Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64.221
Filtrar
Mais filtros

Coleção CLAP
Intervalo de ano de publicação
1.
Cell ; 184(6): 1530-1544, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33675692

RESUMO

The prevalence of type 2 diabetes and obesity has risen dramatically for decades and is expected to rise further, secondary to the growing aging, sedentary population. The strain on global health care is projected to be colossal. This review explores the latest work and emerging ideas related to genetic and environmental factors influencing metabolism. Translational research and clinical applications, including the impact of the COVID-19 pandemic, are highlighted. Looking forward, strategies to personalize all aspects of prevention, management and care are necessary to improve health outcomes and reduce the impact of these metabolic diseases.


Assuntos
COVID-19/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/terapia , Obesidade/epidemiologia , Obesidade/terapia , Pandemias , Medicina de Precisão/métodos , SARS-CoV-2 , COVID-19/virologia , Ritmo Circadiano , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigênese Genética , Predisposição Genética para Doença , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Obesidade/genética , Obesidade/metabolismo , Prevalência , Fatores de Risco , Termotolerância
2.
Cell ; 183(1): 62-75.e17, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946811

RESUMO

In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise.


Assuntos
Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio , Inflamação/metabolismo , Camundongos , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Contração Muscular , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais , Succinatos/metabolismo , Simportadores/metabolismo
3.
Cell ; 181(5): 1112-1130.e16, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32470399

RESUMO

Acute physical activity leads to several changes in metabolic, cardiovascular, and immune pathways. Although studies have examined selected changes in these pathways, the system-wide molecular response to an acute bout of exercise has not been fully characterized. We performed longitudinal multi-omic profiling of plasma and peripheral blood mononuclear cells including metabolome, lipidome, immunome, proteome, and transcriptome from 36 well-characterized volunteers, before and after a controlled bout of symptom-limited exercise. Time-series analysis revealed thousands of molecular changes and an orchestrated choreography of biological processes involving energy metabolism, oxidative stress, inflammation, tissue repair, and growth factor response, as well as regulatory pathways. Most of these processes were dampened and some were reversed in insulin-resistant participants. Finally, we discovered biological pathways involved in cardiopulmonary exercise response and developed prediction models revealing potential resting blood-based biomarkers of peak oxygen consumption.


Assuntos
Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Masculino , Metaboloma , Pessoa de Meia-Idade , Oxigênio/metabolismo , Consumo de Oxigênio , Proteoma , Transcriptoma
4.
Cell ; 173(1): 74-89.e20, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29570999

RESUMO

A decline in capillary density and blood flow with age is a major cause of mortality and morbidity. Understanding why this occurs is key to future gains in human health. NAD precursors reverse aspects of aging, in part, by activating sirtuin deacylases (SIRT1-SIRT7) that mediate the benefits of exercise and dietary restriction (DR). We show that SIRT1 in endothelial cells is a key mediator of pro-angiogenic signals secreted from myocytes. Treatment of mice with the NAD+ booster nicotinamide mononucleotide (NMN) improves blood flow and increases endurance in elderly mice by promoting SIRT1-dependent increases in capillary density, an effect augmented by exercise or increasing the levels of hydrogen sulfide (H2S), a DR mimetic and regulator of endothelial NAD+ levels. These findings have implications for improving blood flow to organs and tissues, increasing human performance, and reestablishing a virtuous cycle of mobility in the elderly.


Assuntos
Envelhecimento , Sulfeto de Hidrogênio/metabolismo , NAD/metabolismo , Animais , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Camundongos , Camundongos Knockout , Microvasos/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Neovascularização Fisiológica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Mol Cell ; 83(11): 1903-1920.e12, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267907

RESUMO

Exercise benefits the human body in many ways. Irisin is secreted by muscle, increased with exercise, and conveys physiological benefits, including improved cognition and resistance to neurodegeneration. Irisin acts via αV integrins; however, a mechanistic understanding of how small polypeptides like irisin can signal through integrins is poorly understood. Using mass spectrometry and cryo-EM, we demonstrate that the extracellular heat shock protein 90α (eHsp90α) is secreted by muscle with exercise and activates integrin αVß5. This allows for high-affinity irisin binding and signaling through an Hsp90α/αV/ß5 complex. By including hydrogen/deuterium exchange data, we generate and experimentally validate a 2.98 Å RMSD irisin/αVß5 complex docking model. Irisin binds very tightly to an alternative interface on αVß5 distinct from that used by known ligands. These data elucidate a non-canonical mechanism by which a small polypeptide hormone like irisin can function through an integrin receptor.


Assuntos
Comunicação Celular , Fibronectinas , Humanos , Fibronectinas/metabolismo , Transdução de Sinais
6.
Physiol Rev ; 103(2): 1137-1191, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239451

RESUMO

"Frailty" is a term used to refer to a state characterized by enhanced vulnerability to, and impaired recovery from, stressors compared with a nonfrail state, which is increasingly viewed as a loss of resilience. With increasing life expectancy and the associated rise in years spent with physical frailty, there is a need to understand the clinical and physiological features of frailty and the factors driving it. We describe the clinical definitions of age-related frailty and their limitations in allowing us to understand the pathogenesis of this prevalent condition. Given that age-related frailty manifests in the form of functional declines such as poor balance, falls, and immobility, as an alternative we view frailty from a physiological viewpoint and describe what is known of the organ-based components of frailty, including adiposity, the brain, and neuromuscular, skeletal muscle, immune, and cardiovascular systems, as individual systems and as components in multisystem dysregulation. By doing so we aim to highlight current understanding of the physiological phenotype of frailty and reveal key knowledge gaps and potential mechanistic drivers of the trajectory to frailty. We also review the studies in humans that have intervened with exercise to reduce frailty. We conclude that more longitudinal and interventional clinical studies are required in older adults. Such observational studies should interrogate the progression from a nonfrail to a frail state, assessing individual elements of frailty to produce a deep physiological phenotype of the syndrome. The findings will identify mechanistic drivers of frailty and allow targeted interventions to diminish frailty progression.


Assuntos
Idoso Fragilizado , Fragilidade , Humanos , Idoso , Exercício Físico , Obesidade , Adiposidade
7.
Physiol Rev ; 103(3): 1693-1787, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603158

RESUMO

Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."


Assuntos
Distinções e Prêmios , Treinamento Resistido , Humanos , Atletas , Exercício Físico/fisiologia , Adaptação Fisiológica , Músculo Esquelético , Resistência Física
8.
CA Cancer J Clin ; 73(4): 425-442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825928

RESUMO

Advances in energy balance and cancer research to date have largely occurred in siloed work in rodents or patients. However, substantial benefit can be derived from parallel studies in which animal models inform the design of clinical and population studies or in which clinical observations become the basis for animal studies. The conference Translating Energy Balance from Bench to Communities: Application of Parallel Animal-Human Studies in Cancer, held in July 2021, convened investigators from basic, translational/clinical, and population science research to share knowledge, examples of successful parallel studies, and strong research to move the field of energy balance and cancer toward practice changes. This review summarizes key topics discussed to advance research on the role of energy balance, including physical activity, body composition, and dietary intake, on cancer development, cancer outcomes, and healthy survivorship.


Assuntos
Neoplasias , Animais , Humanos , Exercício Físico
9.
Physiol Rev ; 102(4): 1907-1989, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35679471

RESUMO

The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.


Assuntos
Transtornos de Estresse por Calor , Sudorese , Regulação da Temperatura Corporal/fisiologia , Resposta ao Choque Térmico , Humanos , Temperatura
10.
Physiol Rev ; 101(4): 1873-1979, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33829868

RESUMO

A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Transtornos de Estresse por Calor/fisiopatologia , Resposta ao Choque Térmico , Água/metabolismo , Aclimatação/fisiologia , Animais , Temperatura Alta , Humanos , Desempenho Psicomotor , Sudorese , Perda Insensível de Água
11.
Trends Biochem Sci ; 48(11): 927-936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37709636

RESUMO

The ability of skeletal muscle to adapt to repeated contractile stimuli is one of the most intriguing aspects of physiology. The molecular bases underpinning these adaptations involve increased protein activity and/or expression, mediated by an array of pre- and post-transcriptional processes, as well as translational and post-translational control. A longstanding dogma assumes a direct relationship between exercise-induced increases in mRNA levels and subsequent changes in the abundance of the proteins they encode. Drawing on the results of recent studies, we dissect and question the common assumption of a direct relationship between changes in the skeletal muscle transcriptome and proteome induced by repeated muscle contractions (e.g., exercise).


Assuntos
Exercício Físico , Músculo Esquelético , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Transcriptoma , Contração Muscular/genética , Proteoma
12.
Trends Genet ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39003156

RESUMO

The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to comprehensively map molecular alterations in response to acute exercise and chronic training. In one of a recent series of papers from MoTrPAC, Nair et al. provide the first multi-epigenomic and transcriptomic integration across eight tissues in both sexes following adaptation to endurance exercise training (EET).

