Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35140179

RESUMO

S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.


Assuntos
Acil Coenzima A/química , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Aciltransferases/genética , Domínio Catalítico , Membrana Celular/enzimologia , Regulação Enzimológica da Expressão Gênica , Humanos , Lipoilação , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos
2.
Plant Cell Environ ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39440542

RESUMO

Photoperiod/thermo-sensitive genic male sterility (P/TGMS) is critical for rice two-line hybrid system. Previous studies showed that slow development of pollen is a general mechanism for sterility-to-fertility conversion of TGMS in Arabidopsis. However, whether this mechanism still exists in rice is unknown. Here, we identified a novel rice TGMS line, ostms16, which exhibits abnormal pollen exine under high temperature and fertility restoration under low temperature. In mutant, a single base mutation of OsTMS16, a fatty acyl-CoA reductase (FAR), reduced its enzyme activity, leading to defective pollen wall. Under high temperature, the mOsTMS16M549I couldn't provide sufficient protection for the microspores. Under low temperature, the enzyme activity of mOsTMS16M549I is closer to that of OsTMS16, so that the imperfect exine could still protect microspore development. These results indicated whether the residual enzyme activity in mutant could meet the requirement in different temperature is a determinant factor for fertility conversion of P/TGMS lines. Additionally, we previously found that res2, the mutant of a polygalacturonase for tetrad pectin wall degradation, restored multiple TGMS lines in Arabidopsis. In this study, we proved that the osres2 in rice restored the fertility of ostms16, indicating the slow development is also suitable for the fertility restoration in rice.

3.
Insect Mol Biol ; 33(4): 350-361, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38430546

RESUMO

Fatty acyl-CoA reductase (FAR) is one of the key enzymes, which catalyses the conversion of fatty acyl-CoA to the corresponding alcohols. Among the FAR family members in the brown planthopper (Nilaparvata lugens), NlFAR7 plays a pivotal role in both the synthesis of cuticular hydrocarbons and the waterproofing of the cuticle. However, the precise mechanism by which NlFAR7 influences the formation of the cuticle structure in N. lugens remains unclear. Therefore, this paper aims to investigate the impact of NlFAR7 through RNA interference, transmission electron microscope, focused ion beam scanning electron microscopy (FIB-SEM) and lipidomics analysis. FIB-SEM is employed to reconstruct the three-dimensional (3D) architecture of the pore canals and related cuticle structures in N. lugens subjected to dsNlFAR7 and dsGFP treatments, enabling a comprehensive assessment of changes in the cuticle structures. The results reveal a reduction in the thickness of the cuticle and disruptions in the spiral structure of pore canals, accompanied by widened base and middle diameters. Furthermore, the lipidomics comparison analysis between dsNlFAR7- and dsGFP-treated N. lugens demonstrated that there were 25 metabolites involved in cuticular lipid layer synthesis, including 7 triacylglycerols (TGs), 5 phosphatidylcholines (PCs), 3 phosphatidylethanolamines (PEs) and 2 diacylglycerols (DGs) decreased, and 4 triacylglycerols (TGs) and 4 PEs increased. In conclusion, silencing NlFAR7 disrupts the synthesis of overall lipids and destroys the cuticular pore canals and related structures, thereby disrupting the secretion of cuticular lipids, thus affecting the cuticular waterproofing of N. lugens. These findings give significant attention with reference to further biochemical researches on the substrate specificity of FAR protein, and the molecular regulation mechanisms during N. lugens life cycle.


Assuntos
Hemípteros , Proteínas de Insetos , Animais , Hemípteros/genética , Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Interferência de RNA , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Microscopia Eletrônica de Varredura
4.
FASEB J ; 37(5): e22908, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37039784

RESUMO

Peroxisomal fatty acyl-CoA reductase 1 (FAR1) is a rate-limiting enzyme for ether lipid (EL) synthesis. Gene mutations in FAR1 cause a rare human disease. Furthermore, altered EL homeostasis has also been associated with various prevalent human diseases. Despite their importance in human health, the exact cellular functions of FAR1 and EL are not well-understood. Here, we report the generation and initial characterization of the first Far1 knockout (KO) mouse model. Far1 KO mice were subviable and displayed growth retardation. The adult KO male mice had smaller testes and were infertile. H&E and immunofluorescent staining showed fewer germ cells in seminiferous tubules. Round spermatids were present but no elongated spermatids or spermatozoa were observed, suggesting a spermatogenesis arrest at this stage. Large multi-nucleated giant cells (MGC) were found lining the lumen of seminiferous tubules with many of them undergoing apoptosis. The immunofluorescent signal of TEX14, an essential component of intercellular bridges (ICB) between developing germ cells, was greatly reduced and mislocalized in KO testis, suggesting the disrupted ICBs as an underlying cause of MGC formation. Integrative analysis of our total testis RNA-sequencing results and published single-cell RNA-sequencing data unveiled cell type-specific molecular alterations underlying the spermatogenesis arrest. Many genes essential for late germ cell development showed dramatic downregulation, whereas genes essential for extracellular matrix dynamics and cell-cell interactions were among the most upregulated genes. Together, this work identified the cell type-specific requirement of ELs in spermatogenesis and suggested a critical role of Far1/ELs in the formation/maintenance of ICB during meiosis.


Assuntos
Azoospermia , Éter , Camundongos , Animais , Masculino , Humanos , Camundongos Knockout , Espermatogênese/genética , Espermátides , Éteres , Etil-Éteres , Lipídeos , RNA , Fatores de Transcrição/genética
5.
J Biol Chem ; 298(10): 102422, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030053

RESUMO

Sonic hedgehog (Shh) signaling is a key component of embryonic development and is a driving force in several cancers. Hedgehog acyltransferase (Hhat), a member of the membrane-bound O-acyltransferase family of enzymes, catalyzes the attachment of palmitate to the N-terminal cysteine of Shh, a posttranslation modification critical for Shh signaling. The activity of Hhat has been assayed in cells and in vitro, and cryo-EM structures of Hhat have been reported, yet several unanswered questions remain regarding the enzyme's reaction mechanism, substrate specificity, and the impact of the latter on Shh signaling. Here, we present an in vitro acylation assay with purified Hhat that directly monitors attachment of a fluorescently tagged fatty acyl chain to Shh. Our kinetic analyses revealed that the reaction catalyzed by Hhat proceeds through a random sequential mechanism. We also determined that Hhat can utilize multiple fatty acyl-CoA substrates for fatty acid transfer to Shh, with comparable affinities and turnover rates for myristoyl-CoA, palmitoyl-CoA, palmitoleoyl-CoA, and oleoyl-CoA. Furthermore, we investigated the functional consequence of differential fatty acylation of Shh in a luciferase-based Shh reporter system. We found that the potency of the signaling response in cells was higher for Shh acylated with saturated fatty acids compared to monounsaturated fatty acids. These findings demonstrate that Hhat can attach fatty acids other than palmitate to Shh and suggest that heterogeneous fatty acylation has the potential to impact Shh signaling in the developing embryo and/or cancer cells.


Assuntos
Proteínas Hedgehog , Lipoilação , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Lipoilação/fisiologia , Aciltransferases/metabolismo , Palmitatos , Coenzima A
6.
Proteins ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615273

RESUMO

Fatty acids are used in fundamental cellular processes, such as membrane biogenesis, energy generation, post-translational modification of proteins, and so forth. These processes require the activation of fatty acids by adenosine triphosphate (ATP), followed by condensation with coenzyme-A (CoA), catalyzed by the omnipresent enzyme called Fatty acyl-CoA ligases (FACLs). However, Fatty acyl-AMP ligases (FAALs), the structural homologs of FACLs, operate in an unprecedented CoA-independent manner. FAALs transfer fatty acids to the acyl carrier protein (ACP) domain of polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) for the biosynthesis of various antibiotics, lipopeptides, virulent complex lipids, and so forth in bacteria. Recent structural and biochemical insights from our group provide a detailed understanding of the mode of CoA rejection and ACP acceptance by FAALs. In this review, we have discussed advances in the mechanistic, evolutionary, and functional understanding of FAALs and FAAL-like domains across life forms. Here, we are proposing a "Five-tier" mechanistic model to explain the specificity of FAALs. We further demonstrate how FAAL-like domains have been repurposed into a new family of proteins in eukaryotes with a novel function in lipid metabolism.

7.
FASEB J ; 36(4): e22216, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238077

RESUMO

Various lipids (mainly meibum lipids secreted by the meibomian glands) are present in the tear film lipid layer and play important roles in tear stability and the health of the cornea and conjunctiva. Many meibum lipids contain fatty alcohols (FAls) with chain lengths ≥C24, but the fatty acyl-CoA reductases (FARs) that produce them remain unclear. Here, using cell-based assays, we found that the two FAR isozymes (FAR1 and FAR2) show different substrate specificities: FAR1 and FAR2 are involved in the production of C16-C18 and ≥C20 FAls, respectively. Next, we generated Far2 knockout (KO) mice and examined their dry eye phenotype and meibum lipid composition. These mice showed a severe dry eye phenotype, characterized by plugged meibomian gland orifices, corneal damage, and tear film instability. The plugging was attributed to an increase in the melting point of the meibum lipids. Liquid chromatography coupled with tandem mass spectrometry revealed that FAl-containing meibum lipids (wax monoesters and types 1ω, 2α, and 2ω wax diesters) with a hydroxyl group at position 1 were almost completely absent in Far2 KO mice. The levels of di-unsaturated (O-acyl)-ω-hydroxy fatty acids were higher in Far2 KO mice than in wild type mice, but those of tri-unsaturated ones were comparable, suggesting the presence of two synthesis pathways for type 1ω wax diesters. These results indicate the importance of FAl-containing meibum lipids in the formation of a functional tear film lipid layer. In addition, our study provides clues to the molecular mechanism of the biosynthesis of meibum lipids.


Assuntos
Síndromes do Olho Seco , Lágrimas , Acil-CoA Desidrogenase/metabolismo , Aldeído Oxirredutases/metabolismo , Animais , Síndromes do Olho Seco/metabolismo , Álcoois Graxos/análise , Álcoois Graxos/metabolismo , Glândulas Tarsais/metabolismo , Camundongos , Camundongos Knockout , Lágrimas/metabolismo
8.
Microb Cell Fact ; 22(1): 84, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118806

RESUMO

BACKGROUND: Nature has provided unique molecular scaffolds for applications including therapeutics, agriculture, and food. Due to differences in ecological environments and laboratory conditions, engineering is often necessary to uncover and utilize the chemical diversity. Although we can efficiently activate and mine these often complex 3D molecules, sufficient production of target molecules for further engineering and application remain a considerable bottleneck. An example of these bioactive scaffolds is armeniaspirols, which are potent polyketide antibiotics against gram-positive pathogens and multi-resistance gram-negative Helicobacter pylori. Here, we examine the upregulation of armeniaspirols in an alternative Streptomyces producer, Streptomyces sp. A793. RESULTS: Through an incidental observation of enhanced yields with the removal of a competing polyketide cluster, we observed seven-fold improvement in armeniaspirol production. To further investigate the improvement of armeniaspirol production, we examine upregulation of armeniaspirols through engineering of biosynthetic pathways and primary metabolism; including perturbation of genes in biosynthetic gene clusters and regulation of triacylglycerols pool. CONCLUSION: With either overexpression of extender unit pathway or late-stage N-methylation, or the deletion of a competing polyketide cluster, we can achieve seven-fold to forty nine-fold upregulation of armeniaspirol production. The most significant upregulation was achieved by expression of heterologous fatty acyl-CoA synthase, where we observed not only a ninety seven-fold increase in production yields compared to wild type, but also an increase in the diversity of observed armeniaspirol intermediates and analogs.


Assuntos
Policetídeos , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Policetídeos/metabolismo , Antibacterianos , Vias Biossintéticas , Família Multigênica
9.
Plant J ; 106(5): 1468-1483, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33768632

RESUMO

Suberin is a complex hydrophobic polymer of aliphatic and phenolic compounds which controls the movement of gases, water, and solutes and protects plants from environmental stresses and pathogenic infection. The synthesis and regulatory pathways of suberin remain unknown in Brachypodium distachyon. Here we describe the identification of a B. distachyon gene, BdFAR4, encoding a fatty acyl-coenzyme A reductase (FAR) by a reverse genetic approach, and investigate the molecular relevance of BdFAR4 in the root suberin synthesis of B. distachyon. BdFAR4 is specifically expressed throughout root development. Heterologous expression of BdFAR4 in yeast (Saccharomyces cerevisiae) afforded the production of C20:0 and C22:0 fatty alcohols. The loss-of-function knockout of BdFAR4 by CRISPR/Cas9-mediated gene editing significantly reduced the content of C20:0 and C22:0 fatty alcohols associated with root suberin. In contrast, overexpression of BdFAR4 in B. distachyon and tomato (Solanum lycopersicum) resulted in the accumulation of root suberin-associated C20:0 and C22:0 fatty alcohols, suggesting that BdFAR4 preferentially accepts C20:0 and C22:0 fatty acyl-CoAs as substrates. The BdFAR4 protein was localized to the endoplasmic reticulum in Arabidopsis thaliana protoplasts and Nicotiana benthamiana leaf epidermal cells. BdFAR4 transcript levels can be increased by abiotic stresses and abscisic acid treatment. Furthermore, yeast one-hybrid, dual-luciferase activity, and electrophoretic mobility shift assays indicated that the R2R3-MYB transcription factor BdMYB41 directly binds to the promoter of BdFAR4. Taken together, these results imply that BdFAR4 is essential for the production of root suberin-associated fatty alcohols, especially under stress conditions, and that its activity is transcriptionally regulated by the BdMYB41 transcription factor.


Assuntos
Aldeído Oxirredutases/metabolismo , Brachypodium/genética , Álcoois Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos/biossíntese , Aldeído Oxirredutases/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Brachypodium/enzimologia , Brachypodium/fisiologia , Edição de Genes , Técnicas de Inativação de Genes , Mutação com Perda de Função , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Poliésteres/metabolismo , Estresse Fisiológico , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/fisiologia
10.
Plant Biotechnol J ; 20(12): 2272-2283, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36028465

RESUMO

Chilo suppressalis is one of the most prevalent and damaging rice pests, causing significant economic losses each year. Chemical control is currently the primary method of controlling C. suppressalis. However, the indiscriminate use of chemical insecticides increases pest resistance, pollutes the environment and poses a significant health threat to humans and livestock, highlighting the need to find safer, more pest-specific and more effective alternatives to pest control. Plant-mediated RNA interference (RNAi) is a promising agricultural pest control method that is highly pest-specific and has less of an impact on the environment. Using multi-sgRNAs/Cas9 technology to delete Fatty acyl-CoA reductase (FAR) of C. suppressalis in the G0 generation, we show that downregulating FAR transcription may significantly increase the mortality rate and darken the epidermis of C. suppressalis compared with the control. Subsequently, we developed dsFAR transgenic rice lines using Agrobacterium-mediated genetic transformation and then screened three strains expressing dsFAR at high levels using transcriptional level analysis. Using transgenic rice stems, a laboratory feeding bioassay indicated that at least one line (L#10) displayed a particularly high level of insect resistance, with an insect mortality rate of more than 80%. In the field trials, dsFAR transgenic rice displayed high levels of resistance to C. suppressalis damage. Collectively, these results suggest the potential of a new environment-friendly, species-specific strategy for rice pest management.


Assuntos
Oryza , Aldeído Oxirredutases , Oryza/genética , RNA de Plantas , Transgenes
11.
Annu Rev Entomol ; 66: 45-60, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417824

RESUMO

Insect cuticular hydrocarbons (CHCs) consist of complex mixtures of straight-chain alkanes and alkenes, and methyl-branched hydrocarbons. In addition to restricting water loss through the cuticle and preventing desiccation, they have secondarily evolved to serve a variety of functions in chemical communication and play critical roles as signals mediating the life histories of insects. In this review, we describe the physical properties of CHCs that allow for both waterproofing and signaling functions, summarize their roles as inter- and intraspecific chemical signals, and discuss the influences of diet and environment on CHC profiles. We also present advances in our understanding of hydrocarbon biosynthesis. Hydrocarbons are biosynthesized in oenocytes and transported to the cuticle by lipophorin proteins. Recent work on the synthesis of fatty acids and their ultimate reductive decarbonylation to hydrocarbons has taken advantage of powerful new tools of molecular biology, including genomics and RNA interference knockdown of specific genes, to provide new insights into the biosynthesis of hydrocarbons.


Assuntos
Hidrocarbonetos/química , Insetos/química , Comunicação Animal , Animais , Hidrocarbonetos/metabolismo , Insetos/fisiologia
12.
Traffic ; 20(7): 504-515, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31042004

RESUMO

Most soluble proteins targeted to the peroxisomal matrix contain a C-terminal peroxisome targeting signal type 1 (PTS1) or an N-terminal PTS2 that is recognized by the receptors Pex5p and Pex7p, respectively. These receptors cycle between the cytosol and peroxisome and back again for multiple rounds of cargo delivery to the peroxisome. A small number of peroxisomal matrix proteins, including all six isozymes of peroxisomal fatty acyl-CoA oxidase (Aox) of the yeast Yarrowia lipolytica, contain neither a PTS1 nor a PTS2. Pex20p has been shown to function as a co-receptor for Pex7p in the import of PTS2 cargo into peroxisomes. Here we show that cells of Y. lipolytica deleted for the PEX20 gene fail to import not only the PTS2-containing protein 3-ketoacyl-CoA thiolase (Pot1p) but also the non-PTS1/non-PTS2 Aox isozymes. Pex20p binds directly to Aox isozymes Aox3p and Aox5p, which requires the C-terminal Wxxx(F/Y) motif of Pex20p. A W411G mutation in the C-terminal Wxxx(F/Y) motif causes Aox isozymes to be mislocalized to the cytosol. Pex20p interacts physically with members of the peroxisomal import docking complex, Pex13p and Pex14p. Our results are consistent with a role for Pex20p as the receptor for import of the non-PTS1/non-PTS2 Aox isozymes into peroxisomes.


Assuntos
Acil-CoA Oxidase/metabolismo , Proteínas Fúngicas/metabolismo , Peroxissomos/metabolismo , Sítios de Ligação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Ligação Proteica , Transporte Proteico , Proteínas de Ligação a Telômeros/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
13.
Theor Appl Genet ; 134(9): 3051-3067, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34120211

RESUMO

KEY MESSAGE: The mutations BnA1.CER4 and BnC1.CER4 produce disordered wax crystals types and alter the composition of epidermal wax, causing increased cuticular permeability and sclerotium resistance. The aerial surfaces of land plants are coated with a cuticle, comprised of cutin and wax, which is a hydrophobic barrier for preventing uncontrolled water loss and environmental damage. However, the mechanisms by which cuticle components are formed are still unknown in Brassica napus L. and were therefore assessed here. BnA1.CER4 and BnC1.CER4, encoding fatty acyl-coenzyme A reductases localizing to the endoplasmic reticulum and highly expressed in leaves, were identified and functionally characterized. Expression of BnA1.CER4 and BnC1.CER4 cDNA in yeast (Saccharomyces cerevisiae) induced the accumulation of primary alcohols with chain lengths of 26 carbons. The mutant line Nilla glossy2 exhibited reduced wax crystal types, and wax composition analysis showed that the levels of branched primary alcohols were decreased, whereas those of the other branched components were increased. Further analysis showed that the mutant had reduced water retention but enhanced resistance to Sclerotinia sclerotiorum. Collectively, our study reports that BnA1.CER4 and BnC1.CER4 are fatty acyl-coenzyme A reductase genes in B. napus with a preference for branched substrates that participate in the biosynthesis of anteiso-primary alcohols.


Assuntos
Álcoois/metabolismo , Ascomicetos/fisiologia , Brassica napus/genética , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Álcoois/química , Brassica napus/crescimento & desenvolvimento , Brassica napus/microbiologia , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Ceras/química , Ceras/metabolismo
14.
J Insect Sci ; 21(5)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605547

RESUMO

Paracoccus marginatus (Hemiptera: Pseudococcidae), known as the papaya mealybug, could cause considerable yield loss of several plants. To date, there is no molecular-based study of P. marginatus. Fatty acyl-CoA reductases (FARs) are key enzymes involved in wax synthesis. In the present study, we cloned and characterized coding sequences (CDS) of two FAR genes from P. marginatus. The results showed that PmFAR1 and PmFAR2 CDS were 1,590 and 1,497 bp in length, respectively, and sequence analysis indicated that these two genes both had the conservative motifs belonging to FAR_C superfamily. Furthermore, seven candidate reference genes were analyzed for their expression stability by using common algorithms including comparative ΔCq method, geNorm, NormFinder, BestKeeper, and RefFinder. Eventually, ß-actin and GAPDH were the best reference genes in evaluating the expression of those two FAR genes. We found that PmFAR1 and PmFAR2 showed distinct expression patterns in different life stages. Moreover, the transcription of PmFAR1 and PmFAR2 in P. marginatus fed on resistant cassava cultivars was significantly lower compared with those fed on susceptible ones, indicating the potential function of FAR genes in cassava resistance to P. marginatus. The present study might help in better understanding the molecular mechanism of cassava resistance to mealybug.


Assuntos
Aldeído Oxirredutases/genética , Hemípteros/genética , Animais , Perfilação da Expressão Gênica , Herbivoria/genética , Manihot , Controle de Pragas , Defesa das Plantas contra Herbivoria
15.
Angew Chem Int Ed Engl ; 60(25): 13996-14004, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33837610

RESUMO

Despite increasing awareness of the biological impacts of long-chain fatty acyl-CoA esters (LCACoAs), our knowledge about the subcellular distribution and regulatory functions of these acyl-CoA molecules is limited by a lack of methods for detecting LCACoAs in living cells. Here, we report development of a genetically encoded fluorescent sensor that enables ratiometric quantification of LCACoAs in living cells and subcellular compartments. We demonstrate how this FadR-cpYFP fusion "LACSer sensor" undergoes LCACoA-induced conformational changes reflected in easily detectable fluorescence responses, and show proof-of-concept for real-time monitoring of LCACoAs in human cells. Subsequently, we applied LACSer in scientific studies investigating how disruption of ACSL enzymes differentially reduces cytosolic and mitochondrial LCACoA levels, and show how genetic disruption of an acyl-CoA binding protein (ACBP) alters mitochondrial accumulation of LCACoAs.


Assuntos
Acil Coenzima A/metabolismo , Técnicas Biossensoriais , Ésteres/metabolismo , Fluorescência , Acil Coenzima A/química , Ésteres/química , Células HEK293 , Humanos
16.
Metab Eng ; 62: 312-321, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33045365

RESUMO

The use of insect sex pheromones is an alternative technology for pest control in agriculture and forestry, which, in contrast to insecticides, does not have adverse effects on human health or environment and is efficient also against insecticide-resistant insect populations. Due to the high cost of chemically synthesized pheromones, mating disruption applications are currently primarily targeting higher value crops, such as fruits. Here we demonstrate a biotechnological method for the production of (Z)-hexadec-11-en-1-ol and (Z)-tetradec-9-en-1-ol, using engineered yeast cell factories. These unsaturated fatty alcohols are pheromone components or the immediate precursors of pheromone components of several economically important moth pests. Biosynthetic pathways towards several pheromones or their precursors were reconstructed in the oleaginous yeast Yarrowia lipolytica, which was further metabolically engineered for improved pheromone biosynthesis by decreasing fatty alcohol degradation and downregulating storage lipid accumulation. The sex pheromone of the cotton bollworm Helicoverpa armigera was produced by oxidation of fermented fatty alcohols into corresponding aldehydes. The resulting yeast-derived pheromone was just as efficient and specific for trapping of H. armigera male moths in cotton fields in Greece as a conventionally produced synthetic pheromone mixture. We further demonstrated the production of (Z)-tetradec-9-en-1-yl acetate, the main pheromone component of the fall armyworm Spodoptera frugiperda. Taken together our work describes a biotech platform for the production of commercially relevant titres of moth pheromones for pest control via yeast fermentation.


Assuntos
Mariposas , Atrativos Sexuais , Yarrowia , Animais , Fermentação , Humanos , Masculino , Controle de Pragas
17.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32144106

RESUMO

In Lysobacter enzymogenes OH11, RpfB1 and RpfB2 were predicted to encode acyl coenzyme A (CoA) ligases. RpfB1 is located in the Rpf gene cluster. Interestingly, we found an RpfB1 homolog (RpfB2) outside this canonical gene cluster, and nothing is known about its functionality or mechanism. Here, we report that rpfB1 and rpfB2 can functionally replace EcFadD in the Escherichia colifadD mutant JW1794. RpfB activates long-chain fatty acids (n-C16:0 and n-C18:0) for the corresponding fatty acyl-CoA ligase (FCL) activity in vitro, and Glu-361 plays critical roles in the catalytic mechanism of RpfB1 and RpfB2. Deletion of rpfB1 and rpfB2 resulted in significantly increased heat-stable antifungal factor (HSAF) production, and overexpression of rpfB1 or rpfB2 completely suppressed HSAF production. Deletion of rpfB1 and rpfB2 resulted in increased L. enzymogenes diffusible signaling factor 3 (LeDSF3) synthesis in L. enzymogenes Overall, our results showed that changes in intracellular free fatty acid levels significantly altered HSAF production. Our report shows that intracellular free fatty acids are required for HSAF production and that RpfB affects HSAF production via FCL activity. The global transcriptional regulator Clp directly regulated the expression of rpfB1 and rpfB2 In conclusion, these findings reveal new roles of RpfB in antibiotic biosynthesis in L. enzymogenesIMPORTANCE Understanding the biosynthetic and regulatory mechanisms of heat-stable antifungal factor (HSAF) could improve the yield in Lysobacter enzymogenes Here, we report that RpfB1 and RpfB2 encode acyl coenzyme A (CoA) ligases. Our research shows that RpfB1 and RpfB2 affect free fatty acid metabolism via fatty acyl-CoA ligase (FCL) activity to reduce the substrate for HSAF synthesis and, thereby, block HSAF production in L. enzymogenes Furthermore, these findings reveal new roles for the fatty acyl-CoA ligases RpfB1 and RpfB2 in antibiotic biosynthesis in L. enzymogenes Importantly, the novelty of this work is the finding that RpfB2 lies outside the Rpf gene cluster and plays a key role in HSAF production, which has not been reported in other diffusible signaling factor (DSF)/Rpf-producing bacteria.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Coenzima A Ligases/genética , Lysobacter/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lysobacter/metabolismo , Oxirredução , Alinhamento de Sequência
18.
J Lipid Res ; 59(2): 368-379, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29208699

RESUMO

Thioesterase superfamily member 1 (Them1) is an acyl-CoA thioesterase that is highly expressed in brown adipose tissue, where it functions to suppress energy expenditure. Lower Them1 expression levels in the liver are upregulated in response to high-fat feeding. Them1-/- mice are resistant to diet-induced obesity, hepatic steatosis, and glucose intolerance, but the contribution of Them1 in liver is unclear. To examine its liver-specific functions, we created conditional transgenic mice, which, when bred to Them1-/- mice and activated, expressed Them1 exclusively in the liver. Mice with liver-specific Them1 expression exhibited no changes in energy expenditure. Rates of fatty acid oxidation were increased, whereas hepatic VLDL triglyceride secretion rates were decreased by hepatic Them1 expression. When fed a high-fat diet, Them1 expression in liver promoted excess steatosis in the setting of reduced rates of fatty acid oxidation and preserved glycerolipid synthesis. Liver-specific Them1 expression did not influence glucose tolerance or insulin sensitivity, but did promote hepatic gluconeogenesis in high-fat-fed animals. This was attributable to the generation of excess fatty acids, which activated PPARα and promoted expression of gluconeogenic genes. These findings reveal a regulatory role for Them1 in hepatocellular fatty acid trafficking.


Assuntos
Ácidos Graxos/metabolismo , Fígado/metabolismo , Palmitoil-CoA Hidrolase/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Palmitoil-CoA Hidrolase/deficiência , Palmitoil-CoA Hidrolase/genética
19.
Microbiology (Reading) ; 164(9): 1133-1145, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29993358

RESUMO

Lipid metabolism is critical to Mycobacterium tuberculosis survival and infection. Unlike Escherichia coli, which has a single FadR, the M. tuberculosis genome encodes five proteins of the FadR sub-family. While the role of E. coli FadR as a regulator of fatty acid metabolism is well known, the definitive functions of M. tuberculosis FadR proteins are still under investigation. An interesting question about the M. tuberculosis FadRs remains open: which one of these proteins is the functional homologue of E. coli FadR? To address this, we have applied two different approaches. The first one was the bioinformatics approach and the second one was the classical molecular genetic approach involving complementation studies. Surprisingly, the results of these two approaches did not agree. Among the five M. tuberculosis FadRs, Rv0494 shared the highest sequence similarity with FadRE. coli and Rv0586 was the second best match. However, only Rv0586, but not Rv0494, could complement E. coli ∆fadR, indicating that Rv0586 is the M. tuberculosis functional homologue of FadRE. coli. Further studies showed that both regulators, Rv0494 and Rv0586, show similar responsiveness to LCFA, and have conserved critical residues for DNA binding. However, analysis of the operator site indicated that the inter-palindromic distance required for DNA binding differs for the two regulators. The differences in the binding site selection helped in the success of Rv0586 binding to fadB upstream over Rv0494 and may have played a critical role in complementing E. coli ∆fadR. Further, for the first time, we report the lipid-responsive nature of Rv0586.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Lipídeos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Biologia Computacional , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Proteínas Repressoras/deficiência , Homologia de Sequência de Aminoácidos
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 614-624, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29526665

RESUMO

ACSL3 is the only long chain fatty acyl-CoA synthetase consistently found on growing and mature lipid droplets (LDs), suggesting that this specific localization has biological relevance. Current models for LD growth propose that triglycerides are synthesized by enzymes at the LD surface, with activated fatty acids provided by LD localized ACSL3, thus allowing growth independent of the ER. Here, we tested this hypothesis by quantifying ACSL3 on LDs from human A431 cells. RNAi of ACSL3 reduced the oleoyl-CoA synthetase activity by 83%, suggesting that ACSL3 is by far the dominant enzyme of A431 cells. Molar quantification revealed that there are 1.4 million ACSL3 molecules within a single cell. Metabolic labeling indicated that each ACSL3 molecule contributed a net gain of 3.1 oleoyl-CoA/s. 3D reconstruction of confocal images demonstrated that 530 individual lipid droplets were present in an average oleate fed A431 cell. A representative single lipid droplet with a diameter of 0.66 µm contained 680 ACSL3 molecules on the surface. Subcellular fractionation showed that at least 68% of ACSL3 remain at the ER even during extensive fatty acid supplementation. High resolution single molecule microscopy confirmed the abundance of cytoplasmic ACSL3 outside of LDs. Model calculations for triglyceride synthesis using only LD localized ACSL3 gave significant slower growth of LDs as observed experimentally. In conclusion, although ACSL3 is an abundant enzyme on A431 LDs, the metabolic capacity is not sufficient to account for LD growth solely by the local synthesis of triglycerides.


Assuntos
Coenzima A Ligases/metabolismo , Retículo Endoplasmático/enzimologia , Gotículas Lipídicas/enzimologia , Triglicerídeos/biossíntese , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA