27 mA h at 10 mA cm-2 discharge current density, highest peak power density of 64 mW cm-2, with an outstanding durability and stability. It exhibits lowest voltage gap change between charge and discharge even after 350 hours of cyclic operation with a rate capability of 87.14%.
RESUMO
The high-temperature solid oxide fuel cells (SOFCs) are the most efficient and green conversion technology for electricity generation from hydrogen-based fuel as compared to conventional thermal power plants. Many efforts have been made to reduce the high operating temperature (>800 °C) to intermediate/low operating temperature (400 °C
RESUMO
Recently, the lead-free double perovskite Cs2AgBiBr6has been considered as a promising candidate for next-generation nonvolatile memory and artificial synapse devices due to its high stability and low toxicity compared to its lead-based counterparts. In this work, we developed a simple and effective method to produce high-quality lead-free double perovskite Cs2AgBiBr6thin films without pinholes and particles by applying a low-pressure assisted method under ambient condition with a relative humidity (RH) of about 45%. The formation of pinholes and Ag precipitation in the perovskite Cs2AgBiBr6 films is effectively suppressed by the proper ratio of N,N-dimenthylformamide (DMF) mixed in dimethyl sulfoxide (DMSO) solvents. Furthermore, the grain size of the Cs2AgBiBr6films can be significantly increased by increasing the post-annealing temperature. Finally, a sandwiched structure memristor with an ITO/Cs2AgBiBr6/Ta configuration was successfully demonstrated, featuring ultralow operation voltage (VSetâ¼ 57 ± 23 mV,VResetâ¼ -692 ± 68 mV) and satisfactory memory window (the ratio ofRHRS/RLRSâ¼ 10 times), which makes it suitable for low-power consumption information storage devices.
RESUMO
Herein, we propose preferential dissolution paired with Cu-doping as an effective method for synergistically modulating the A- and B-sites of LaMnO3 perovskite. Through Cu-doping into the B-sites of LaMnO3, specifically modifying the B-sites, the double perovskite La2CuMnO6 was created. Subsequently, partial La from the A-sites of La2CuMnO6 was etched using HNO3, forming novel La2CuMnO6/MnO2 (LCMO/MnO2) catalysts. The optimized catalyst, featuring an ideal Mn:Cu ratio of 4.5:1 (LCMO/MnO2-4.5), exhibited exceptional catalytic ozonation performance. It achieved approximately 90% toluene degradation with 56% selectivity toward CO2, even under ambient temperature (35 °C) and a relatively humid environment (45%). Modulation of A-sites induced the elongation of Mn-O bonds and decrease in the coordination number of Mn-O (from 6 to 4.3) in LCMO/MnO2-4.5, resulting in the creation of abundant multivalent Mn and oxygen vacancies. Doping Cu into B-sites led to the preferential chemisorption of toluene on multivalent Cu (Cu(I)/Cu(II)), consistent with theoretical predictions. Effective electronic supplementary interactions enabled the cycling of multiple oxidation states of Mn for ozone decomposition, facilitating the production of reactive oxygen species and the regeneration of oxygen vacancies. This study establishes high-performance perovskites for the synergistic regulation of O3 and toluene, contributing to cleaner and safer industrial activities.
Assuntos
Ozônio , Tolueno , Catálise , Ozônio/química , Tolueno/química , Titânio/química , Óxidos/química , Compostos de Cálcio/químicaRESUMO
A series of tungstate double perovskite Ca3 WO6 doped with Tb3+ was prepared by a combustion process using urea as a flux. The crystal structure identification of Ca3 WO6 :Tb3+ phosphors was done using X-ray diffraction patterns, and a monoclinic structure was discovered. The Fourier transform infrared spectrum of Ca3 WO6 :Tb3+ displayed characteristic vibrations of tungstate bonds. Under 278 nm excitation, Ca3 WO6 :Tb3+ exhibited intense downconversion green emission, which corresponded to the 5 D4 -7 FJ (J = 4,5) transitions of Tb3+ . The phosphor exhibited the highest photoluminescence (PL) intensity when it was doped with 1 mol% of Tb3+ ; later intensity quenching appeared to be due to the multipolar interaction at higher dopant concentrations. Moreover, high-quality thermoluminescence (TL) was detected when phosphors were irradiated using beta rays. The effects of Tb3+ concentration and beta dose on TL intensity were the two major aspects studied in detail. The TL intensity demonstrated excellent linear response to the applied range of beta dose. The trap parameters of the studied phosphors were computed by the peak shape approach and glow curve deconvolution. The fading effect on TL intensity was studied by recording the TL glow curves after 1 month of beta irradiation. Obtained results from the PL and TL characterizations showed that the phosphors under study have the potential to be used in lighting displays and in thermoluminescence dosimetry.
Assuntos
Luminescência , Óxidos , Térbio , Titânio , Compostos de Tungstênio , Compostos de Cálcio , Dosimetria TermoluminescenteRESUMO
The predominant method for pest control has been the use of pesticides, which have been shown to have detrimental effects on soil, freshwater, and crop quality. Therefore, the development of novel and sustainable crop protection strategies has become increasingly imperative. In this study, a novel orange-red emitting Ba2SrWO6: Sm3+ phosphor was synthesized using the high-temperature solid-state reaction. Under ultraviolet excitation, the phosphors showed obvious emission peaks at 575, 614, and 662 nm. The Ba2SrWO6: Sm3+ was used to fabricate a fluorescence film with polydimethylsiloxane (PDMS), and attracted twice as many insects as the blank control group under 365 nm ultraviolet light. This material holds great potential as a fluorescent agent for insect trapping in the pest control fields of tea, cotton, eggplant, rice, potato, grape, and other agricultural industries. Our findings provide an eco-friendly approach to pest management for the increment of food production.
Assuntos
Luminescência , Óxidos , Samário , Compostos de Cálcio , TitânioRESUMO
We report the colloidal synthesis of Bi-doped Cs2AgxNa1-xInCl6 double perovskite nanoplatelets (NPLs) exhibiting a near-unity photoluminescence quantum yield (PLQY), a record emission efficiency for nanoscale lead-free metal halides. A combination of optical spectroscopies revealed that nonradiative decay processes in the NPL were suppressed, indicating a well-passivated surface. By comparison, nanocubes with the same composition and surface ligands as the NPLs had a PLQY of only 40%. According to our calculations, the type of trap states arising from the presence of surface defects depends on their specific location: defects located on the facets of nanocubes generate only shallow traps, while those at the edges result in deep traps. In NPLs, due to their extended basal facets, most of the surface defects are facet defects. This so-called facet-defect tolerant behavior of double perovskites explains the more efficient optical emission of NPLs compared to that of nanocubes.
RESUMO
The electrocatalytic conversion of polysulfides is crucial to lithium-sulfur batteries and mainly occurs at triple-phase interfaces (TPIs). However, the poor electrical conductivity of conventional transition metal oxides results in limited TPIs and inferior electrocatalytic performance. Herein, a TPI engineering approach comprising superior electrically conductive layered double perovskite PrBaCo2O5+δ (PBCO) is proposed as an electrocatalyst to boost the conversion of polysulfides. PBCO has superior electrical conductivity and enriched oxygen vacancies, effectively expanding the TPI to its entire surface. DFT calculation and in situ Raman spectroscopy manifest the electrocatalytic effect of PBCO, proving the critical role of enhanced electrical conductivity of this electrocatalyst. PBCO-based Li-S batteries exhibit an impressive reversible capacity of 612 mAh g-1 after 500 cycles at 1.0 C with a capacity fading rate of 0.067% per cycle. This work reveals the mechanism of the enriched TPI approach and provides novel insight into designing new catalysts for high-performance Li-S batteries.
RESUMO
To develop novel inorganic red pigments without harmful elements, we focused on the band structure of Ca2(Mg, Co)WO6 and attempted to narrow its bandgap by replacing the W6+ sites in the host structure of Mo6+. Ca2Mg1-xCoxW1-yMoyO6 (0.10 ≤ x ≤ 0.30; 0.45 ≤ y ≤ 0.60) samples were synthesized by a sol-gel method using citric acids, and the crystal structure, optical properties, and color of the samples were characterized. The Ca2Mg1-xCoxW1-yMoyO6 solid solution was successfully formed, which absorbed visible light at wavelengths below 600 nm. In addition, the absorption wavelength shifted to longer wavelengths with increasing Mo6+ content. This is because a new conduction band composed of a Co3d-W5d-Mo4d hybrid orbital was formed by Mo6+ doping to reduce the bandgap energy. Thus, the color of the samples gradually changed from pale orange to dark red, with a hue angle (h°) of less than 35°. Based on the above results, the optical absorption wavelength of the Ca2Mg1-xCoxW1-yMoyO6 system can be controlled to change the color by adjusting the bandgap energy.
RESUMO
Complex transition-metal oxides exhibit a wide variety of chemical and physical properties which are a strong function the local electronic states of the transition-metal centres, as determined by a combination of metal oxidation state and local coordination environment. Topochemical reduction of the double perovskite oxide, LaSrCoRuO6 , using Zr, yields LaSrCoRuO5 . This reduced phase contains an ordered array of apex-linked square-based pyramidal Ru3+ O5 , square-planar Co1+ O4 and octahedral Co3+ O6 units, consistent with the coordination-geometry driven disproportionation of Co2+ . Coordination-geometry driven disproportionation of d7 transition-metal cations (e.g. Rh2+ , Pd3+ , Pt3+ ) is common in complex oxides containing 4d and 5d metals. However, the weak ligand field experienced by a 3d transition-metal such as cobalt leads to the expectation that d7+ Co2+ should be stable to disproportionation in oxide environments, so the presence of Co1+ O4 and Co3+ O6 units in LaSrCoRuO5 is surprising. Low-temperature measurements indicate LaSrCoRuO5 adopts a ferromagnetically ordered state below 120â K due to couplings between S=1 /2 Ru3+ and S=1 Co1+ .
RESUMO
Erbium ions are commonly used to extend the photoelectric properties of metal halide perovskites from visible to near-infrared (NIR) range. However, achieving high-efficiency multi-mode luminescence in a single system is difficult due to the weak absorption associated with forbidden 4f-4f transitions. In this study, a unique strategy is proposed to adjust multi-mode luminescence and enhance NIR-II emission in Cs2NaBiCl6 by incorporating Fe3+ ions. The as-prepared material demonstrates reversible thermochromism, driven by strong electron-phonon coupling effect, and exhibits tunable luminescence that can be adjusted by altering excitation energy and temperature. Notably, benefitting from the charge transfer transition of Fe3+-Cl- along with the influence of Fe3+ doping on the geometrical and electronic structures, the blue-excitable (450 nm) NIR-II emission around 1541 nm from Er3+ is realized for the first time, achieving an intensity 16.7 times higher and a maximum photoluminescence quantum yield of 22.5%. This enhancement enables innovative applications such as two-dimensional information encryption by the multi-channel cooperative responses and improved NIR imaging. The study highlights the potential of Fe3+ doping in optimizing absorption and multi-mode luminescence in perovskites, opening avenues for advanced applications in blue-excitable NIR light emitting diodes, thermometer, anti-counterfeiting, and NIR imaging.
RESUMO
Vacancy-ordered perovskites and derivatives represent an important subclass of hybrid metal halides with promise in applications including light emitting devices and photovoltaics. Understanding the vacancy-property relationship is crucial for designing related task-specific materials, yet research in this field remains sporadic. For the first time, we use the Connolly surface to quantitatively calculate the volume of vacancy (Vâ¡, â¡=vacancy) in vacancy-ordered double perovskite derivatives (VDPDs). A relationship between void fraction and the structure, photoluminescent properties and humidity stability was established based on zero-dimensional (0-D) [N(alkyl)4]2Sbâ¡Cl5â¡'-type VDPDs. Compared with the more commonly studied A2M(IV)X6â¡-type double perovskite (A=cation, M=metal ion, X=halide), [N(alkyl)4]2Sbâ¡Cl5â¡' features double vacancy sites. Our results demonstrate an inverse relationship between the photoluminescent quantum yield and Vâ¡ in 0-D VDPDs. Additionally, structural transformation from A2SbCl5 to A3Sb2Cl9 was first reported, during which the novel 'gate-opening' gas adsorption phenomenon was observed in VDPDs for the first time, as evidenced by 'S'-shaped sorption isotherms for water vapor, indicating a cation-controlled water-vapor response behavior. A mixed-cation strategy was developed to modulate the humidity stability of VDPDs. Characterized by controllable water-responsive behavior and unique 'on-off-on' luminescent switching, A2M(III)â¡X5â¡'-type materials show great promise for multi-level information anti-counterfeiting applications.
RESUMO
Hybrid layered double perovskites (HLDPs), representing the two-dimensional manifestation of halide double perovskites, have elicited considerable interest owing to their intricate chemical bonding hierarchy and structural diversity. This intensified interest stems from the diverse options available for selecting alternating octahedral coordinated trivalent [M(III)] and monovalent metal centers [M(I)], along with the distinctive nature of the cationic organic amine located between the layers. Here, we have synthesized three new compounds with general formula (R'/R'')4/2M(III)M(I)Cl8; where R'=C3H7NH3 (i.e. 3N) and R''=NH3C4H8NH3 (i.e. 4N4); M(III)=In3+ or Ru3+; M(I)=Cu+ by simple solution-based acid precipitation method. The structural analysis reveals that (4N4)2CuInCl8 and (4N4)2CuRuCl8 adopt the layered Dion Jacobson (DJ) structure, whereas (3N)4CuInCl8 exhibits layered Ruddlesden Popper (RP) structure. The alternative octahedra within the inorganic layer display distortions and tilting. Three compounds show temperature-dependent structural phase transitions where changes in the staking of inorganic layer, extent of octahedral tilting and reorientation of organic spacers with temperature have been noticed. We have achieved ultralow lattice thermal conductivity (κL) in the HLDPs in the 2 to 300â K range, marking a distinctive feature within the realm of HLDP systems. The RP-HLDP compound, (3N)4CuInCl8, demonstrates anisotropy in κL while measured parallel and perpendicular to layer stacking, showcasing ultralow κL of 0.15 Wm-1K-1 at room temperature, which is one of the lowest values obtained among Pb-free metal halide perovskite. The observed ultralow κL in three new HLDPs is attributed to significant lattice anharmonicity arising from the chemical bonding heterogeneity and soft crystal structure, which resulted in low-energy localized optical phonon modes that suppress heat-carrying acoustic phonons.
RESUMO
The bulk anomalous photovoltaic (BAPV) effect of acentric materials refers to a distinct concept from traditional semiconductor-based devices, of which the above-bandgap photovoltage hints at a promise for solar-energy conversion. However, it is still a challenge to exploit new BAPV-active systems due to the lacking of knowledge on the structural origin of this concept. BAPV effects in single crystals of a 2D lead-free double perovskite, (BBA)2 CsAgBiBr7 (1, BBA = 4-bromobenzylammonium), tailored by mixing aromatic and alkali cations in the confined architecture to form electric polarization are acquired here. Strikingly, BAPV effects manifested by above-bandgap photovoltage (VOC ) show unique attributes of directional anisotropy and positive dependence on electrode spacing. The driving source stems from orientations of the polar aromatic spacer and Cs+ ion drift, being different from the known built-in asymmetry photovoltaic heterojunctions. As the first demonstration of the BAPV effect in the double perovskites, the results will enrich the family of environmentally green BAPV-active candidates and further facilitate their new optoelectronic application.