13.
EMBO J ; 41(11): e110409, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35451150

RESUMO

Astrocytes are highly abundant in the mammalian brain, and their functions are of vital importance for all aspects of development, adaption, and aging of the central nervous system (CNS). Mounting evidence indicates the important contributions of astrocytes to a wide range of neuropathies. Still, our understanding of astrocyte development significantly lags behind that of other CNS cells. We here combine immunohistochemical approaches with genetic fate-mapping, behavioural paradigms, single-cell transcriptomics, and in vivo two-photon imaging, to comprehensively assess the generation and the proliferation of astrocytes in the dentate gyrus (DG) across the life span of a mouse. Astrogenesis in the DG is initiated by radial glia-like neural stem cells giving rise to locally dividing astrocytes that enlarge the astrocyte compartment in an outside-in-pattern. Also in the adult DG, the vast majority of astrogenesis is mediated through the proliferation of local astrocytes. Interestingly, locally dividing astrocytes were able to adapt their proliferation to environmental and behavioral stimuli revealing an unexpected plasticity. Our study establishes astrocytes as enduring plastic elements in DG circuits, implicating a vital contribution of astrocyte dynamics to hippocampal plasticity.


Assuntos
Células-Tronco Neurais , Neurogênese , Animais , Astrócitos/fisiologia , Giro Denteado , Hipocampo/fisiologia , Mamíferos , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia
14.
Circ Res ; 135(3): 416-433, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38946541

RESUMO

BACKGROUND: Exercise intolerance is an independent predictor of poor prognosis in diabetes. The underlying mechanism of the association between hyperglycemia and exercise intolerance remains undefined. We recently demonstrated that the interaction between ARRDC4 (arrestin domain-containing protein 4) and GLUT1 (glucose transporter 1) regulates cardiac metabolism. METHODS: To determine whether this mechanism broadly impacts diabetic complications, we investigated the role of ARRDC4 in the pathogenesis of diabetic cardiac/skeletal myopathy using cellular and animal models. RESULTS: High glucose promoted translocation of MondoA into the nucleus, which upregulated Arrdc4 transcriptional expression, increased lysosomal GLUT1 trafficking, and blocked glucose transport in cardiomyocytes, forming a feedback mechanism. This role of ARRDC4 was confirmed in human muscular cells from type 2 diabetic patients. Prolonged hyperglycemia upregulated myocardial Arrdc4 expression in multiple types of mouse models of diabetes. We analyzed hyperglycemia-induced cardiac and skeletal muscle abnormalities in insulin-deficient mice. Hyperglycemia increased advanced glycation end-products and elicited oxidative and endoplasmic reticulum stress leading to apoptosis in the heart and peripheral muscle. Deletion of Arrdc4 augmented tissue glucose transport and mitochondrial respiration, protecting the heart and muscle from tissue damage. Stress hemodynamic analysis and treadmill exhaustion test uncovered that Arrdc4-knockout mice had greater cardiac inotropic/chronotropic reserve with higher exercise endurance than wild-type animals under diabetes. While multiple organs were involved in the mechanism, cardiac-specific overexpression using an adenoassociated virus suggests that high levels of myocardial ARRDC4 have the potential to contribute to exercise intolerance by interfering with cardiac metabolism through its interaction with GLUT1 in diabetes. Importantly, the ARRDC4 mutation mouse line exhibited greater exercise tolerance, showing the potential therapeutic impact on diabetic cardiomyopathy by disrupting the interaction between ARRDC4 and GLUT1. CONCLUSIONS: ARRDC4 regulates hyperglycemia-induced toxicities toward cardiac and skeletal muscle, revealing a new molecular framework that connects hyperglycemia to cardiac/skeletal myopathy to exercise intolerance.


Assuntos
Tolerância ao Exercício , Transportador de Glucose Tipo 1 , Camundongos Knockout , Animais , Camundongos , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Masculino , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Músculo Esquelético/metabolismo , Hiperglicemia/metabolismo , Hiperglicemia/genética , Células Cultivadas
15.
Circ Res ; 134(5): 550-568, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38323433

RESUMO

BACKGROUND: Doxorubicin is an effective chemotherapeutic agent, but its use is limited by acute and chronic cardiotoxicity. Exercise training has been shown to protect against doxorubicin-induced cardiotoxicity, but the involvement of immune cells remains unclear. This study aimed to investigate the role of exercise-derived B cells in protecting against doxorubicin-induced cardiotoxicity and to further determine whether B cell activation and antibody secretion play a role in this protection. METHODS: Mice that were administered with doxorubicin (5 mg/kg per week, 20 mg/kg cumulative dose) received treadmill running exercise. The adoptive transfer of exercise-derived splenic B cells to µMT-/- (B cell-deficient) mice was performed to elucidate the mechanism of B cell regulation that mediated the effect of exercise. RESULTS: Doxorubicin-administered mice that had undergone exercise training showed improved cardiac function, and low levels of cardiac apoptosis, atrophy, and fibrosis, and had reduced cardiac antibody deposition and proinflammatory responses. Similarly, B cell pharmacological and genetic depletion alleviated doxorubicin-induced cardiotoxicity, which phenocopied the protection of exercise. In vitro performed coculture experiments confirmed that exercise-derived B cells reduced cardiomyocyte apoptosis and fibroblast activation compared with control B cells. Importantly, the protective effect of exercise on B cells was confirmed by the adoptive transfer of splenic B cells from exercised donor mice to µMT-/- recipient mice. However, blockage of Fc gamma receptor IIB function using B cell transplants from exercised Fc gamma receptor IIB-/- mice abolished the protection of exercise-derived B cells against doxorubicin-induced cardiotoxicity. Mechanistically, we found that Fc gamma receptor IIB, an important B cell inhibitory receptor, responded to exercise and increased B cell activation threshold, which participated in exercise-induced protection against doxorubicin-induced cardiotoxicity. CONCLUSIONS: Our results demonstrate that exercise training protects against doxorubicin-induced cardiotoxicity by upregulating Fc gamma receptor IIB expression in B cells, which plays an important anti-inflammatory role and participates in the protective effect of exercise against doxorubicin-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Camundongos , Animais , Cardiotoxicidade/metabolismo , Miócitos Cardíacos/metabolismo , Doxorrubicina/toxicidade , Apoptose
16.
Circ Res ; 134(11): 1607-1635, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781293

RESUMO

Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.


Assuntos
Doenças Cardiovasculares , Infecções por HIV , Humanos , Infecções por HIV/epidemiologia , Infecções por HIV/complicações , Doenças Cardiovasculares/epidemiologia , Envelhecimento , Exercício Físico , Terapia por Exercício , Fatores de Risco
17.
CA Cancer J Clin ; 69(6): 468-484, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31617590

RESUMO

Multiple organizations around the world have issued evidence-based exercise guidance for patients with cancer and cancer survivors. Recently, the American College of Sports Medicine has updated its exercise guidance for cancer prevention as well as for the prevention and treatment of a variety of cancer health-related outcomes (eg, fatigue, anxiety, depression, function, and quality of life). Despite these guidelines, the majority of people living with and beyond cancer are not regularly physically active. Among the reasons for this is a lack of clarity on the part of those who work in oncology clinical settings of their role in assessing, advising, and referring patients to exercise. The authors propose using the American College of Sports Medicine's Exercise Is Medicine initiative to address this practice gap. The simple proposal is for clinicians to assess, advise, and refer patients to either home-based or community-based exercise or for further evaluation and intervention in outpatient rehabilitation. To do this will require care coordination with appropriate professionals as well as change in the behaviors of clinicians, patients, and those who deliver the rehabilitation and exercise programming. Behavior change is one of many challenges to enacting the proposed practice changes. Other implementation challenges include capacity for triage and referral, the need for a program registry, costs and compensation, and workforce development. In conclusion, there is a call to action for key stakeholders to create the infrastructure and cultural adaptations needed so that all people living with and beyond cancer can be as active as is possible for them.


Assuntos
Terapia por Exercício/métodos , Oncologia/métodos , Neoplasias/prevenção & controle , Neoplasias/reabilitação , Serviços de Saúde Comunitária/métodos , Serviços de Saúde Comunitária/normas , Prestação Integrada de Cuidados de Saúde/métodos , Prestação Integrada de Cuidados de Saúde/normas , Terapia por Exercício/normas , Humanos , Oncologia/normas , Neoplasias/complicações , Neoplasias/psicologia , Guias de Prática Clínica como Assunto
18.
Mol Cell Proteomics ; 23(4): 100748, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493954

RESUMO

The molecular mechanisms underlying muscular adaptations to concentric (CON) and eccentric (ECC) exercise training have been extensively explored. However, most previous studies have focused on specifically selected proteins, thus, unable to provide a comprehensive protein profile and potentially missing the crucial mechanisms underlying muscular adaptation to exercise training. We herein aimed to investigate proteomic profiles of human skeletal muscle in response to short-term resistance training. Twenty young males were randomly and evenly assigned to two groups to complete a 4-week either ECC or CON training program. Measurements of body composition and physiological function of the quadriceps femoris were conducted both before and after the training. Muscle biopsies from the vastus lateralis of randomly selected participants (five in ECC and four in CON) of both before and after the training were analyzed using the liquid-chromatography tandem mass spectrometry in combination with bioinformatics analysis. Neither group presented a significant difference in body composition or leg muscle mass; however, muscle peak torque, total work, and maximal voluntary contraction were significantly increased after the training in both groups. Proteomics analysis revealed 122 differentially abundant proteins (DAPs; p value < 0.05 & fold change >1.5 or <0.67) in ECC, of which the increased DAPs were mainly related to skeletal muscle contraction and cytoskeleton and enriched specifically in the pentose phosphate pathway, extracellular matrix-receptor interaction, and PI3K-Akt signaling pathway, whereas the decreased DAPs were associated with the mitochondrial respiratory chain. One hundred one DAPs were identified in CON, of which the increased DAPs were primarily involved in translation/protein synthesis and the mitochondria respiratory, whereas the decreased DAPs were related to metabolic processes, cytoskeleton, and de-ubiquitination. In conclusion, the 4-week CON and ECC training resulted in distinctly different proteomic profiles, especially in proteins related to muscular structure and metabolism.


Assuntos
Adaptação Fisiológica , Exercício Físico , Músculo Esquelético , Proteômica , Treinamento Resistido , Adulto , Humanos , Masculino , Adulto Jovem , Composição Corporal , Exercício Físico/fisiologia , Contração Muscular , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteômica/métodos
19.
Proc Natl Acad Sci U S A ; 120(39): e2220556120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722048

RESUMO

Mammalian FNDC5 encodes a protein precursor of Irisin, which is important for exercise-dependent regulation of whole-body metabolism. In a genetic screen in Drosophila, we identified Iditarod (Idit), which shows substantial protein homology to mouse and human FNDC5, as a regulator of autophagy acting downstream of Atg1/Atg13. Physiologically, Idit-deficient flies showed reduced exercise performance and defective cold resistance, which were rescued by exogenous expression of Idit. Exercise training increased endurance in wild-type flies, but not in Idit-deficient flies. Conversely, Idit is induced upon exercise training, and transgenic expression of Idit in wild-type flies increased endurance to the level of exercise trained flies. Finally, Idit deficiency prevented both exercise-induced increase in cardiac Atg8 and exercise-induced cardiac stress resistance, suggesting that cardiac autophagy may be an additional mechanism by which Idit is involved in the adaptive response to exercise. Our work suggests an ancient role of an Iditarod/Irisin/FNDC5 family of proteins in autophagy, exercise physiology, and cold adaptation, conserved throughout metazoan species.


Assuntos
Proteínas de Drosophila , Fibronectinas , Animais , Humanos , Camundongos , Animais Geneticamente Modificados , Autofagia , Drosophila , Fibronectinas/metabolismo , Mamíferos , Fatores de Transcrição , Proteínas de Drosophila/metabolismo
20.
Proc Natl Acad Sci U S A ; 120(8): e2218510120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780527

RESUMO

The circadian clock is a cell-autonomous transcription-translation feedback mechanism that anticipates and adapts physiology and behavior to different phases of the day. A variety of factors including hormones, temperature, food-intake, and exercise can act on tissue-specific peripheral clocks to alter the expression of genes that influence metabolism, all in a time-of-day dependent manner. The aim of this study was to elucidate the effects of exercise timing on adipose tissue metabolism. We performed RNA sequencing on inguinal adipose tissue of mice immediately following maximal exercise or sham treatment at the early rest or early active phase. Only during the early active phase did exercise elicit an immediate increase in serum nonesterified fatty acids. Furthermore, early active phase exercise increased expression of markers of thermogenesis and mitochondrial proliferation in inguinal adipose tissue. In vitro, synchronized 3T3-L1 adipocytes showed a timing-dependent difference in Adrb2 expression, as well as a greater lipolytic activity. Thus, the response of adipose tissue to exercise is time-of-day sensitive and may be partly driven by the circadian clock. To determine the influence of feeding state on the time-of-day response to exercise, we replicated the experiment in 10-h-fasted early rest phase mice to mimic the early active phase metabolic status. A 10-h fast led to a similar lipolytic response as observed after active phase exercise but did not replicate the transcriptomic response, suggesting that the observed changes in gene expression are not driven by feeding status. In conclusion, acute exercise elicits timing-specific effects on adipose tissue to maintain metabolic homeostasis.


Assuntos
Tecido Adiposo , Relógios Circadianos , Condicionamento Físico Animal , Animais , Camundongos , Adipócitos , Tecido Adiposo/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Termogênese , Condicionamento Físico Animal/fisiologia , Células 3T3-L1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA