Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(38): e2410679121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39264739

RESUMO

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here, however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Enterotoxinas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Interações Hospedeiro-Patógeno , Escherichia coli Enterotoxigênica/metabolismo , Humanos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Enterotoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Animais , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Antígeno Carcinoembrionário/metabolismo , Antígeno Carcinoembrionário/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Diarreia/microbiologia , Diarreia/metabolismo
2.
J Pept Sci ; : e3647, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39091086

RESUMO

Enterotoxigenic Escherichia coli (ETEC) strains, which produce the heat-stable enterotoxin (ST) either alone or in combination with the heat-labile enterotoxin, contribute to the bulk of the burden of child diarrheal disease in resource-limited countries and are associated with mortality. Developing an effective vaccine targeting ST presents challenges due to its potent enterotoxicity, non-immunogenicity, and the risk of autoimmune reaction stemming from its structural similarity to the human endogenous ligands, guanylin, and uroguanylin. This study aimed to assess a novel synthetic vaccine carrier platform employing a single chemical coupling step for making human ST (STh) immunogenic. Specifically, the method involved cross-linking STh to an 8-arm N-hydroxysuccinimide (NHS) ester-activated PEG cross-linker. A conjugate of STh with 8-arm structure was prepared, and its formation was confirmed through immunoblotting analysis. The impact of conjugation on STh epitopes was assessed using ELISAs with polyclonal and monoclonal antibodies targeting various epitopes of STh. Immunization of mice with the conjugate induced the production of anti-STh antibodies, exhibiting neutralizing activity against STh.

3.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36662123

RESUMO

AIM: Production of IgY antibodies against CfaB-EtpA-LTB (CEL) chimeric protein and evaluation of its protective effects against enterotoxigenic Escherichia coli (ETEC) by in vivo and in vitro investigation. METHODS AND RESULTS: Indirect ELISA and immunoblotting methods were applied to assess the immunogenicity and specificity of IgYs and also to evaluate the efficacy of IgYs in binding prevention and neutralizing the heat-labile (LT) toxin of ETEC bacteria. The results indicated that the anti-CEL IgY at a concentration of 2 mg ml-1 could decrease the bacterial adhesion to HT-29 cells by 74% compared to the control group.At a concentration of 750 µg ml-1, the IgY antibody managed to neutralize the disruptive LT toxin effect on the Y1 cell line. At a concentration of 2 mg ml-1, 81% reduction was observed in the fluid accumulation in the ileal loop assay. CONCLUSION: According to our findings, passive immunotherapy with anti-CEL IgY can prevent bacterial colonization and toxicity, thus facilitating in controlling the enteric diseases caused by ETEC infection.


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Vacinas contra Escherichia coli , Humanos , Enterotoxinas , Proteínas de Escherichia coli/química , Infecções por Escherichia coli/microbiologia , Anticorpos Antibacterianos , Glicoproteínas de Membrana
4.
Artigo em Inglês | MEDLINE | ID: mdl-34669040

RESUMO

The controlled human infection model (CHIM) for enterotoxigenic Escherichia coli (ETEC) has been instrumental in defining ETEC as a causative agent of acute watery diarrhea, providing insights into disease pathogenesis and resistance to illness, and enabling preliminary efficacy evaluations for numerous products including vaccines, immunoprophylactics, and drugs. Over a dozen strains have been evaluated to date, with a spectrum of clinical signs and symptoms that appear to replicate the clinical illness seen with naturally occurring ETEC. Recent advancements in the ETEC CHIM have enhanced the characterization of clinical, immunological, and microbiological outcomes. It is anticipated that omics-based technologies applied to ETEC CHIMs will continue to broaden our understanding of host-pathogen interactions and facilitate the development of primary and secondary prevention strategies.

5.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920239

RESUMO

Post-weaning diarrhea due to enterotoxigenic Escherichia coli (ETEC) is a common disease of piglets and causes great economic loss for the swine industry. Over the past few decades, decreasing effectiveness of conventional antibiotics has caused serious problems because of the growing emergence of multidrug-resistant (MDR) pathogens. Various studies have indicated that antimicrobial peptides (AMPs) have potential to serve as an alternative to antibiotics owing to rapid killing action and highly selective toxicity. Our previous studies have shown that AMP GW-Q4 and its derivatives possess effective antibacterial activities against the Gram-negative bacteria. Hence, in the current study, we evaluated the antibacterial efficacy of GW-Q4 and its derivatives against MDR ETEC and their minimal inhibition concentration (MIC) values were determined to be around 2~32 µg/mL. Among them, AMP Q4-15a-1 with the second lowest MIC (4 µg/mL) and the highest minimal hemolysis concentration (MHC, 256 µg/mL), thus showing the greatest selectivity (MHC/MIC = 64) was selected for further investigations. Moreover, Q4-15a-1 showed dose-dependent bactericidal activity against MDR ETEC in time-kill curve assays. According to the cellular localization and membrane integrity analyses using confocal microscopy, Q4-15a-1 can rapidly interact with the bacterial surface, disrupt the membrane and enter cytosol in less than 30 min. Minimum biofilm eradication concentration (MBEC) of Q4-15a-1 is 4× MIC (16 µg/mL), indicating that Q4-15a-1 is effective against MDR ETEC biofilm. Besides, we established an MDR ETEC infection model with intestinal porcine epithelial cell-1 (IPEC-1). In this infection model, 32 µg/mL Q4-15a-1 can completely inhibit ETEC adhesion onto IPEC-1. Overall, these results suggested that Q4-15a-1 may be a promising antibacterial candidate for treatment of weaned piglets infected by MDR ETEC.


Assuntos
Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Doenças dos Suínos/tratamento farmacológico , Animais , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli Enterotoxigênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Testes de Sensibilidade Microbiana , Suínos/microbiologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/patologia
6.
J Appl Microbiol ; 117(2): 320-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24750381

RESUMO

AIM: To obtain a recombinant enterotoxigenic Escherichia coli (ETEC) fusion enterotoxin protein LTB-STa-STb (Bab) that can express the immunogenicity of the haptens STa and STb and induce their corresponding neutralizing antibodies. METHODS AND RESULTS: The three important ETEC enterotoxin genes coding LTB, STa and STb were PCR-amplified, and the amplified products were fused to construct the trivalent enterotoxin expression vector pET30-Bab. SDS-PAGE and Western blot were used to verify the expression of the fusion protein Bab by E. coli BL21 carrying plasmid pET30-Bab. Laying hens immunized with Bab developed high egg yolk immunoglobulin (IgY) titres specific to LTB, STa and STb, and all were significantly higher than those in the control group (P < 0·01). A suckling mouse assay showed that anti-Bab IgY can neutralize the natural toxicity of STa and STb with the highest dilution of 1/2 and 1/32, respectively. CONCLUSIONS: Genetically constructed Bab induced significant antibody responses against STa and STb in chickens, and the resulting IgY had the capacity to neutralize the toxicity of ST. SIGNIFICANCE AND IMPACT OF THE STUDY: The recombinant Bab protein containing three important ETEC enterotoxins may serve as an effective and convenient polyvalent toxoid that can be used to produce multiple antitoxin IgYs to prevent colibacillosis caused by ETEC with various fimbriae in young animals.


Assuntos
Anticorpos Antibacterianos/imunologia , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/imunologia , Enterotoxinas/antagonistas & inibidores , Enterotoxinas/imunologia , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/imunologia , Imunoglobulinas/imunologia , Animais , Anticorpos Neutralizantes , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Galinhas/imunologia , Gema de Ovo/imunologia , Escherichia coli Enterotoxigênica/imunologia , Enterotoxinas/genética , Enterotoxinas/toxicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/toxicidade , Feminino , Camundongos , Proteínas Recombinantes de Fusão/imunologia
7.
Vaccines (Basel) ; 12(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543938

RESUMO

Enterotoxigenic Escherichia coli (ETEC) causes severe diarrhea in piglets. The current primary approach for ETEC prevention and control relies on antibiotics, as few effective vaccines are available. Consequently, an urgent clinical demand exists for developing an effective vaccine to combat this disease. Here, we utilized food-grade Lactococcus lactis NZ3900 and expression plasmid pNZ8149 as live vectors, together with the secreted expression peptide Usp45 and the cell wall non-covalent linking motif LysM, to effectively present the mutant LTA subunit, the LTB subunit of heat-labile enterotoxin, and the FaeG of F4 pilus on the surface of recombinant lactic acid bacteria (LAB). Combining three recombinant LAB as a live vector oral vaccine, we assessed its efficacy in preventing F4+ ETEC infection. The results demonstrate that oral immunization conferred effective protection against F4+ ETEC infection in mice and piglets lacking maternal antibodies during weaning. Sow immunization during late pregnancy generated significantly elevated antibodies in colostrum, which protected piglets against F4+ ETEC infection during lactation. Moreover, booster immunization on piglets during lactation significantly enhanced their resistance to F4+ ETEC infection during the weaning stage. This study highlights the efficacy of an oral LAB vaccine in preventing F4+ ETEC infection in piglets by combining the sow immunization and booster immunization of piglets, providing a promising vaccination strategy for future prevention and control of ETEC-induced diarrhea in piglets.

8.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39091797

RESUMO

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of diarrheal illnesses annually ranging from mildly symptomatic cases to severe, life-threatening cholera-like diarrhea. Although ETEC are associated with long-term sequelae including malnutrition, the acute diarrheal illness is largely self-limited. Recent studies indicate that in addition to causing diarrhea, the ETEC heat-labile toxin (LT) modulates the expression of many genes in intestinal epithelia, including carcinoembryonic cell adhesion molecules (CEACAMs) which ETEC exploit as receptors, enabling toxin delivery. Here however, we demonstrate that LT also enhances the expression of CEACAMs on extracellular vesicles (EV) shed by intestinal epithelia and that CEACAM-laden EV increase in abundance during human infections, mitigate pathogen-host interactions, scavenge free ETEC toxins, and accelerate ETEC clearance from the gastrointestinal tract. Collectively, these findings indicate that CEACAMs play a multifaceted role in ETEC pathogen-host interactions, transiently favoring the pathogen, but ultimately contributing to innate responses that extinguish these common infections.

9.
Microorganisms ; 11(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630648

RESUMO

The study addresses Enterotoxigenic Escherichia coli (ETEC), a significant concern in low-income countries. Despite its prevalence, there is no licensed vaccine against ETEC. Bacterial vesicle-based vaccines are promising due to their safety and diverse virulence factors. However, cost-effective production requires enhancing vesicle yield while considering altered properties due to isolation methods. The proposed method involves heat treatment and ultrafiltration to recover vesicles from bacterial cultures. Two vesicle types, collected from heat-treated (HT-OMV) or untreated (NT-OMV) cultures, were compared. Vesicles were isolated via ultrafiltration alone ("complete") or with ultracentrifugation ("sediment"). Preliminary findings suggest complete HT-OMV vesicles are suitable for an ETEC vaccine. They express important proteins (OmpA, OmpX, OmpW) and virulence factors (adhesin TibA). Sized optimally (50-200 nm) for mucosal vaccination, they activate macrophages, inducing marker expression (CD40, MHCII, CD80, CD86) and Th1/Th2 cytokine release (IL-6, MCP-1, TNF-α, IL12p70, IL-10). This study confirms non-toxicity in RAW 264.7 cells and the in vivo ability of complete HT-OMV to generate significant IgG2a/IgG1 serum antibodies. Results suggest promise for a cost-effective ETEC vaccine, requiring further research on in vivo toxicity, pathogen-specific antibody detection, and protective efficacy.

10.
Front Immunol ; 14: 1152910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275900

RESUMO

Background: Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea through two enterotoxins, a heat-labile toxin and a heat-stable toxin. These toxins alter the cellular signaling pathways, ultimately triggering an increase in chloride secretion and watery diarrhea. Objective: For the development of an ETEC vaccine, we attempted to construct a peptide-specific monoclonal antibody library against heat-labile enterotoxin A subunit (LT-A) by epitope mapping using synthetic peptides. Methods: Sera produced by five mice immunized with recombinant LT-A protein were examined for specific recognition with synthetic 15-mer and 34-mer peptides of LT-A proteins using enzyme-linked immunosorbent assay. The analysis revealed that the synthetic peptides number 8, 16, 24, 33, 36, 38, and 39 reacted with an anti-LT-A polyclonal antibody. For the possible prediction of LT-A epitopes, each full-length protein sequence was subjected to BCPreds analysis and three-dimensional protein structure analysis. The data showed that three peptides (synthetic peptide numbers: 33, 36, and 38-39) have identical antigenic specificities with LT-A protein, suggesting the usefulness of these linear peptide epitopes. Results: Based on these peptides, we produced monoclonal antibodies to improve the specificity of LT-A detection. Monoclonal antibodies produced from two peptides (numbers 33 and 36) showed affinity for an LT-A recombinant antigen. Moreover, peptide epitope prediction analysis showed that the sites of the three peptides were identical to those exhibiting actual antigenicity. Also, it was confirmed that the amino acid sequence that actually showed antigenicity was included in the peptide predicted only by ETEC-LT-A-33. Also, the specificity of the antibody for ETEC-LT-A-33 was validated using bacterial cells, and the neutralizing effect of the antibody was determined by assessing cytokine release in infected HCT-8 cells. Conclusion: The monoclonal antibodies produced in this study are useful toolsfor vaccine production against ETEC and can be used to identify peptide antigencandidates.


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Vacinas contra Escherichia coli , Animais , Camundongos , Anticorpos Monoclonais , Mapeamento de Epitopos , Temperatura Alta , Proteínas de Escherichia coli/genética , Anticorpos Antibacterianos , Enterotoxinas , Diarreia/microbiologia , Antígenos , Epitopos , Peptídeos
11.
Life (Basel) ; 13(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37763339

RESUMO

Although secretory IgA (SIgA) is the dominant antibody in mucosal secretions, the capacity of the SIgA-antigen complex to prime the activation of dendritic cells (DCs) and T cells in the intestinal epithelium is not well understood. To this end, the SIgA-ETEC F5 immune complexes (ICs) were prepared via Ni-NTA pull-down. After injecting the ICs into the intestines of SPF BALB/c mice, most ICs were observed in the Peyer's patch (PP). We established a microfold (M) cell culture model in vitro for transport experiments and the inhibition test. To evaluate the priming effect of mucosal immunity, we employed the DC2.4 stimulation test, T lymphocyte proliferation assays, and cytokine detection assays. We found that the ICs were taken up via clathrin-dependent endocytosis through M cells. The high expression of costimulatory molecules CD86, CD80, and CD40 indicated that the ICs promoted the differentiation and maturation of DC2.4 cells. The stimulation index (SI) in the complex group was significantly higher than in the control group, suggesting that the ICs stimulated the proliferation of primed T cells. The secretion of some cytokines, namely TNF-α, IFN-γ, IL-2, IL-4, IL-5, and IL-6, in spleen cells from the immunized mice was upregulated. These results indicate that ETEC F5 delivery mediated by SIgA in PPs initiates mucosal immune responses.

12.
Pharmaceutics ; 14(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35213971

RESUMO

Enterotoxigenic Escherichia coli (ETEC) infections have been identified as a major cause of acute diarrhoea in children in developing countries, associated with substantial morbidity and mortality rates. Additionally, ETEC remains the most common cause of acute diarrhea of international travellers to endemic areas. The heat-labile toxin (LT) is a major virulence factor of ETEC, with a significant correlation between the presence of antibodies against LT and protection in infected patients. In the present work, we constructed a recombinant LTB unit (rLTB) and studied the capacity of this toxoid incorporated in microneedles (rLTB-MN) to induce a specific immune response in mice. MN were prepared from aqueous blends of the polymer Gantrez AN® [poly (methyl vinyl ether-co-maleic anhydride)], which is not cytotoxic and has been shown to possess immunoadjuvant properties. The mechanical and dissolution properties of rLTB-MNs were evaluated in an in vitro Parafilm M® model and in mice and pig skin ex vivo models. The needle insertion ranged between 378 µm and 504 µm in Parafilm layers, and MNs fully dissolved within 15 min of application inside porcine skin. Moreover, female and male BALB/c mice were immunized through ear skin with one single dose of 5 µg·rLTB in MNs, eliciting significant fecal anti-LT IgA antibodies, higher in female than in male mice. Moreover, we observed an enhanced production of IL-17A by spleen cells in the immunized female mice, indicating a mucosal non-inflammatory and neutralizing mediated response. Further experiments will now be required to validate the protective capacity of this new rLTB-MN formulation against this deadly non-vaccine-preventable disease.

13.
Trop Life Sci Res ; 33(3): 19-32, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36545054

RESUMO

F18 plays an important role in helping Enterotoxigenic Escherichia coli (ETEC) binds to specific receptors on small intestinal enterocytes, followed by secreting of toxins causing diarrhea in post-weaning piglets (post-weaning diarrhea, PWD). However, the F18 subunit vaccine is not sufficient to stimulate an immune response that can protect weaning pigs from F18-positive ETEC (F18+ETEC). Recently, a body of evidence shows that flagellin protein (FliC) helps to increase the immunity of fused proteins. Therefore, in this study, we combined FliC with F18 to enhance the immune response of F18. The f18 gene was obtained from F18+ETEC, then was fused with the fliC gene. The expression of recombinant FliC-F18 protein was induced by Isopropyl-beta-D-Thiogalactopyranoside (IPTG). The purified protein was tested in vivo in mouse models to evaluate the immunostimulation. Results showed that the fusion of FliC and F18 protein increased the production of anti-F18 antibodies. Besides, the anti-F18 antibody in the collected antiserum specifically identified F18+ETEC. This result provides proof-of-concept for the development of subunit vaccine to prevent PWD using F18 antigen.

14.
Pharmaceutics ; 14(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35057017

RESUMO

Enterotoxigenic Escherichia coli (ETEC) represents a major cause of morbidity and mortality in the human population. In particular, ETEC infections affect children under the age of five from low-middle income countries. However, there is no licensed vaccine against this pathogen. ETEC vaccine development is challenging since this pathotype expresses a wide variety of antigenically diverse virulence factors whose genes can be modified due to ETEC genetic plasticity. To overcome this challenge, we propose the use of outer membrane vesicles (OMVs) isolated from two ETEC clinical strains. In these OMVs, proteomic studies revealed the presence of important immunogens, such as heat-labile toxin, colonization factors, adhesins and mucinases. Furthermore, these vesicles proved to be immunogenic after subcutaneous administration in BALB/c mice. Since ETEC is an enteropathogen, it is necessary to induce both systemic and mucosal immunity. For this purpose, the vesicles, free or encapsulated in zein nanoparticles coated with a Gantrez®-mannosamine conjugate, were administered orally. Biodistribution studies showed that the encapsulation of OMVs delayed the transit through the gut. These results were confirmed by in vivo study, in which OMV encapsulation resulted in higher levels of specific antibodies IgG2a. Further studies are needed to evaluate the protection efficacy of this vaccine approach.

15.
Vaccines (Basel) ; 10(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36560571

RESUMO

In low- and middle-income countries, diarrhoeal diseases are the second most common cause of mortality in children, mainly caused by enterotoxin-producing bacteria, such as Shigella, Vibrio, Salmonella, and Escherichia coli. Cholera and traveller's diarrhoea are caused by Vibrio cholerae (O1 and O139 serogroups) and enterotoxigenic Escherichia coli (ETEC), respectively. The cholera toxin (CT) produced by V. cholerae and the heat-labile enterotoxin (LT) of ETEC are closely related by structure, function, and the immunological response to them. There is no exclusive vaccine for ETEC; however, cholera vaccines based on the CT-B component elicit a short-term cross-protection against ETEC infection. In this context, the cross-protective efficacy of MyCholTM, a prototype cold-chain-free, live-attenuated, oral cholera vaccine against V. cholerae O139 was evaluated in BALB/c mice. The 100% lethal dose (LD100) of 109 CFU/mL of the ETEC H10407 strain was used for the challenge studies. The mice immunised with MyChol™ survived the challenge by producing anti-CT antibodies, which cross-neutralised the LT toxin with no body weight loss and no sign of diarrhoea. Compared to unimmunised mice, the immunised mice elicited the neutralising antitoxin that markedly decreased ETEC colonisation and fluid accumulation caused by ETEC H10407 in the intestines. The immunised mice recorded higher antibody titres, including anti-CT IgG, anti-LT IgG, anti-CT-B IgG, and anti-LTB IgG. Only a two-fold rise in anti-CT/CT-B/LT/LT-B IgA was recorded in serum samples from immunised mice. No bactericidal antibodies against ETEC H10407 were detected. This investigation demonstrates the safety, immunogenicity, and cross-protective efficacy of MyCholTM against the ETEC H10407 challenge in BALB/c mice.

16.
Vaccines (Basel) ; 10(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35214698

RESUMO

Heat-stable enterotoxin (ST) producing enterotoxigenic Escherichia coli (ETEC) strains are among the top four enteropathogens associated with moderate-to-severe diarrhea in children under five years in low-to-middle income countries, thus making ST a target for an ETEC vaccine. However, ST must be mutated to abolish its enterotoxicity and to prevent a potential immunological cross-reaction due to its structural resemblance to the human peptides uroguanylin and guanylin. To reduce the risk of eliciting cross-reacting antibodies with our lead STh-A14T toxoid, L9 was chosen as an additional mutational target. A double mutant vaccine candidate immunogen, STh-L9A/A14T, was constructed by conjugation to the synthetic virus-like mi3 nanoparticle using the SpyTag/SpyCatcher technology. This immunogen elicited STh neutralizing antibodies in mice, but with less consistency than STh-A14T peptide control immunogens. Moreover, individual sera from mice immunized with both single and double mutant variants displayed varying levels of unwanted cross-reacting antibodies. The lowest levels of cross-reacting antibodies were observed with STh-L9K/A14T control immunogens, suggesting that it is indeed possible to reduce the risk of eliciting cross-reacting antibodies by mutation. However, mutant-specific antibodies were observed for most double mutant immunogens, demonstrating the delicate balancing act between disrupting cross-reacting epitopes, keeping protective ones, and avoiding the formation of neoepitopes.

17.
Afr Health Sci ; 22(1): 581-588, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36032447

RESUMO

Background: Diarrhoeagenic Escherichia coli (DEC) is a leading cause of childhood diarrhoea. This study estimated the prevalence of DEC and DEC pathotypes among children with acute diarrhoea in Southern Uganda. Methods: A cross-sectional study was conducted on 267 children less than 5 years with acute diarrhoea, admitted to Rakai General Hospital in Southern Uganda. Faecal samples were collected from the children and processed for isolation of E. coli. The presence of DEC and the distribution of DEC pathotypes were determined by polymerase chain reaction. Results: A total of 102 (38.2%, 102/267) children had DEC of various pathotypes - enteroaggregative E. coli (EAEC) (14.2%); enteropathogenic E. coli (EPEC) (6.7%); enterotoxigenic E. coli (ETEC) (6%); enteroinvasive E. coli (EIEC) (7.5%); enterohemorrhagic E. coli (EHEC) (3%); and cell-detaching E. coli (CDEC) (0.75%). The difference in the overall prevalence of DEC was not significant regarding HIV but individually, EAEC and CDEC were associated with HIV-positive status while ETEC was associated with HIV-negative status. Conclusions: DEC is prevalent in children with acute diarrhoea in Southern Uganda and its identification in children should be considered among strategies for combatting childhood diarrhoea in Africa.


Assuntos
Infecções por Escherichia coli , Infecções por HIV , Criança , Estudos Transversais , Diarreia , Escherichia coli , Fezes , Hospitais , Humanos , Lactente , Uganda
18.
AMB Express ; 11(1): 44, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33738650

RESUMO

Enterotoxigenic Escherichia coli (ETEC) F4ac is a major constraint to the development of the pig industry, which is causing newborn and post-weaning piglets diarrhea. Previous studies proved that FaeG is the major fimbrial subunit of F4ac E. coli and efficient for bacterial adherence and receptor recognition. Here we show that the faeG deletion attenuates both the clinical symptoms of F4ac infection and the F4ac-induced intestinal mucosal damage in piglets. Antibody microarray analysis and the detection of mRNA expression using porcine neonatal jejunal IPEC-J2 cells also determined that the absence of FaeG subunit alleviated the F4ac promoted apoptosis in the intestinal epithelial cells. Thus, targeted depletion of FaeG is still beneficial for the prevention or treatment of F4ac infection.

19.
Vaccine ; 39(31): 4266-4277, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33965254

RESUMO

Diarrhoeal disease attributable to enterotoxigenic Escherichia coli (ETEC) causes substantial morbidity and mortality predominantly in paediatric populations in low- and middle-income countries. In addition to acute illness, there is an increasing appreciation of the long-term consequences of enteric infections, including ETEC, on childhood growth and development. Provision of potable water and sanitation and appropriate clinical care for acute illness are critical to reduce the ETEC burden. However, these interventions are not always practical and may not achieve equitable and sustainable coverage. Vaccination may be the most cost-effective and equitable means of primary prevention; however, additional data are needed to accelerate the investment and guide the decision-making process for ETEC vaccines. First, to understand and quantify the ETEC disease burden, additional data are needed on the association between ETEC infection and physical and cognitive stunting as well as delayed educational attainment. Furthermore, the role of inappropriate or inadequate antibiotic treatment of ETEC-attributable diarrhoea may contribute to the development of antimicrobial resistance (AMR) and needs further elucidation. An ETEC vaccine that mitigates acute diarrhoeal illness and minimizes the longer-term disease manifestations could have significant public health impact and be a cost-effective countermeasure. Herein we review the ETEC vaccine pipeline, led by candidates compatible with the general parameters of the Preferred Product Characteristics (PPC) recently developed by the World Health Organization. Additionally, we have developed an ETEC Vaccine Development Strategy to provide a framework to underpin priority activities for researchers, funders and vaccine manufacturers, with the goal of addressing globally unmet data needs in the areas of research, product development, and policy, as well as commercialization and delivery. The strategy also aims to guide prioritization and co-ordination of the priority activities needed to minimize the timeline to licensure and use of ETEC vaccines, especially in in low- and middle-income countries, where they are most urgently needed.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Vacinas contra Escherichia coli , Criança , Diarreia/epidemiologia , Diarreia/prevenção & controle , Infecções por Escherichia coli/prevenção & controle , Humanos , Organização Mundial da Saúde
20.
Front Microbiol ; 12: 731050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557175

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is the primary aetiologic agent of traveller's diarrhoea and a significant cause of diarrhoeal disease and death in developing countries. ETEC O169:H41 strains are known to cause both traveller's diarrhoea and foodborne outbreaks in developed countries and are cause for concern. Here, whole-genome sequencing (WGS) was used to assemble 46 O169:H41 (ST182) E. coli draft genomes derived from two airplane waste samples sourced from a German international airport. The ST182 genomes were compared with all 84 publicly available, geographically diverse ST182 genomes to construct a core genome-based phylogenetic tree. ST182 isolates were all phylogroup E, the majority serotype O169:H41 (n = 121, 93%) and formed five major clades. The airplane waste isolates differed by an average of 15 core SNPs (range 0-45) but their accessory genome content was diverse. While uncommon in other ST182 genomes, all airplane-derived ST182 isolates carried: (i) extended-spectrum ß-lactamase gene bla CTX-M- 15 notably lacking the typical adjacent ISEcp1; (ii) qnrS1 and the S83L mutation in gyrA, both conferring resistance to fluoroquinolones; and (iii) a class 1 integron structure (IS26-intI1 Δ 648-dfrA17-aadA5-qacEΔ1-sul1-ORF-srpC-padR-IS6100-mphR-mrx-mphA-IS26) identified previously in major extraintestinal pathogenic E. coli STs but not in ETEC. ST182 isolates carried ETEC-specific virulence factors STp + CS6. Adhesin/invasin tia was identified in 89% of aircraft ST182 isolates (vs 23%) and was located on a putative genomic island within a hotspot region for various insertions including PAI I536 and plasmid-associated transposons. The most common plasmid replicons in this collection were IncFII (100%; F2:A-:B-) and IncB/O/K/Z (89%). Our data suggest that potentially through travel, E. coli ST182 are evolving a multidrug-resistant profile through the acquisition of class 1 integrons and different plasmids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA