Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35948005

RESUMO

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Assuntos
Mioquimia , Proteínas do Tecido Nervoso , Animais , Autoanticorpos , Axônios , Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mamíferos/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Fenótipo , Genética Reversa
2.
BMC Genomics ; 25(1): 292, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504154

RESUMO

BACKGROUND: Dystrophinopathies are the most common X-linked inherited muscle diseases, and the disease-causing gene is DMD. Exonic duplications are a common type of pathogenic variants in the DMD gene, however, 5' end exonic duplications containing exon 1 are less common. When assessing the pathogenicity of exonic duplications in the DMD gene, consideration must be given to their impact on the reading frame. Traditional molecular methods, such as multiplex ligation-dependent probe amplification (MLPA) and next-generation sequencing (NGS), are commonly used in clinics. However, they cannot discriminate the precise physical locations of breakpoints and structural features of genomic rearrangement. Long-read sequencing (LRS) can effectively overcome this limitation. RESULTS: We used LRS technology to perform whole genome sequencing on three families and analyze the structural variations of the DMD gene, which involves the duplications of exon 1 and/or exon 2. Two distinct variant types encompassing exon 1 in the DMD Dp427m isoform and/or Dp427c isoform are identified, which have been infrequently reported previously. In pedigree 1, the male individuals harboring duplication variant of consecutive exons 1-2 in the DMD canonical transcript (Dp427m) and exon 1 in the Dp427c transcript are normal, indicating the variant is likely benign. In pedigree 3, the patient carries complex SVs involving exon 1 of the DMD Dp427c transcript showing an obvious phenotype. The locations of the breakpoints and the characteristics of structural variants (SVs) are identified by LRS, enabling the classification of the variants' pathogenicity. CONCLUSIONS: Our research sheds light on the complexity of DMD variants encompassing Dp427c/Dp427m promoter regions and emphasizes the importance of cautious interpretation when assessing the pathogenicity of DMD 5' end exonic duplications, particularly in carrier screening scenarios without an affected proband.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Masculino , Distrofina/genética , Éxons , Genômica , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/diagnóstico , Isoformas de Proteínas/genética
3.
Clin Genet ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103988

RESUMO

Whole-exome sequencing (WES) is frequently utilized in diagnosing reproductive genetic disorders to identify various genetic variants. Canonical ±1,2 splice sites are typically considered highly pathogenic, while variants at the 5' or 3' ends of exon boundaries are often considered synonymous or missense variants, with their potential impact on abnormal gene splicing frequently overlooked. In this study, we identified five variants located at the last two bases of the exons and two canonical splicing variants in five distinct families affected by reproductive genetic disorders through WES. Minigene analysis, RT-PCR and Quantitative Real-time PCR (RT-qPCR) confirmed that all seven variants induced aberrant splicing, with six variants altering gene transcriptional expression levels. These findings underscore the crucial role of splice variants, particularly non-canonical splice sites variants, in reproductive genetic disorders, with all identified variants classified as pathogenic.

4.
Clin Genet ; 105(3): 323-328, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38009794

RESUMO

Cystinosis is a severe, monogenic systemic disease caused by variants in CTNS gene. Currently, there is growing evidence that exonic variants in many diseases can affect pre-mRNA splicing. The impact of CTNS gene exonic variants on splicing regulation may be underestimated due to the lack of routine studies at the RNA level. Here, we analyzed 59 exonic variants in the CTNS gene using bioinformatics tools and identified candidate variants that may induce splicing alterations by minigene assays. We identified six exonic variants that induce splicing alterations by disrupting the ratio of exonic splicing enhancers/exonic splicing silencers (ESEs/ESSs) or by interfering with the recognition of classical splice sites, or both. Our results help in the correct molecular characterization of variants in cystinosis and inform emerging therapies. Furthermore, our work suggests that the combination of in silico and in vitro assays facilitates to assess the effects of DNA variants driving rare genetic diseases on splicing regulation and will enhance the clinical utility of variant functional annotation.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Cistinose , Humanos , Cistinose/genética , Splicing de RNA/genética , Éxons/genética , Sequências Reguladoras de Ácido Nucleico , RNA , Processamento Alternativo , Sítios de Splice de RNA , Sistemas de Transporte de Aminoácidos Neutros/genética
5.
Clin Genet ; 106(3): 336-341, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38747114

RESUMO

Type IV collagen is an integral component of basement membranes. Mutations in COL4A1, one of the key genes encoding Type IV collagen, can result in a variety of diseases. It is clear that a significant proportion of mutations that affect splicing can cause disease directly or contribute to the susceptibility or severity of disease. Here, we analyzed exonic mutations and intronic mutations described in the COL4A1 gene using bioinformatics programs and identified candidate mutations that may alter the normal splicing pattern through a minigene system. We identified seven variants that induce splicing alterations by disrupting normal splice sites, creating new ones, or altering splice regulatory elements. These mutations are predicted to impact protein function. Our results help in the correct molecular characterization of variants in COL4A1 and may help develop more personalized treatment options.


Assuntos
Colágeno Tipo IV , Mutação , Splicing de RNA , Humanos , Colágeno Tipo IV/genética , Splicing de RNA/genética , Éxons/genética , Íntrons/genética , Sítios de Splice de RNA/genética , Biologia Computacional/métodos
6.
Inflamm Res ; 73(7): 1123-1135, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38698180

RESUMO

OBJECTIVE: Immunotherapy targeting programmed cell death 1 (PDCD1 or PD-1) and its ligands has shown remarkable promise and the regulation mechanism of PD-1 expression has received arising attention in recent years. PDCD1 exon 3 encodes the transmembrane domain and the deletion of exon 3 produces a soluble protein isoform of PD-1 (sPD-1), which can enhance immune response by competing with full-length PD-1 protein (flPD-1 or surface PD-1) on T cell surface. However, the mechanism of PDCD1 exon 3 skipping is unclear. METHODS: The online SpliceAid program and minigene expression system were used to analyze potential splicing factors involved in the splicing event of PDCD1 exon 3. The potential binding motifs of heterogeneous nuclear ribonucleoprotein K (HNRNPK) on exon 3 predicted by SpliceAid were mutated by site-directed mutagenesis technology, which were further verified by pulldown assay. Antisense oligonucleotides (ASOs) targeting the exonic splicing silencer (ESS) on PDCD1 exon 3 were synthesized and screened to suppress the skipping of exon 3. The alternative splicing of PDCD1 exon 3 was analyzed by semiquantitative reverse transcription PCR. Western blot and flow cytometry were performed to detect the surface PD-1 expression in T cells. RESULTS: HNRNPK was screened as a key splicing factor that promoted PDCD1 exon 3 skipping, causing a decrease in flPD-1 expression on T cell membrane and an increase in sPD-1 expression. Mechanically, a key ESS has been identified on exon 3 and can be bound by HNRNPK protein to promote exon 3 skipping. Blocking the interaction between ESS and HNRNPK with an ASO significantly reduced exon 3 skipping. Importantly, HNRNPK can promote exon 3 skipping of mouse Pdcd1 gene as well. CONCLUSIONS: Our study revealed a novel evolutionarily conserved regulatory mechanism of PD-1 expression. The splicing factor HNRNPK markedly promoted PDCD1 exon 3 skipping by binding to the ESS on PDCD1 exon 3, resulting in decreased expression of flPD-1 and increased expression of sPD-1 in T cells.


Assuntos
Éxons , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Receptor de Morte Celular Programada 1 , Linfócitos T , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Animais , Humanos , Linfócitos T/metabolismo , Linfócitos T/imunologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Processamento Alternativo , Camundongos Endogâmicos C57BL , Camundongos , Oligonucleotídeos Antissenso/genética
7.
RNA Biol ; 21(1): 52-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38989833

RESUMO

The aim of this study was to compare the circular transcriptome of divergent tissues in order to understand: i) the presence of circular RNAs (circRNAs) that are not exonic circRNAs, i.e. originated from backsplicing involving known exons and, ii) the origin of artificial circRNA (artif_circRNA), i.e. circRNA not generated in-vivo. CircRNA identification is mostly an in-silico process, and the analysis of data from the BovReg project (https://www.bovreg.eu/) provided an opportunity to explore new ways to identify reliable circRNAs. By considering 117 tissue samples, we characterized 23,926 exonic circRNAs, 337 circRNAs from 273 introns (191 ciRNAs, 146 intron circles), 108 circRNAs from small non-coding genes and nearly 36.6K circRNAs classified as other_circRNAs. Furthermore, for 63 of those samples we analysed in parallel data from total-RNAseq (ribosomal RNAs depleted prior to library preparation) with paired mRNAseq (library prepared with poly(A)-selected RNAs). The high number of circRNAs detected in mRNAseq, and the significant number of novel circRNAs, mainly other_circRNAs, led us to consider all circRNAs detected in mRNAseq as artificial. This study provided evidence of 189 false entries in the list of exonic circRNAs: 103 artif_circRNAs identified by total RNAseq/mRNAseq comparison using two circRNA tools, 26 probable artif_circRNAs, and 65 identified by deep annotation analysis. Extensive benchmarking was performed (including analyses with CIRI2 and CIRCexplorer-2) and confirmed 94% of the 23,737 reliable exonic circRNAs. Moreover, this study demonstrates the effectiveness of a panel of highly expressed exonic circRNAs (5-8%) in analysing the tissue specificity of the bovine circular transcriptome.


Assuntos
Éxons , RNA Circular , RNA Circular/genética , Animais , Bovinos , Íntrons , Biologia Computacional/métodos , Transcriptoma , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos
8.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34795060

RESUMO

Down syndrome (DS), trisomy of human chromosome 21 (HSA21), is characterized by lifelong cognitive impairments and the development of the neuropathological hallmarks of Alzheimer's disease (AD). The cellular and molecular modifications responsible for these effects are not understood. Here we performed single-nucleus RNA sequencing (snRNA-seq) employing both short- (Illumina) and long-read (Pacific Biosciences) sequencing technologies on a total of 29 DS and non-DS control prefrontal cortex samples. In DS, the ratio of inhibitory-to-excitatory neurons was significantly increased, which was not observed in previous reports examining sporadic AD. DS microglial transcriptomes displayed AD-related aging and activation signatures in advance of AD neuropathology, with increased microglial expression of C1q complement genes (associated with dendritic pruning) and the HSA21 transcription factor gene RUNX1 Long-read sequencing detected vast RNA isoform diversity within and among specific cell types, including numerous sequences that differed between DS and control brains. Notably, over 8,000 genes produced RNAs containing intra-exonic junctions, including amyloid precursor protein (APP) that had previously been associated with somatic gene recombination. These and related results illuminate large-scale cellular and transcriptomic alterations as features of the aging DS brain.


Assuntos
Envelhecimento/fisiologia , Síndrome de Down/metabolismo , Isoformas de RNA/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Cromossomos Humanos Par 21 , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Síndrome de Down/genética , Expressão Gênica , Humanos , Microglia , RNA/metabolismo , Análise de Sequência de RNA , Regulação para Cima
9.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612733

RESUMO

In the human genome, two short open reading frames (ORFs) separated by a transcriptional silencer and a small intervening sequence stem from the gene SMIM45. The two ORFs show different translational characteristics, and they also show divergent patterns of evolutionary development. The studies presented here describe the evolution of the components of SMIM45. One ORF consists of an ultra-conserved 68 amino acid (aa) sequence, whose origins can be traced beyond the evolutionary age of divergence of the elephant shark, ~462 MYA. The silencer also has ancient origins, but it has a complex and divergent pattern of evolutionary formation, as it overlaps both at the 68 aa ORF and the intervening sequence. The other ORF consists of 107 aa. It develops during primate evolution but is found to originate de novo from an ancestral non-coding genomic region with root origins within the Afrothere clade of placental mammals, whose evolutionary age of divergence is ~99 MYA. The formation of the complete 107 aa ORF during primate evolution is outlined, whereby sequence development is found to occur through biased mutations, with disruptive random mutations that also occur but lead to a dead-end. The 107 aa ORF is of particular significance, as there is evidence to suggest it is a protein that may function in human brain development. Its evolutionary formation presents a view of a human-specific ORF and its linked silencer that were predetermined in non-primate ancestral species. The genomic position of the silencer offers interesting possibilities for the regulation of transcription of the 107 aa ORF. A hypothesis is presented with respect to possible spatiotemporal expression of the 107 aa ORF in embryonic tissues.


Assuntos
Genoma Humano , Placenta , Feminino , Gravidez , Animais , Humanos , Fases de Leitura Aberta/genética , Sequência de Aminoácidos , Primatas , Mamíferos
10.
Genes Chromosomes Cancer ; 62(12): 710-720, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436117

RESUMO

Prostate cancer (PrCa) is one of the three most frequent and deadliest cancers worldwide. The discovery of PARP inhibitors for the treatment of tumors with deleterious variants in homologous recombination repair (HRR) genes has placed PrCa on the roadmap of precision medicine. However, the overall contribution of HRR genes to the 10%-20% of carcinomas arising in men with early-onset/familial PrCa has not been fully clarified. We used targeted next-generation sequencing (T-NGS) covering eight HRR genes (ATM, BRCA1, BRCA2, BRIP1, CHEK2, NBN, PALB2, and RAD51C) and an analysis pipeline querying both small and large genomic variations to clarify their global and relative contribution to hereditary PrCa predisposition in a series of 462 early-onset/familial PrCa cases. Deleterious variants were found in 3.9% of the patients, with CHEK2 and ATM being the most frequently mutated genes (38.9% and 22.2% of the carriers, respectively), followed by PALB2 and NBN (11.1% of the carriers, each), and finally by BRCA2, RAD51C, and BRIP1 (5.6% of the carriers, each). Using the same NGS data, exonic rearrangements were found in two patients, one pathogenic in BRCA2 and one of unknown significance in BRCA1. These results contribute to clarify the genetic heterogeneity that underlies PrCa predisposition in the early-onset and familial disease, respectively.


Assuntos
Neoplasias da Mama , Carcinoma , Neoplasias da Próstata , Masculino , Humanos , Reparo de DNA por Recombinação/genética , Predisposição Genética para Doença , Genótipo , Neoplasias da Próstata/genética , Mutação em Linhagem Germinativa , Recombinação Homóloga
11.
BMC Genomics ; 24(1): 407, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468838

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic multisystem disease caused primarily by mutations in the PKD1 gene or PKD2 gene. There is increasing evidence that some of these variants, which are described as missense, synonymous or nonsense mutations in the literature or databases, may be deleterious by affecting the pre-mRNA splicing process. RESULTS: This study aimed to determine the effect of these PKD1 and PKD2 variants on exon splicing combined with predictive bioinformatics tools and minigene assay. As a result, among the 19 candidate single nucleotide alterations, 11 variants distributed in PKD1 (c.7866C > A, c.7960A > G, c.7979A > T, c.7987C > T, c.11248C > G, c.11251C > T, c.11257C > G, c.11257C > T, c.11346C > T, and c.11393C > G) and PKD2 (c.1480G > T) were identified to result in exon skipping. CONCLUSIONS: We confirmed that 11 variants in the gene of PKD1 and PKD2 affect normal splicing by interfering the recognition of classical splicing sites or by disrupting exon splicing enhancers and generating exon splicing silencers. This is the most comprehensive study to date on pre-mRNA splicing of exonic variants in ADPKD-associated disease-causing genes in consideration of the increasing number of identified variants in PKD1 and PKD2 gene in recent years. These results emphasize the significance of assessing the effect of exon single nucleotide variants in ADPKD at the mRNA level.


Assuntos
Rim Policístico Autossômico Dominante , Piruvato Desidrogenase Quinase de Transferência de Acetil , Precursores de RNA , Humanos , Éxons , Mutação , Rim Policístico Autossômico Dominante/genética , Precursores de RNA/metabolismo , Splicing de RNA , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética
12.
Curr Issues Mol Biol ; 45(4): 2847-2860, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185710

RESUMO

Pompe disease (PD) is a monogenic autosomal recessive disorder caused by biallelic pathogenic variants of the GAA gene encoding lysosomal alpha-glucosidase; its loss causes glycogen storage in lysosomes, mainly in the muscular tissue. The genotype-phenotype correlation has been extensively discussed, and caution is recommended when interpreting the clinical significance of any mutation in a single patient. As there is no evidence that environmental factors can modulate the phenotype, the observed clinical variability in PD suggests that genetic variants other than pathogenic GAA mutations influence the mechanisms of muscle damage/repair and the overall clinical picture. Genes encoding proteins involved in glycogen synthesis and catabolism may represent excellent candidates as phenotypic modifiers of PD. The genes analyzed for glycogen synthesis included UGP2, glycogenin (GYG1-muscle, GYG2, and other tissues), glycogen synthase (GYS1-muscle and GYS2-liver), GBE1, EPM2A, NHLRC1, GSK3A, and GSK3B. The only enzyme involved in glycogen catabolism in lysosomes is α-glucosidase, which is encoded by GAA, while two cytoplasmic enzymes, phosphorylase (PYGB-brain, PGL-liver, and PYGM-muscle) and glycogen debranching (AGL) are needed to obtain glucose 1-phosphate or free glucose. Here, we report the potentially relevant variants in genes related to glycogen synthesis and catabolism, identified by whole exome sequencing in a group of 30 patients with late-onset Pompe disease (LOPD). In our exploratory analysis, we observed a reduced number of variants in the genes expressed in muscles versus the genes expressed in other tissues, but we did not find a single variant that strongly affected the phenotype. From our work, it also appears that the current clinical scores used in LOPD do not describe muscle impairment with enough qualitative/quantitative details to correlate it with genes that, even with a slightly reduced function due to genetic variants, impact the phenotype.

13.
Am J Obstet Gynecol ; 229(3): 302.e1-302.e18, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36907537

RESUMO

BACKGROUND: Emerging studies suggest that whole genome sequencing provides additional diagnostic yield of genomic variants when compared with chromosomal microarray analysis in the etiologic diagnosis of infants and children with suspected genetic diseases. However, the application and evaluation of whole genome sequencing in prenatal diagnosis remain limited. OBJECTIVE: This study aimed to evaluate the accuracy, efficacy, and incremental yield of whole genome sequencing in comparison with chromosomal microarray analysis for routine prenatal diagnosis. STUDY DESIGN: In this prospective study, a total of 185 unselected singleton fetuses with ultrasound-detected structural anomalies were enrolled. In parallel, each sample was subjected to whole genome sequencing and chromosomal microarray analysis. Aneuploidies and copy number variations were detected and analyzed in a blinded fashion. Single nucleotide variations and insertions and deletions were confirmed by Sanger sequencing, and trinucleotide repeats expansion variants were verified using polymerase chain reaction plus fragment-length analysis. RESULTS: Overall, genetic diagnoses using whole genome sequencing were obtained for 28 (15.1%) cases. Whole genome sequencing not only detected all these aneuploidies and copy number variations in the 20 (10.8%) diagnosed cases identified by chromosomal microarray analysis, but also detected 1 case with an exonic deletion of COL4A2 and 7 (3.8%) cases with single nucleotide variations or insertions and deletions. In addition, 3 incidental findings were detected including an expansion of the trinucleotide repeat in ATXN3, a splice-sites variant in ATRX, and an ANXA11 missense mutation in a case of trisomy 21. CONCLUSION: Compared with chromosomal microarray analysis, whole genome sequencing increased the additional detection rate by 5.9% (11/185). Using whole genome sequencing, we detected not only aneuploidies and copy number variations, but also single nucleotide variations and insertions and deletions, trinucleotide repeat expansions, and exonic copy number variations with high accuracy in an acceptable turnaround time (3-4 weeks). Our results suggest that whole genome sequencing has the potential to be a new promising prenatal diagnostic test for fetal structural anomalies.


Assuntos
Variações do Número de Cópias de DNA , Ultrassonografia Pré-Natal , Gravidez , Feminino , Lactente , Criança , Humanos , Estudos Prospectivos , Primeiro Trimestre da Gravidez , Diagnóstico Pré-Natal/métodos , Aneuploidia , Sequenciamento Completo do Genoma , Análise em Microsséries , Aberrações Cromossômicas
14.
Methods ; 205: 140-148, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764245

RESUMO

Alternative splicing accounts for a considerable portion of transcriptomic diversity, as most protein-coding genes are spliced into multiple mRNA isoforms. However, errors in splicing patterns can give rise to mis-splicing with pathological consequences, such as the congenital diseases familial dysautonomia, Duchenne muscular dystrophy, and spinal muscular atrophy. Small nuclear RNA (snRNA) components of the U snRNP family have been proposed as a therapeutic modality for the treatment of mis-splicing. U1 snRNAs offer great promise, with prior studies demonstrating in vivo efficacy, suggesting additional preclinical development is merited. Improvements in enabling technologies, including screening methodologies, gene delivery vectors, and relevant considerations from gene editing approaches justify further advancement of U1 snRNA as a therapeutic and research tool. With the goal of providing a user-friendly protocol, we compile and demonstrate a methodological toolkit for sequence-specific targeted perturbation of alternatively spliced pre-mRNA with engineered U1 snRNAs. We observe robust modulation of endogenous pre-mRNA transcripts targeted in two contrasting splicing contexts, SMN2 exon 7 and FAS exon 6, exhibiting the utility and applicability of engineered U1 snRNA to both inclusion and exclusion of targeted exons. We anticipate that these demonstrations will contribute to the usability of U1 snRNA in investigating splicing modulation in eukaryotic cells, increasing accessibility to the broader research community.


Assuntos
Precursores de RNA , RNA Nuclear Pequeno , Éxons/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo
15.
Adv Exp Med Biol ; 1415: 183-187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440032

RESUMO

Inherited retinal diseases (IRDs) are an extremely diverse group of ocular disorders characterized by progressive loss of photoreceptors leading to blindness. So far, pathogenic variants in over 300 genes are reported to structurally and functionally affect the retina resulting in visual impairment. Around 15% of all IRD mutations are known to affect an essential regulatory mechanism, pre-mRNA splicing, which contributes to the transcriptomic diversity. These variants disrupt potential donor and acceptor splice sites as well as other crucial cis-acting elements resulting in aberrant splicing. One group of these elements, the exonic splicing enhancers (ESEs), are involved in promoting exon definition and are likely to harbor "hidden" mutations since sequence-analyzing pipelines cannot identify them efficiently. The main focus of this review is to discuss the molecular mechanisms behind various exonic variants affecting splice sites and ESEs that lead to impaired splicing which in turn result in an IRD pathology.


Assuntos
Splicing de RNA , Doenças Retinianas , Humanos , Splicing de RNA/genética , Mutação , Éxons/genética , Doenças Retinianas/genética , Retina , Processamento Alternativo
16.
Genes Dev ; 29(21): 2298-311, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26545814

RESUMO

Splicing of the Drosophila P-element third intron (IVS3) is repressed in somatic tissues due to the function of an exonic splicing silencer (ESS) complex present on the 5' exon RNA. To comprehensively characterize the mechanisms of this alternative splicing regulation, we used biochemical fractionation and affinity purification to isolate the silencer complex assembled in vitro and identify the constituent proteins by mass spectrometry. Functional assays using splicing reporter minigenes identified the proteins hrp36 and hrp38 and the cytoplasmic poly(A)-binding protein PABPC1 as novel functional components of the splicing silencer. hrp48, PSI, and PABPC1 have high-affinity RNA-binding sites on the P-element IVS3 5' exon, whereas hrp36 and hrp38 proteins bind with low affinity to the P-element silencer RNA. RNA pull-down and immobilized protein assays showed that hrp48 protein binding to the silencer RNA can recruit hrp36 and hrp38. These studies identified additional components that function at the P-element ESS and indicated that proteins with low-affinity RNA-binding sites can be recruited in a functional manner through interactions with a protein bound to RNA at a high-affinity binding site. These studies have implications for the role of heterogeneous nuclear ribonucleoproteins (hnRNPs) in the control of alternative splicing at cis-acting regulatory sites.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Splicing de RNA/fisiologia , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/isolamento & purificação , Éxons/genética , Regulação da Expressão Gênica , Genes Reporter/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Espectrometria de Massas , Proteínas Nucleares , Ligação Proteica , Interferência de RNA , Precursores de RNA/metabolismo , Splicing de RNA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/metabolismo , Elementos Silenciadores Transcricionais/genética
17.
Hum Mutat ; 43(2): 253-265, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923709

RESUMO

It is now widely accepted that aberrant splicing of constitutive exons is often caused by mutations affecting cis-acting splicing regulatory elements, but there is a misconception that all exons have an equal dependency on splicing regulatory elements and thus a similar susceptibility to aberrant splicing. We investigated exonic mutations in ACADM exon 5 to experimentally examine their effect on splicing and found that 7 out of 11 tested mutations affected exon inclusion, demonstrating that this constitutive exon is particularly vulnerable to exonic splicing mutations. Employing ACADM exon 5 and 6 as models, we demonstrate that the balance between splicing enhancers and silencers, flanking intron length, and flanking splice site strength are important factors that determine exon definition and splicing efficiency of the exon in question. Our study shows that two constitutive exons in ACADM have different inherent vulnerabilities to exonic splicing mutations. This suggests that in silico prediction of potential pathogenic effects on splicing from exonic mutations may be improved by also considering the inherent vulnerability of the exon. Moreover, we show that single nucleotide polymorphism that affect either of two different exonic splicing silencers, located far apart in exon 5, all protect against both immediately flanking and more distant exonic splicing mutations.


Assuntos
Processamento Alternativo , Splicing de RNA , Éxons/genética , Humanos , Íntrons , Sítios de Splice de RNA , Splicing de RNA/genética
18.
Hum Mutat ; 43(7): 900-918, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344616

RESUMO

Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.


Assuntos
Anormalidades Craniofaciais , Nanismo , Deformidades Congênitas dos Membros , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Anormalidades Urogenitais , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Nanismo/diagnóstico , Nanismo/genética , Genes Recessivos , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Masculino , Fenótipo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética
19.
BMC Med ; 20(1): 160, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35534835

RESUMO

BACKGROUND: Diverse genomic breakpoints of fusions that localize to intronic, exonic, or intergenic regions have been identified by DNA next-generation sequencing (NGS), but the role of exonic breakpoints remains elusive. We investigated whether exonic-breakpoint fusions could predict matched targeted therapy efficacy in non-small cell lung cancer (NSCLC). METHODS: NSCLC samples were analyzed by DNA NGS, RNA NGS, immunohistochemistry (IHC), and fluorescence in situ hybridization. RESULTS: Using DNA NGS, kinase fusions were identified in 685 of 7148 (9.6%) NSCLCs, with 74 harboring exonic-breakpoint fusions, mostly anaplastic lymphoma kinase (ALK) fusions. RNA NGS and IHC revealed that 11 of 55 (20%) exonic-breakpoint fusions generated no aberrant transcript/protein, possibly due to open reading frame disruption or different gene transcriptional orientations. Four cases of genomic-positive but RNA/protein-negative fusions were treated with matched targeted therapy, but progressive disease developed within 2 months. Nevertheless, 44 of 55 (80%) exonic-breakpoint fusions produced chimeric transcripts/proteins, possibly owing to various alternative splicing patterns, including exon skipping, alternative splice site selection, and intron retention. Most of these genomic- and RNA/protein-positive fusion cases showed a clinical response to matched targeted therapy. Particularly, there were no differences in objective response rate (P = 0.714) or median progression-free survival (P = 0.500) between intronic-breakpoint (n = 56) and exonic-breakpoint ALK fusion subtypes (n = 11) among ALK RNA/protein-validated patients who received first-line crizotinib. CONCLUSIONS: Exonic-breakpoint fusions may generate in-frame fusion transcripts/proteins or not, and thus are unreliable for predicting the efficacy of targeted therapy, which highlights the necessity of implementing RNA or protein assays for functional validation in exonic-breakpoint fusion cases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA , Éxons/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/uso terapêutico , RNA , Reprodutibilidade dos Testes , Análise de Sequência de DNA
20.
Genetica ; 150(5): 289-297, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35913522

RESUMO

Although predicting the effects of variants near intron-exon boundaries is relatively straightforward, predicting the functional Exon Splicing Enhancers (ESEs) and the possible effects of variants within ESEs remains a challenge. Considering the essential role of CYP2D6/CYP2C19 genes in drug metabolism, we attempted to identify variants that are most likely to disrupt splicing through their effect on these ESEs. ESEs were predicted in these two genes using ESEfinder 3.0, incorporating a series of filters (increased threshold and evolutionary conservation). Finally, reported mutations were evaluated for their potential to disrupt splicing by affecting these ESEs. Initially, 169 and 243 ESEs were predicted for CYP2C19/CYP2D6, respectively. However, applying the filters, the number of predicted ESEs was reduced to 26 and 19 in CYP2C19/CYP2D6, respectively. Comparing prioritized predicted ESEs with known sequence variants in CYP2C19/CYP2D6 genes highlights 18 variations within conserved ESEs for each gene. We found good agreement in cases where such predictions could be compared to experimental evidence. In total, we prioritized a subset of mutational changes in CYP2C19/CYP2D6 genes that may affect the function of these genes and lead to altered drug responses. Clinical studies and functional analysis for investigating detailed functional consequences of the mentioned mutations and their phenotypic outcomes is mostly recommended.


Assuntos
Processamento Alternativo , Citocromo P-450 CYP2D6 , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Éxons , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA