Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400179, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031523

RESUMO

With the rapid development of micro/nano machining, there is an elevated demand for high-performance microdevices with high reliability and low cost. Due to their outstanding electrochemical, optical, electrical, and mechanical performance, carbon materials are extensively utilized in constructing microdevices for energy storage, sensing, and optoelectronics. Carbon micro/nano machining is fundamental in carbon-based intelligent microelectronics, multifunctional integrated microsystems, high-reliability portable/wearable consumer electronics, and portable medical diagnostic systems. Despite numerous reviews on carbon materials, a comprehensive overview is lacking that systematically encapsulates the development of high-performance microdevices based on carbon micro/nano structures, from structural design to manufacturing strategies and specific applications. This review focuses on the latest progress in carbon micro/nano machining toward miniaturized device, including structural engineering, large-scale fabrication, and performance optimization. Especially, the review targets an in-depth evaluation of carbon-based micro energy storage devices, microsensors, microactuators, miniaturized photoresponsive and electromagnetic interference shielding devices. Moreover, it highlights the challenges and opportunities in the large-scale manufacturing of carbon-based microdevices, aiming to spark further exciting research directions and application prospectives.

2.
Small ; 20(15): e2308126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009584

RESUMO

High-loading electrodes play a crucial role in designing practical high-energy batteries as they reduce the proportion of non-active materials, such as current separators, collectors, and battery packaging components. This design approach not only enhances battery performance but also facilitates faster processing and assembly, ultimately leading to reduced production costs. Despite the existing strategies to improve rechargeable battery performance, which mainly focus on novel electrode materials and high-performance electrolyte, most reported high electrochemical performances are achieved with low loading of active materials (<2 mg cm-2). Such low loading, however, fails to meet application requirements. Moreover, when attempting to scale up the loading of active materials, significant challenges are identified, including sluggish ion diffusion and electron conduction kinetics, volume expansion, high reaction barriers, and limitations associated with conventional electrode preparation processes. Unfortunately, these issues are often overlooked. In this review, the mechanisms responsible for the decay in the electrochemical performance of high-loading electrodes are thoroughly discussed. Additionally, efficient solutions, such as doping and structural design, are summarized to address these challenges. Drawing from the current achievements, this review proposes future directions for development and identifies technological challenges that must be tackled to facilitate the commercialization of high-energy-density rechargeable batteries.

3.
Small ; 20(12): e2311012, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334244

RESUMO

The rapid development of wearable electronics has stimulated the pursuit of advanced stretchable power sources. As a promising candidate, stretchable aqueous zinc-ion batteries (AZIBs), have attracted unprecedented attention owing to their intrinsic safety, low cost, environmental benignity, and high performance, and can be endowed with additional functionalities to broaden the applications of wearable electronics. Here, a comprehensive review on the latest advances of stretchable AZIBs is presented. The materials and methods for stretchable components in AZIBs are first summarized, covering current collectors, electrodes, electrolytes/separators, and encapsulating layers. Subsequently, the benefits of the coplanar, fiber-shaped, and sandwiched configurations for stretchable AZIBs are analyzed. Moreover, the additional features integrated into stretchable AZIBs are highlighted. Finally, the challenges and prospects of stretchable AZIBs for wearable applications in the future are proposed.

4.
Small ; 20(1): e2304792, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649199

RESUMO

Large-capacity energy storage devices are attracting widespread research attention. However, the decreased capacity of these devices due to cold weather is a huge obstacle for their practical use. In this study, an electrochemical self-adaptive reconstructed Cux S/Cu(OH)2 -based symmetric energy storage device is proposed. This device provides a satisfactorily enhanced photothermal capacity under solar irradiation. After electrochemical reconstruction treatment, the morphological structure is rearranged and the Cux S component is partially converted to electrochemically active Cu(OH)2 with the introduction of a large number of active sites. The resulting Cux S/Cu(OH)2 electrode provides a significant capacitance of 115.2 F cm-2 at 5 mA cm-2 . More importantly, its wide working potential range and superior photo-to-thermal conversion ability endow Cux S/Cu(OH)2 with superb performance as full-purpose photothermally enhanced capacitance electrodes. Under solar irradiation, the surface temperature of Cux S/Cu(OH)2 is elevated by 76.6 °C in only 30 s, and the capacitance is boosted to 230.4% of the original capacitance at a low temperature. Furthermore, the assembled symmetric energy storage device also delivers a photothermal capacitance enhancement of 200.3% under 15 min solar irradiation.

5.
Small ; 20(23): e2309097, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38183380

RESUMO

The introduction of battery-type cathode has been commonly considered a preferred approach to boost the energy density of aqueous hybrid energy storage devices (AHESDs) in alkalic systems, but AHESDs with both high energy density and power density are rare due to the great challenge in designing battery-type anode materials with high rate and durability comparable to capacitive-type carbon anodes. In this paper, a well-hydrated iron selenate (FeSeO) sheath is constructed around FeOOH nanorods by a facile electrochemical activation, demonstrating the unique multifunction in fasting charge diffusion, promoting the dissociation of H2O, and inhibiting the irreversible phase transition of FeOOH to inert γ-Fe2O3, which endow the hydrated sheath coated Fe-based anodes with an impressive rate capability and superior durability. Thanks to the comprehensive performance of this Fe-based anode, the assembled AHESD delivered a high energy density of 117 Wh kg-1 with the extraordinary durability of almost 100% capacity retention after 40 000 cycles. Even at an ultrahigh power density of 27 000 W kg-1, an impressive energy density of 65 Wh kg-1 can be achieved, which rivals previously reported energy-storage devices.

6.
Small ; 20(4): e2302826, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37794620

RESUMO

Photo-rechargeable energy storage devices are appealing for substantial research attention because of their possible applications in the Internet of Things (IoT) and low-powered miniaturized portable electronics. However, due to the incompatibility of the photovoltaics and energy storage systems (ESSs), the overall light-to-storage efficiency is limited under indoor light conditions. Herein, a porous carbon scaffold MnO-Mn3 O4 /C microsphere-based monolithic dye-sensitized photo-rechargeable asymmetric supercapacitor (DSPC) is fabricated. The integrated DSPC has a high areal specific capacitance of 281.9 mF cm-2 at the discharge rate of 0.01 mA cm-2 . The light-to-electrical conversion efficiency of the DSSC is 27.6% under the 1000 lux compact fluorescent lamp (CFL). The DSPC shows an outstanding light-to-charge storage efficiency of 21.6%, which is higher than that reported ever. Furthermore, the fabricated polymer gel electrolyte-based quasi-solid state (QSS) DSPC shows similar overall conversion efficiency with superior cycling capability. This work shows a convenient fabrication process for a wireless power pack of interest with outstanding performance.

7.
Nano Lett ; 23(9): 3788-3795, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126862

RESUMO

Dielectric capacitors have greater power densities than batteries, and, unlike batteries, they do not utilize chemical reactions during cycling. Thus, they can become ideal, safe energy storage devices. However, dielectric capacitors yield rather low energy densities compared with other energy storage devices such as batteries and supercapacitors. Here, we present a rational approach for designing ultrahigh energy storage capacitors using two-dimensional (2D) high-κ dielectric perovskites (Ca2Nam-3NbmO3m+1; m = 3-6). Individual Ca2Nam-3NbmO3m+1 nanosheets exhibit an ultrahigh dielectric strength (638-1195 MV m-1) even in the monolayer form, which exceeds those of conventional dielectric materials. Multilayer stacked nanosheet capacitors exhibit ultrahigh energy densities (174-272 J cm-3), high efficiencies (>90%), excellent reliability (>107 cycles), and temperature stability (-50-300 °C); the maximum energy density is much higher than those of conventional dielectric materials and even comparable to those of lithium-ion batteries. Enhancing the energy density may make dielectric capacitors more competitive with batteries.

8.
Angew Chem Int Ed Engl ; : e202413728, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276037

RESUMO

Additive manufacturing of (quasi-) solid-state (QSS) electrochemical energy storage devices (EES) highlights the significance of gel polymer electrolytes (GPEs) design. Creating well-bonded electrode-GPEs interfaces in the electrode percolative network via printing leads to large-scale production of customized EES with boosted electrochemical performance but has proven to be quite challenging. Herein, we report on a versatile, universal and scalable approach to engineer a controllable, seamless electrode-GPEs interface via free radical polymerization (FRP) triggered by MXene at room temperature. Importantly, MXene reduces the dissociation enthalpy of persulfate initiators and significantly shortens the induction period accelerated by SO- 4·, enabling the completion of FRP within minutes. The as-formed well-bonded electrode-GPEs interface homogenizes the electrical and concentration fields (i.e., Zn2+), therefore suppressing the dendrites formation, which translates to long-term cycling (50,000 times), high energy density (105.5 Wh kg-1) and power density (9231 W kg-1) coupled with excellent stability upon deformation in the zinc-ion hybrid capacitors (ZHCs). Moreover, the critical switch of the rheological behaviours of the polymer electrolyte (as aqueous inks in still state and become solids once triggered by MXene) perfectly ensures the direct all-printing of electrodes and GPEs with well-bonded interface in between, opening vast possibilities for all-printed QSS EES beyond ZHCs.

9.
Small ; : e2307400, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054796

RESUMO

Biomass-based energy storage devices (BESDs) have drawn much attention to substitute traditional electronic devices based on petroleum or synthetic chemical materials for the advantages of biodegradability, biocompatibility, and low cost. However, most of the BESDs are almost made of reconstructed plant materials and exogenous chemical additives which constrain the autonomous and widespread advantages of living plants. Herein, an all-plant-based compact supercapacitor (APCSC) without any nonhomologous additives is reported. This type of supercapacitor formed within living plants acts as a form of electronic plant (e-plant) by using its tissue fluid electrolyte, which surprisingly presents a satisfying electrical capacitance of 182.5 mF cm-2 , higher than those of biomass-based micro-supercapacitors reported previously. In addition, all constituents of the device come from the same plant, effectively avoid biologically incompatible with other extraneous substances, and almost do no harm to the growth of plant. This e-plant can not only be constructed in aloe, but also be built in most of succulents, such as cactus in desert, offering timely electricity supply to people in extreme conditions. It is believed that this work will enrich the applications of electronic plants, and shed light on smart botany, forestry, and agriculture.

10.
Small ; 19(45): e2302786, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37415542

RESUMO

The demand for high-performance and cost-effective energy storage solutions for mobile electronic devices and electric vehicles has been a driving force for technological advancements. Among the various options available, transitional metal oxides (TMOs) have emerged as a promising candidates due to their exceptional energy storage capabilities and affordability. In particular, TMO nanoporous arrays fabricated by electrochemical anodization technique demonstrate unrivaled advantages including large specific surface area, short ion transport paths, hollow structures that reduce bulk expansion of materials, and so on, which have garnered significant research attention in recent decades. However, there is a lack of comprehensive reviews that discuss the progress of anodized TMO nanoporous arrays and their applications in energy storage. Therefore, this review aims to provide a systematic detailed overview of recent advancements in understanding the ion storage mechanisms and behavior of self-organized anodic TMO nanoporous arrays in various energy storage devices, including alkali metal ion batteries, Mg/Al-ion batteries, Li/Na metal batteries, and supercapacitors. This review also explores modification strategies, redox mechanisms, and outlines future prospects for TMO nanoporous arrays in energy storage.

11.
Small ; 19(21): e2300386, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36823446

RESUMO

Stretchable microsupercapacitors represent emerging miniaturized energy-storage devices for next-generation deformable electronics. Two-dimensional (2D) transition metal carbides (MXenes) are considered attractive electrode materials due to their metallic conductivity, hydrophilic surfaces, and excellent processability. Here, an ultrastretchable microsupercapacitor of interdigitated MXene microelectrodes with crumpled surface textures is created. The microsupercapacitor shows a series of attractive properties including a high specific capacitance of ≈185 mF cm-2 , ultrahigh stretchability up to 800% area strain, and ≈89.7% retention of the initial capacitance after 1000 stretch-relaxation cycles. In addition to static strains, the microsupercapacitor demonstrates robust mechanical properties to retain stable charging-discharging capability under dynamic stretching at different strain rates. A self-powering circuit system utilizes four microsupercapacitor packs to power a light-emitting diode (LED) array, which exhibits stable operations under large tensile strain and skin-attached wearable settings. The developments offer a generic design strategy to enhance the deformability of microsupercapacitors based on 2D nanomaterials.

12.
Small ; 19(34): e2301815, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37183303

RESUMO

Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High-power density supercapacitors and high-energy density rechargeable batteries are some of the most effective devices, while lithium-ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium-ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene-based composites in various kinds of magnesium-ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research.

13.
Small ; 19(47): e2304045, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37485629

RESUMO

The design of a novel photoelectric integrated system is considered to be an efficient way to utilize and store inexhaustible solar energy. However, the mechanism of photoelectrode under illuminate conditions is still unclear. Density functional theory (DFT) provides standardized analysis and becomes a powerful way to explain the photoelectrochemical mechanism. Herein, the feasibility of four metal oxide configurations as photoelectrode materials by using a high throughput calculation method based on DFT are investigated. According to the photoelectrochemical properties, band structure and density of states are calculated, and the intercalate/deintercalate simulation is performed with adsorption configuration. The calculation indicates that the band gap of Fe2 CoO4 (2.404 eV) is narrower than that of Co3 O4 (2.553 eV), as well as stronger adsorption energy (-3.293 eV). The relationship between the electronic structure and the photoelectrochemical performance is analyzed and verified according to the predicted DFT results by subsequent experiments. Results show that the Fe2 CoO4 photoelectrode samples exhibit higher coulombic efficiency (97.4%) than that under dark conditions (94.9%), which is consistent with the DFT results. This work provides a general method for the design of integrated photoelectrode materials and is expected to be enlightening for the adjustment of light-assisted properties of multifunctional materials.

14.
Small ; 19(50): e2304677, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37632318

RESUMO

To achieve high-performance solid-state lithium-metal batteries (SSLMBs), solid electrolytes with high ionic conductivity, high oxidative stability, and high mechanical strength are necessary. However, balancing these characteristics remains dramatically challenging and is still not well addressed. Herein, a simple yet effective design strategy is presented for the development of high-performance polymer electrolytes (PEs) by exploring the synergistic effect between dynamic H-bonded networks and conductive zwitterionic nanochannels. Multiple weak intermolecular interactions along with ample nanochannels lead to high oxidative stability (over 5 V), improved mechanical properties (strain of 1320%), and fast ion transport (ionic conductivity of 10-4 S cm-1 ) of PEs. The amphoteric ionic functional units also effectively regulate the lithium ion distribution and confine the anion transport to achieve uniform lithium ion deposition. As a result, the assembled SSLMBs exhibit excellent capacity retention and long-term cycle stability (average Coulombic efficiency: 99.5%, >1000 cycles with LiFePO4 cathode; initial capacity: 202 mAh g-1 , average Coulombic efficiency: 96%, >230 cycles with LiNi0.8 Co0.1 Mn0.1 O2 cathode). It is exciting to note that the corresponding flexible cells can be cycled stably and can withstand severe deformation. The resulting polyzwitterion-mediated PE therefore offers great promise for the next-generation safe and high-energy-density flexible energy storage devices.

15.
Chemistry ; 29(40): e202300821, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37156723

RESUMO

Lithium-sulfur batteries are promising candidates for next-generation energy storage devices due to their outstanding theoretical energy density. However, they suffer from low sulfur utilization and poor cyclability, greatly limiting their practical implementation. Herein, we adopted a phosphate-functionalized zirconium metal-organic framework (Zr-MOF) as a sulfur host. With their porous structure, remarkable electrochemical stability, and synthetic versatility, Zr-MOFs present great potential in preventing soluble polysulfides from leaching. Phosphate groups were introduced to the framework post-synthetically since they have shown a strong affinity towards lithium polysulfides and an ability to facilitate Li ion transport. The successful incorporation of phosphate in MOF-808 was demonstrated by a series of techniques including infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy, and X-ray pair distribution function analysis. When employed in batteries, phosphate-functionalized Zr-MOF (MOF-808-PO4) exhibits significantly enhanced sulfur utilization and ion diffusion compared to the parent framework, leading to higher capacity and rate capability. The improved capacity retention and inhibited self-discharge rate also demonstrate effective polysulfide encapsulation utilizing MOF-808-PO4. Furthermore, we explored their potential towards high-density batteries by examining the cycling performance at various sulfur loadings. Our approach to correlate structure with function using hybrid inorganic-organic materials offers new chemical design strategies for advancing battery materials.

16.
Nanotechnology ; 34(31)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37116479

RESUMO

The growth of artificial synthesis two-dimensional (2D) materials usually demands for suitable substrate due to their rare bulk allotropies. Borophene, as a typical artificial synthetic material, has been proved its substrate-growth on metal or nonmetals and its high theoretical specific capacity (1720 mAh g-1) for next-genatration electrode material, but structural instability and transfer difficulties have hindered the development of its applications. Here, a structurally stable and freestanding AA-stacked-α'-4H-borophene sheets have been synthesized byin situlithium eutectic salt-assisted synthetic method to realize the application of borophene in lithium-ion battery. The atomic structure of AA-α'-4H-borophene with interlayer VdWs was established by comparing the experimental observation with DFT optimal calculation. Different stacking configurations (AA- and AB-) of borophene was realized by a temperature-structure-photoluminescence intensity relationship, and the AA-stacked borophene exhibits higher specific capacity than AB structure. Based on electrochemical performance, the AA-borophene exhibits excellent rate capability and cycling performance due to its non-collapsible stacking configurations, which dominates great initial coulombic efficiency of 87.3% at 200 mA g-1superior to that of black phosphorus-based and borophene/graphene. Meanwhile, it still maintains the coulombic efficiency of 99.13% after 1000 cycles. It also shows a reversible capacity of 181 mAh g-1at 10 mA g-1between the voltage window of 0.01 and 2 V, which improves the reported capacity (43 mAh g-1) of bulk boron anode by over 430%. This work brings fantastic new view of fabricating stable, stacking and freestanding borophene and provides a significative idea on applications of borophene in energy storage domain.

17.
Macromol Rapid Commun ; 44(10): e2200977, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37002780

RESUMO

The development of high-performance and low-cost, flexible electronic devices is a crucial prerequisite for emerging applications of energy storage, conversion, and sensing system. Collagen as the most abundant structural protein in mammals, owing to the unique amino acid composition and hierarchical structure, the conversion of collagen into collagen-derived carbon materials with different nanostructures and abundant ideal heteroatom doping through the carbonization method is expected to be a promising candidate material for electrodes of energy storage devices. The excellent mechanical flexibility of collagen and the abundant functional groups on its molecular chain that are easy to modify provide the possibility to be used as a separator material. On this basis, the ideal biocompatibility and degradability provide unique conditions for it to match the flexible substrate material of the human body for wearable electronic skin. In this review, the unique characteristics and advantages of collagen for electronic devices are first summarized. Recent progress in designing and constructing collagen-based electronic devices for future applications of electrochemical energy storage and sensing are reviewed. Finally, the challenges and prospects for collagen-based flexible electronic devices are discussed.


Assuntos
Nanoestruturas , Dispositivos Eletrônicos Vestíveis , Animais , Humanos , Eletrônica , Carbono/química , Nanoestruturas/química , Colágeno , Mamíferos
18.
Microsc Microanal ; 29(4): 1350-1356, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488829

RESUMO

It is essential to understand the nanoscale structure and chemistry of energy storage materials due to their profound impact on battery performance. However, it is often challenging to characterize them at high resolution, as they are often fundamentally altered by sample preparation methods. Here, we use the cryogenic lift-out technique in a plasma-focused ion beam (PFIB)/scanning electron microscope (SEM) to prepare air-sensitive lithium metal to understand ion-beam damage during sample preparation. Through the use of cryogenic transmission electron microscopy, we find that lithium was not damaged by ion-beam milling although lithium oxide shells form in the PFIB/SEM chamber, as evidenced by diffraction information from cryogenic lift-out lithium lamellae prepared at two different thicknesses (130 and 225 nm). Cryogenic energy loss spectroscopy further confirms that lithium was oxidized during the process of sample preparation. The Ellingham diagram suggests that lithium can react with trace oxygen gas in the FIB/SEM chamber at cryogenic temperatures, and we show that liquid oxygen does not contribute to the oxidation of lithium process. Our results suggest the importance of understanding how cryogenic lift-out sample preparation has an impact on the high-resolution characterization of reactive battery materials.

19.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108464

RESUMO

The most promising energy storage devices are lithium-sulfur batteries (LSBs), which offer a high theoretical energy density that is five times greater than that of lithium-ion batteries. However, there are still significant barriers to the commercialization of LSBs, and mesoporous carbon-based materials (MCBMs) have attracted much attention in solving LSBs' problems, due to their large specific surface area (SSA), high electrical conductivity, and other unique advantages. The synthesis of MCBMs and their applications in the anodes, cathodes, separators, and "two-in-one" hosts of LSBs are reviewed in this study. Most interestingly, we establish a systematic correlation between the structural characteristics of MCBMs and their electrochemical properties, offering recommendations for improving performance by altering the characteristics. Finally, the challenges and opportunities of LSBs under current policies are also clarified. This review provides ideas for the design of cathodes, anodes, and separators for LSBs, which could have a positive impact on the performance enhancement and commercialization of LSBs. The commercialization of high energy density secondary batteries is of great importance for the achievement of carbon neutrality and to meet the world's expanding energy demand.


Assuntos
Carbono , Lítio , Condutividade Elétrica , Fontes de Energia Elétrica , Enxofre
20.
J Environ Manage ; 325(Pt B): 116650, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419312

RESUMO

The most appealing and prominent approach for improving energy storage and conversion performance is the development of heterojunction interfaces with efficient and unique metal oxide nanostructures. Rhombus Co3O4, nanocapsule CuO, and their heterojunction composites were synthesized using a single-step hydrothermal process. The resulting heterojunction Co3O4-CuO nanocomposite outperformed the pristine Co3O4 and CuO nanostructures for the electrochemical supercapacitor and water splitting performances. The composite showed 2.4 and 1.3 times higher specific capacitance than the associated pristine CuO and Co3O4 nanostructures, while its capacitance was 395 F g-1 at a current density of 0.5 A g-1. In addition, long-term GCD results with more than 90% stability and significant capacity retention at higher scan rates revealed the unaffected structures interfaced during the electrochemical reactions. The composite photoelectrode demonstrated more than 20% of photocurrent response with light illumination than the dark condition in water splitting. Co3O4-CuO heterostructured composite electrode showed a 0.16 mA/cm2 photocurrent density, which is 3.2 and 1.7 times higher than the pristine CuO and Co3O4 electrodes, respectively. This performance was attributed to its unique structural composition, high reactive sites, strong ion diffusion, and fast electron accessibility. Electron microscopic and spectroscopic techniques confirmed the properties of the electrodes as well as their morphological properties. Overall, the heterojunction interface with novel rhombus and capsule structured architectures showed good electrochemical performance, suggesting their energy storage and conversion applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA