Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Biol Sci ; 290(1996): 20222480, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37015277

RESUMO

Age-related variation in foraging performance can result from both within-individual change and selection processes. These mechanisms can only be disentangled by using logistically challenging long-term, longitudinal studies. Coupling a long-term demographic data set with high-temporal-resolution tracking of 18 Adélie penguins (Pygoscelis adeliae, age 4-15 yrs old) over three consecutive annual cycles, we examined how foraging behaviour changed within individuals of different age classes. Evidence indicated within-individual improvement in young and middle-age classes, but a significant decrease in foraging dive frequency within old individuals, associated with a decrease in the dive descent rate. Decreases in foraging performance occurred at a later age (from 12-15 yrs old to 15-18 yrs old) than the onset of senescence predicted for this species (9-11 yrs old). Foraging dive frequency was most affected by the interaction between breeding status and annual life-cycle periods, with frequency being highest during returning migration and breeding season and was highest overall for successful breeders during the chick-rearing period. Females performed more foraging dives per hour than males. This longitudinal, full annual cycle study allowed us to shed light on the changes in foraging performance occurring among individuals of different age classes and highlighted the complex interactions among drivers of individual foraging behaviour.


Assuntos
Mergulho , Spheniscidae , Humanos , Masculino , Animais , Feminino , Pré-Escolar , Criança , Adolescente , Comportamento Alimentar , Estações do Ano , Cruzamento
2.
J Anim Ecol ; 89(8): 1860-1871, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32419193

RESUMO

Measuring time-activity budgets over the complete individual life span is now possible for many animals with the recent advances of life-long individual monitoring devices. Although analyses of changes in the patterns of time-activity budgets have revealed ontogenetic shifts in birds or mammals, no such technique has been applied to date on insects. We tested an automated breakpoint-based procedure to detect, assess and quantify shifts in the temporal pattern of the flight activities in honeybees. We assumed that the learning and foraging stages of honeybees will differ in several respects, to detect the age at onset of foraging (AOF). Using an extensive dataset covering the life-long monitoring of 1,167 individuals, we compared the AOF outputs with the more conventional approaches based on arbitrary thresholds. We further evaluated the robustness of the different methods comparing the foraging time-activity budget allocations between the presumed foragers and confirmed foragers. We revealed a clear-cut learning-foraging ontogenetic shift that differs in duration, frequency and time of occurrence of flights. Although AOF appeared to be highly plastic among bees, the breakpoint-based procedure seems better capable to detect it than arbitrary threshold-based methods that are unable to deal with inter-individual variation. We developed the aof r-package including a broad range of examples with both simulated and empirical datasets to illustrate the simplicity of use of the procedure. This simple procedure is generic enough to be derived from any individual life-long monitoring devices recording the time-activity budgets, and could propose new ecological applications of bio-logging to detect ontogenetic shifts in the behaviour of central-place foragers.


Assuntos
Comportamento Alimentar , Longevidade , Animais , Abelhas
3.
Am Nat ; 193(3): 331-345, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30794448

RESUMO

Identifying traits that underlie variation in individual performance of consumers (i.e., trait utility) can help reveal the ecological causes of population divergence and the subsequent consequences for species interactions and community structure. Here, we document a case of rapid divergence (over the past 100 generations, or ∼150 years) in foraging traits and feeding efficiency between a lake and stream population pair of threespine stickleback. Building on predictions from functional trait models of fish feeding, we analyzed foraging experiments with a Bayesian path analysis and elucidated the traits explaining variation in foraging performance and the species composition of ingested prey. Despite extensive previous research on the divergence of foraging traits among populations and ecotypes of stickleback, our results provide novel experimental evidence of trait utility for jaw protrusion, gill raker length, and gill raker spacing when foraging on a natural zooplankton assemblage. Furthermore, we discuss how these traits might contribute to the differential effects of lake and stream stickleback on their prey communities, observed in both laboratory and mesocosm conditions. More generally, our results illustrate how the rapid divergence of functional foraging traits of consumers can impact the biomass, species composition, and trophic structure of prey communities.


Assuntos
Evolução Biológica , Ecossistema , Comportamento Alimentar , Smegmamorpha/anatomia & histologia , Animais , Feminino , Masculino , Fenótipo , Smegmamorpha/fisiologia , Zooplâncton
4.
J Exp Biol ; 222(Pt 20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624105

RESUMO

Like all birds, penguins undergo periodic molt, during which they replace old feathers. However, unlike other birds, penguins replace their entire plumage within a short period while fasting ashore. During molt, king penguins (Aptenodytes patagonicus) lose half of their initial body mass, most importantly their insulating subcutaneous fat and half of their pectoral muscle mass. The latter might challenge their capacity to generate and sustain a sufficient mechanical power output to swim to distant food sources and propel themselves to great depth for successful prey capture. To investigate the effects of the annual molt fast on their dive/foraging performance, we studied various dive/foraging parameters and peripheral temperature patterns in immature king penguins across two molt cycles, after birds had spent their first and second year at sea, using implanted data-loggers. We found that the dive/foraging performance of immature king penguins was significantly reduced during post-molt foraging trips. Dive and bottom duration for a given depth were shorter during post-molt and post-dive surface interval duration was longer, reducing overall dive efficiency and underwater foraging time. We attribute this decline to the severe physiological changes that birds undergo during their annual molt. Peripheral temperature patterns differed greatly between pre- and post-molt trips, indicating the loss of the insulating subcutaneous fat layer during molt. Peripheral perfusion, as inferred from peripheral temperature, was restricted to short periods at night during pre-molt but occurred throughout extended periods during post-molt, reflecting the need to rapidly deposit an insulating fat layer during the latter period.


Assuntos
Mergulho/fisiologia , Muda/fisiologia , Spheniscidae/fisiologia , Animais , Plumas/crescimento & desenvolvimento , Comportamento Alimentar/fisiologia , Feminino , Masculino , Oceanos e Mares , Temperatura
5.
Adv Exp Med Biol ; 875: 957-61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26611055

RESUMO

Anthropogenic noise underwater is on the rise and may affect aquatic animals of marine and freshwater ecosystems. Many recent studies concern some sort of impact assessment of a single species. Few studies addressed the noise impact on species interactions underwater, whereas there are some studies that address community-level impact but only on land in air. Key processes such as predator-prey or competitor interactions may be affected by the masking of auditory cues, noise-related disturbance, or attentional interference. Noise-associated changes in these interactions can cause shifts in species abundance and modify communities, leading to fundamental ecosystem changes. To gain further insight into the mechanism and generality of earlier findings, we investigated the impact on both a predator and a prey species in captivity, zebrafish (Danio rerio) preying on waterfleas (Daphnia magna).


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Ruído , Animais , Daphnia/fisiologia , Humanos , Densidade Demográfica , Especificidade da Espécie , Peixe-Zebra/fisiologia
6.
Front Cell Dev Biol ; 11: 1156923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181751

RESUMO

Maternal effects are an evolutionary strategy used to improve offspring quality. In an example of maternal effects in honey bees (Apis mellifera), mother queens produce larger eggs in queen cells than in worker cells in order to breed better daughter queens. In our current study, morphological indexes, reproductive tissues, and the egg-laying ability of newly reared queens reared with eggs laid in queen cells (QE), eggs laid in worker cells (WE), and 2-day-old larvae in worker cells (2L) were evaluated. In addition, morphological indexes of offspring queens and working performance of offspring workers were examined. The thorax weight, number of ovarioles, egg length, and number of laid eggs and capped broods of QE were significantly higher than those of WE and 2L, indicating that the reproductive capacity of QE group was better than that of other groups. Furthermore, offspring queens from QE had larger thorax weights and sizes than those from the other two groups. Offspring worker bees from QE also had larger body sizes and greater pollen-collecting and royal jelly-producing abilities than those of other two groups. These results demonstrate that honey bees display profound maternal effects on queen quality that can be transmitted across generations. These findings provide a basis for improving queen quality, with implications in apicultural and agricultural production.

7.
R Soc Open Sci ; 8(4): 210391, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33868701

RESUMO

Climate-mediated sea-ice loss is disrupting the foraging ecology of polar bears (Ursus maritimus) across much of their range. As a result, there have been increased reports of polar bears foraging on seabird eggs across parts of their range. Given that polar bears have evolved to hunt seals on ice, they may not be efficient predators of seabird eggs. We investigated polar bears' foraging performance on common eider (Somateria mollissima) eggs on Mitivik Island, Nunavut, Canada to test whether bear decision-making heuristics are consistent with expectations of optimal foraging theory. Using aerial-drones, we recorded multiple foraging bouts over 11 days, and found that as clutches were depleted to completion, bears did not exhibit foraging behaviours matched to resource density. As the season progressed, bears visited fewer nests overall, but marginally increased their visitation to nests that were already empty. Bears did not display different movement modes related to nest density, but became less selective in their choice of clutches to consume. Lastly, bears that capitalized on visual cues of flushing eider hens significantly increased the number of clutches they consumed; however, they did not use this strategy consistently or universally. The foraging behaviours exhibited by polar bears in this study suggest they are inefficient predators of seabird eggs, particularly in the context of matching behaviours to resource density.

8.
Evolution ; 71(5): 1297-1312, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28211577

RESUMO

Genes of major phenotypic effects and strong genetic correlations can facilitate adaptation, direct selective responses, and potentially lead to phenotypic convergence. However, the preponderance of this type of genetic architecture in repeatedly evolved adaptations remains unknown. Using hybrids between Haplochromis chilotes (thick-lipped) and Pundamilia nyererei (thin-lipped) we investigated the genetics underlying hypertrophied lips and elongated heads, traits that evolved repeatedly in cichlids. At least 25 loci of small-to-moderate and mainly additive effects were detected. Phenotypic variation in lip and head morphology was largely independent. Although several QTL overlapped for lip and head morphology traits, they were often of opposite effects. The distribution of effect signs suggests strong selection on lips. The fitness implications of several detected loci were demonstrated using a laboratory assay testing for the association between genotype and variation in foraging performance. The persistence of low fitness alleles in head morphology appears to be maintained through antagonistic pleiotropy/close linkage with positive-effect lip morphology alleles. Rather than being based on few major loci with strong positive genetic correlations, our results indicate that the evolution of the Lake Victoria thick-lipped ecomorph is the result of selection on numerous loci distributed throughout the genome.


Assuntos
Ciclídeos/genética , Especiação Genética , Genótipo , Fenótipo , Animais , Genoma , Lagos , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA